首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
燃煤固硫剂固硫效率测定方法的探讨   总被引:1,自引:0,他引:1  
推广固硫剂型煤是我国防治大气污染的一项基本政策,根据硫平衡原理建立了固硫效率的测试方法与计算公式,为研究或评价固硫剂的固硫效率提供一种较好的方法。  相似文献   

2.
随着环保要求的日趋严格,燃煤锅炉的脱硫已势在必行,DCL型燃煤固硫剂脱硫技术是中科院“九五攻关”项目之一,其技术原理是通过添加助剂提高固硫剂的吸附表面及其活性,同时将SO2转化为SO3或使MeSO3转化为MeSO4,从而使CaO固硫率大大提高,本文介绍了DCL型燃煤固硫的技术特点,因硫原理,固硫工艺和固硫设备及其在广州石化热电站的应用效果,通过运行数据分析和成本比较,证实DCL固硫剂固硫技术的适用性。  相似文献   

3.
在工况运行的20t/h链条炉中进行了掺烧固硫剂来实现炉内固硫的生产试验,试验中研究了固硫剂的粒度,掺烧比等因素对固硫效率的影响。结果表明:在实际运行的链条炉中,根据燃烧含硫量的大小,掺烧适当比例(5~10%)的HUN1#固硫剂,炉内固硫效率可达50%,不影响锅炉出力,具有节煤效果。  相似文献   

4.
杨小玲 《环境》2006,(Z1):59-61
固硫剂是固硫技术中的关键.本文概述了普通钙基固硫剂及复合固硫剂的应用和进展,指出其在该领域中存在的一些问题和发展趋势.  相似文献   

5.
为降低固硫型煤成本,提高固硫效率,控制燃烧时的异味,添加不同比例复合固硫助燃剂,进行燃烧试验.结果显示:添加6%复合固硫助燃剂有较好的固硫效果.  相似文献   

6.
煤粉炉燃中固硫技术研究与实践   总被引:1,自引:0,他引:1  
介绍了煤粉炉燃中固硫技术研究的背景、目的及煤粉炉燃烧特点,研究探讨了在煤粉炉上进行燃中固硫应采用钙系化合物作为主固硫剂,并添加助固硫剂,将提高固硫效果。  相似文献   

7.
型煤催化固硫的研究   总被引:3,自引:0,他引:3  
本试验发现Fe_2O_3对型煤固硫有催化作用,当型煤中Fe_2O_3含量在6‰时,固硫率最高,比在同等条件下不加Fe_2O_3时约增加10%左右。在温度小于500℃时,固硫率和Fe_2O_3关系曲线只出现极大值,大于500℃时,则同时出现极大极小值。它的催化固硫动力学行为比较复杂,温度小于500℃,Fe_2O_3含量小于6‰时,它起催化作用;Fe_2O_3含量大于6‰时,它与CaO形成固熔体,因而影响了活性。型煤催化固硫率的高低主要取决于温度低于470℃这一阶段,提高型煤固硫率的关键是要求型煤在500℃之前升温速度不能太快,为此可设计一型煤预热装置,此装置温度控制在470℃以下,型煤在装置中停留时间不超过半小时。Fe_2O_3的加入主要加快了CaO+SO_2→CaSO_3这一主反应的速度,并对硫的最后形态CaSO_4起一定稳定作用。  相似文献   

8.
本文对燃煤掺烧固硫中的节能问题进行了探讨.试验表明:掺烧适量的钙基固硫剂,不但能提高灰渣熔点,改善结焦性能,强化燃烧,而且可以使总发热量有所提高.因此,掺烧固硫具有节能效果.  相似文献   

9.
结合本地燃料煤特征、燃烧方式、固硫脱硫剂资源情况等,初步确定以生石灰为主固硫剂、窑泥巴为粘结剂,重点考察了固硫剂的适用温度、民用型煤固硫脱硫效果。  相似文献   

10.
高于1200℃的燃煤固硫因CaSO4的分解而因硫效率不高。CaS在高温下不会分解,若以CaS形式能将硫分固定下来,可以大大提高固硫效率。从热力学研究着手,计算预测了以CaS形式固硫的可行性;在富煤还原气氛燃烧时,在高于1227℃可达90%的固硫效果;在贫煤燃烧时,由于局部存在还原气氛,也可达到一定的固硫效果。本文实验表明,固硫剂中的某些非钙基添加剂可以在高温下形成玻璃态物质,更好地抑制CaS的氧化  相似文献   

11.
通过共沉淀法制备了用于湿式氧化乐果农药废水的Cu/Mn复合氧化物催化剂,研究了沉淀剂种类、沉淀温度、焙烧温度和活性组分配比等因素对Cu/Mn复合氧化物催化剂的活性及稳定性的影响,确定了最佳制备条件,利用BET比表面积测定和XRD对催化剂进行了表征。结果表明:优化条件制备的Cu/Mn复合氧化物催化剂催化湿式过氧化氢氧化处理乐果农药废水时,具有较高的催化活性和稳定性。催化剂用量以6 g/L,反应温度80℃,过氧化氢加入量为12.0 g/L,反应时间60 min,COD去除率为89.5%,活性组分溶出量较小。  相似文献   

12.
生物质型煤固硫添加剂的固硫增强作用   总被引:17,自引:1,他引:17  
在管式炉中进行了生物质型煤的燃烧固硫试验,考察了Al2O3、Fe2O3和MnO2共3种添加剂对钙基固硫剂的固硫增强作用.结果表明,只有Al2O3增强了型煤的固硫作用.通过TGA试验进一步证实,在还原性气氛下Al2O3可有效地抑制固硫产物CaSO4的高温分解.XPS和XRD分析表明,Al2O3通过与CaSO4和CaO作用,形成了热稳定性高的复盐CaSO4·3CaO·3Al2O3,并包裹在CaSO4晶体的表面,从而抑制了CaSO4的分解.  相似文献   

13.
采用环氧苯乙烯和血红蛋白中羧酸基和巯基位的加合物同时测定的方法,对大鼠血红蛋白SO加的进行了体外实 腹腔注射环氧苯乙烯和苯乙烯的体内实验。结果表明在血红蛋白中所分析的3种加合物(SG,1-PE,2-PE)均随着SO剂量而增加。  相似文献   

14.
土壤过滤净化氮氧化物实验研究   总被引:3,自引:0,他引:3  
实验考察了土壤类型、进口浓度、温度和过滤气速对净化氮氧化物废气效果的影响。结果表明 ,土壤过滤能够有效削减NOx 污染 ,对NO2 的净化效率可达 90 %以上 :肥沃土壤的净化效率明显高于贫瘠土壤 ,适宜作为过滤介质 ;在实验浓度范围内 ,净化效率基本随着进口浓度的提高而提高。当进口浓度高于 2mg m3时 ,净化效率基本稳定在95 %左右 ;温度的升高对提高去除率是有利的 ,而且对延长土壤滤池有效使用时间有很大帮助 ;在实验范围内气速的提高对NO2 去除率影响不明显。  相似文献   

15.
曝气生物流化床在铝氧化废水回用处理中的应用   总被引:1,自引:0,他引:1  
采用曝气生物流化床(ABFT)工艺,对某铝氧化废水进行深度处理。结果表明,ABFT工艺具有占地面积小、处理效率高、出水水质好、流程简单等优点,出水水质达到《生活杂用水水质标准》(CJ/T 48-1999)的相应要求,并取得了良好的经济和环境效益。  相似文献   

16.
在增压共轨发动机上采用柴油/甲醇组合燃烧(DMCC)方式进行了氮氧化物排放特性研究.对DMCC模式下NO x、NO、NO2等排放与纯柴油模式的对比分析表明:DMCC模式下的NO x排放比原机模式平均下降10%以上,NO平均下降幅度超过40%;采用DMCC模式后,NO2排放量都有明显大幅度的升高,并且NO2/NO比值呈现显著增大,平均高达100%以上.  相似文献   

17.
通过对丽水、宁波、衢州、诸暨等浙江省境内十几个地区的污水处理厂的调查发现:目前浙江省内的污水处理工艺中,A2/O、A/O、氧化沟三种工艺占了近50%的份额。而SBR因其方法特点正在受到越来越多的重视。在污泥处理工艺中,填埋占了最大的一部分,有近70%的污水处理厂将产生的污泥进行填埋处理。目前,污泥处理技术单一,需要继续探寻污泥的减量和资源化技术,为日益增多的污泥探寻出路。  相似文献   

18.
通过对丽水、宁波、衢州、诸暨等浙江省境内十几个地区的污水处理厂的调查发现:目前浙江省内的污水处理工艺中,A2/O、A/O、氧化沟三种工艺占了近50%的份额.而SBR因其方法特点正在受到越来越多的重视.在污泥处理工艺中,填埋占了最大的一部分,有近70%的污水处理厂将产生的污泥进行填埋处理.目前,污泥处理技术单一,需要继续探寻污泥的减量和资源化技术,为日益增多的污泥探寻出路.  相似文献   

19.
采用溶胶-凝胶法制备铜锌复合氧化物(Cu/ZnO),并将Cu/ZnO纳米粒子负载到还原氧化石墨烯(RGO)表面制备Cu/ZnO-RGO复合材料.对Cu/ZnO-RGO复合材料进行表征分析及抗菌性能考察,结果表明,Cu/ZnO纳米粒子成功负载在RGO表面,负载前后Cu/ZnO纳米粒子形态不发生改变,复合材料纯度较高.Cu/ZnO-RGO复合材料对大肠杆菌与金黄色葡萄球菌均有着优异的抗菌性能,可以破坏细菌细胞膜,导致细菌内容物流出,延长细菌进入对数生长期所需的时间.当RGO质量分数为15%?Cu/ZnO-RGO复合材料使用量为120μg/mL时,在循环冷却水系统中作用2h即可拥有96.76%的抗菌率.  相似文献   

20.
选取CH4、O2、CO2、Ar、NO、NH3,等气体,作为混合气和煤粉一起送入一维沉降炉内,以模拟O2/CO2气氛下煤中燃料氮、循环NO以及二者的相互作用对NO排放的影响,结果显示,在还原性气氛下NH3、HCN、CH4、CO与循环NO间的反应是NO排放下降的主要因素,且煤焦与NO的异相反应、吸附反应对NO的降解效果要明显高于氧化性气氛,同时,CO2体积分数的增加使得燃料中氮的氧化率升高,循环NO的降解率下降;氧化性气氛下随CO2体积分数的增加,燃料中氮的氧化率也增加,但循环NO的降解率升高.当CO2体积分数不变时,其对NO降解的作用随循环NO体积分数的增加愈加明显,在循环NO也不变且CO2体积分数较低时,随过量空气系数的增加,循环NO的降解率下降,而CO2体积分数较高时则出现相反情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号