首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bite forces and evolutionary adaptations to feeding ecology in carnivores   总被引:2,自引:0,他引:2  
Christiansen P  Wroe S 《Ecology》2007,88(2):347-358
The Carnivora spans the largest ecological and body size diversity of any mammalian order, making it an ideal basis for studies of evolutionary ecology and functional morphology. For animals with different feeding ecologies, it may be expected that bite force represents an important evolutionary adaptation, but studies have been constrained by a lack of bite force data. In this study we present predictions of bite forces for 151 species of extant carnivores, comprising representatives from all eight families and the entire size and ecological spectrum within the order. We show that, when normalized for body size, bite forces differ significantly between the various feeding categories. At opposing extremes and independent of genealogy, consumers of tough fibrous plant material and carnivores preying on large prey both have high bite forces for their size, while bite force adjusted for body mass is low among specialized insectivores. Omnivores and carnivores preying on small prey have more moderate bite forces for their size. These findings indicate that differences in bite force represent important adaptations to and indicators of differing feeding ecologies throughout carnivoran evolution. Our results suggest that the incorporation of bite force data may assist in the construction of more robust evolutionary and palaeontological analyses of feeding ecology.  相似文献   

2.
Large size often confers a fitness advantage to female insects because fecundity increases with body size. However, the fitness benefits of large size for male insects are less clear. We investigated the mating behavior of the mayfly Baetis bicaudatus to determine whether the probability of male mating success increased with body size. Males formed mating aggregations (swarms) ranging from a few to hundreds of individuals, 1-4 m above the ground for about 1.5-2 h in the early morning. Females that flew near swarms were grabbed by males, pairs dropped to the vegetation where they mated and then flew off individually. Some marked males returned to swarms 1, 2 or 3 days after marking. Larger males swarmed near spruce trees at the edges of meadows, but the probability of copulating was not a function of male body size (no large male advantage). Furthermore, the potential fitness advantage of mating with larger, more fecund females was not greater for large males (no size-assortative mating). However, the sizes of copulating males were significantly less variable than those of non-mating males collected at random in swarms. Intermediate male size may be optimal during mating because of trade-offs between flight agility and longevity or competitive ability. Results of this study are consistent with the hypotheses that there is stabilizing selection on adult male body size during mating, and that male body size in this species may be influenced more by selection pressures acting on larvae than on adults.  相似文献   

3.
The theory of life history evolution assumes trade-offs between competing fitness traits such as reproduction, somatic growth, and maintenance. One prediction of this theory is that if large individuals have a higher reproductive success, small/young individuals should invest less in reproduction and allocate more resources in growth than large/old individuals. We tested this prediction using the common toad (Bufo bufo), a species where mating success of males is positively related to their body size. We measured testes mass, soma mass, and sperm stock size in males of varying sizes that were either (1) re-hibernated at the start of the breeding season, (2) kept without females throughout the breeding season, or (3) repeatedly provided with gravid females. In the latter group, we also estimated fertilization success and readiness to re-mate. Contrary to our predictions, the relationship between testes mass and soma mass was isometric, sperm stock size relative to testes mass was unrelated to male size, fertilization success was not higher in matings with larger males, and smaller males were not less likely to engage in repeated matings than larger males. These results consistently suggest that smaller males did not invest less in reproduction to be able to allocate more in growth than larger males. Causes for this unexpected result may include relatively low year-to-year survival, unpredictable between-year variation in the strength of sexual selection and low return rates of lowered reproductive investment.  相似文献   

4.
Sex ratio theory is one of the most controversial topics in evolutionary ecology. Many deviations from an equal production of males and females are reported in the literature, but few patterns appear to hold across species or populations. There is clearly a need to identify fitness effects of sex ratio variation. We studied this aspect in a population of a long-lived seabird, the wandering albatross (Diomedea exulans), using molecular sex-identification techniques. We report that parental traits affect both (1) fledgling traits in a sex-dependent way and (2) chick sex: Sons are overproduced when likely to be large at fledging and, to a lesser extent, daughters are overproduced when likely to be in good body condition at fledging. Because for the same population, a previous study reported that post-fledging survival was positively affected by size in males and by body condition in females, our results suggest that wandering albatrosses manipulate offspring sex to increase post-fledging survival.  相似文献   

5.
The occurrence of male pregnancy in the family Syngnathidae (seahorses, pipefishes, and sea dragons) provides an exceptionally fertile system in which to investigate issues related to the evolution of parental care. Here, we take advantage of this unique reproductive system to study the influence of maternal body size on embryo survivorship in the brood pouches of pregnant males of the broad-nosed pipefish, Syngnathus typhle. Males were mated with either two large females, two small females, a large then a small female, or a small then a large female. Our results show that offspring survivorship depends on an interaction between female body size and the number of eggs transferred by the female. Eggs of larger females deposited in large numbers are more likely to result in viable offspring than eggs of smaller females laid in large numbers. However, when females deposited smaller numbers of eggs, the eggs from smaller females were more likely to produce viable offspring compared to those from larger females. We found no evidence that this result was based on mating order, the relative sizes of competing females, or egg characteristics such as dry weight of eggs. Additionally, male body size did not significantly influence the survivorship of offspring during brooding. Our results suggest that the factors underlying offspring survivorship in pipefish may be more complex than previously believed, with multiple factors interacting to determine the fitness of individual offspring within the broods of pregnant males.  相似文献   

6.
Tree lizards (Urosaurus ornatus) vary in throat fan (dewlap) color. Earlier, we described five dewlap types (Orange, Orange-Blue, Yellow, Yellow-Blue, and Blue), and reported that only males had blue in the dewlap and that presence or absence of a discrete blue patch was correlated with male alternative reproductive phenotypes in a central Arizona population. Here, with a modified scheme characterizing two dewlap elements, background color (orange, yellow, blue) and blue patch occurrence, we assessed: (1) sexual, annual, and geographic variation in the frequencies of dewlap elements; (2) simple habitat correlates; and (3) the effects of laboratory rearing regime on dewlap type. Within a population, frequencies of males and females expressing orange or yellow backgrounds did not differ, suggesting that control of background is similar in the sexes. Within several populations, frequencies of the dewlap elements did not differ across years (and probably generations), indicating that phenotype frequencies are relatively stable. Among five populations frequencies of background colors varied, as did frequencies of male types (blue patch present or absent). Dewlap frequencies did not correlate with habitat (boulders or mesquite trees), although few populations were sampled. In male and female offspring reared from eggs to sexual maturity in a common-garden laboratory study, background color frequencies in both sexes and blue patch frequencies in males differed among offspring from different populations. Offspring frequencies matched respective parental population frequencies. Results suggest that among-population variation in frequencies of the two dewlap elements are mediated by differences in genetics, in maternal effects, or both. Thus, differences in male behavior functionally linked to the blue patch also may be controlled by genetic or maternal effects. Received: 17 January 1997 / Accepted after revision: 30 August 1997  相似文献   

7.
Sexual size dimorphism may evolve as a result of both natural and sexual selection. In polygynous mammals, the main factor resulting in the evolution of large body size in males is the advantage conferred during competition for mates. In this study, we examined whether sexual selection acts on body size in mature fallow bucks (Dama dama) by examining how the following traits are inter-related: age, body (skeletal) size, body mass, prerut dominance rank, rut dominance rank and mating success. This is the first study to examine how all these factors are together related to the mating success of a large sexually dimorphic and polygynous mammal. We found that male mating success was directly related to body size, but not to body mass. However body mass was related to prerut dominance rank which was in turn strongly related to rut dominance rank, and thus there was an indirect relationship between mating success and body mass. Rut dominance rank was the variable most strongly related to mating success. Mating success among mature males was unrelated to age. We conclude that larger mature fallow bucks have advantages over other males when competing for matings, and sexual selection therefore continues to act on sexual size dimorphism in this species. Heavier fallow bucks also have advantages, but these are mediated through the dominance ranks attained by males before the rut.  相似文献   

8.
Lankau R 《Ecology》2008,89(5):1181-1187
The importance of non-resource-based mechanisms of competition between plant species has been increasingly recognized, but little is known about how genetic variation and evolutionary changes in the underlying competitive traits might affect species coexistence. I found that genetic variation in sinigrin concentration, a putative allelopathic agent in Brassica nigra, affected the fitness of three heterospecific neighbor species but did not affect neighboring B. nigra individuals. Investment in sinigrin led to a negative genetic correlation between intra- and interspecific competitive ability, which over many generations could provide a strong stabilizing force maintaining both species and genetic diversity in this system.  相似文献   

9.
Although laboratory measurements of whole-animal performance have become a standard tool in evolutionary biology, if and how interindividual variation in performance translates into differential fitness remains poorly understood. Particularly rare are studies that have connected performance to mating and reproductive success in the field. In this study, we use DNA microsatellite parentage analyses to study the fitness gradient in a colour-polymorphic lizard, Podarcis melisellensis. We report on two surprising findings. First, contrary to our expectations, individual sprint speed and bite force capacity correlated negatively, not positively, with male mating and reproductive success. Second, we found an unexpected degree of promiscuity in females. Also, contrary to traditional parental investment theory, the variation in mating success and reproductive success was as high in females as in males. Our results call for a better integration of whole-animal performance and life history traits, and for a reconsideration of the ideas on the likeliness of sexual selection acting on female phenotypes.  相似文献   

10.
Transfer of maternal hormones to the eggs is a major source of offspring phenotypic variation. The developmental and organizational effects of egg hormones can extend into adulthood and affect behavioral and morphological traits involved in sexual and reproductive behavior, with important consequences for offspring fitness. In this study, we injected testosterone (T) in egg albumen of captive ring-necked pheasant (Phasianus colchicus) eggs. We then assessed the consequences for chick growth, cell-mediated immunity, and multiple male secondary sexual traits at maturity by comparison with a control group. We also compared the covariation between traits in the two experimental groups. We found that control males had redder wattles than males from T-injected eggs, suggesting that attractiveness and reproductive success of the offspring might vary depending on maternal transfer of T to the eggs. T treatment also modified the covariation between cell-mediated immunity and wattle coloration and between the area of the wattle and the expression of another secondary sexual trait, the ear tufts. These effects are likely to translate into fitness differences among the offspring if mate acquisition depends on the simultaneous expression of several traits that are differentially affected by the same maternal contribution. Maternal effects mediated by egg hormones might affect the fitness of the offspring not only by directional modification of phenotypic traits, but also by facilitating or inhibiting their covariation. This suggests the possibility that female choice based on the relative expression of multiple secondary sexual traits exerts a pressure on how maternal transfer of androgens contributes to developmental programs.  相似文献   

11.
Asymmetry in traits of sexual relevance may impair copulation behaviour and sexual performance of males, ultimately resulting in a fitness cost. Freshwater crayfish males use chelae, a sexually selected trait, to secure and position the female prior to and during mating. Thus, a relatively large chelae asymmetry, resulting from accidental loss and regeneration of one cheliped after autotomy, could have great consequences for male sexual behaviour. We studied copulatory behaviour and sperm expenditure of males paired to a mated female in Austropotamobius italicus, a freshwater crayfish species where both male and female mate multiply and where last-mating males are able to actively remove previously deposited sperm. We aimed at assessing whether male sperm removal and expenditure varied according to sperm allocated by first-mating males, and according to copulation behaviour and phenotypic traits (carapace length, chelae length and relative chelae asymmetry) of second-mating males. Second-mating males did not adjust their ejaculate size in relation to first-mating male ejaculate, nor to the first-mating male’s sperm removed. Moreover, the amount of sperm removed by second-mating males increased with increasing first-mating males ejaculate size, and first-mating male sperm remaining after removal did not correlate with the original first-mating male ejaculate size. Interestingly, the amount of sperm removed by second-mating males decreased with increasing relative chelae asymmetry, while increasing with male body size. However, second-mating (but not first-mating) asymmetric-clawed males produced larger ejaculates than symmetric-clawed ones. Importantly, the proportion of second-mating male sperm remaining after the two matings did not vary with relative chelae asymmetry nor with body size of second-mating males. Thus, small, asymmetric-clawed crayfish males appear to adopt sperm allocation tactics that allow them to fully compensate for their inferior sperm removal ability.  相似文献   

12.
In a variety of taxa, male reproductive success is positively related to the expression of costly traits such as large body size, ornaments, armaments, and aggression. These traits are thought to improve male competitive ability and, thus, access to limited reproductive resources. Females of many species also express competitive traits. However, we know very little about the consequences of individual variation in competitive traits and the mechanisms that regulate their expression in females. Consequently, it is currently unclear whether females express competitive traits owing to direct selection or as an indirect result of selection on males. Here, we examine females of a mildly dimorphic songbird (Junco hyemalis) to determine whether females show positive covariance in traits (morphology and behavior) that may be important in a competition. We also examine whether trait expression relates either to testosterone (T) in terms of mechanism or to reproductive success in terms of function. We found that larger females were more aggressive and that greater ability to produce T in response to a physiological challenge consisting of a standardized injection of gonadotropin-releasing hormone predicted some measures of female body size and aggression. Finally, we found that aggressive females had greater reproductive success. We conclude that T may influence female phenotype and that females may benefit from expressing a competitive phenotype. We also suggest that the mild dimorphism observed in many species may be due in part to direct selection on females rather than simply a correlated response to selection in males.  相似文献   

13.
Although our understanding of how animal personality affects fitness is incomplete, one general hypothesis is that personality traits (e.g. boldness and aggressiveness) contribute to competitive ability. If so, then under resource limitation, personality differences will generate variation in life history traits crucial to fitness, like growth. Here, we test this idea using data from same-sex dyadic interaction trials of sheepshead swordtails (Xiphophorus birchmanni). In males, there was evidence of repeatable variation across a suite of agonistic contest behaviours, while repeatable opponent effects on focal behaviour were also detected. A single vector explains 80 % of the among-individual variance in multivariate phenotype and can be viewed as aggressiveness. We also find that aggressiveness predicts dominance—the repeatable tendency to win food in competition—and dominant individuals show faster post-trial weight gain (independently of initial size). In females, a dominance hierarchy predictive of weight gain was also found, but there was no evidence of variation in aggressiveness. While size often predicts contest outcome, our results show that individuals may sometimes grow larger because they are behaviourally dominant rather than vice versa. When resources are limited, personality traits such as aggression can influence growth, life history, and fitness through impacts on resource acquisition.  相似文献   

14.
Sexual selection has led to male morphologies and behaviours that either increase male attractiveness or their success in male–male competition. We investigated male traits under selection in the ant Hypoponera opacior, in which wingless males mate with pupal queens inside their natal colony and guard their partners for hours. The lack of female choice and fights among adult males makes this species an ideal study system to investigate sexual selection in the absence of these selective forces. We hypothesised that males, which emerge first and live longer, should have a higher mating success because of more mating opportunities, reduced competition and the ability to kill pupal competitors. We recorded the number and length of matings and tested whether these measures of male-mating success were associated with emergence order, lifespan and body size. Indeed, early emerged males mated more often and longer than their later-emerging rivals. Furthermore, longer-lived and larger males obtained more matings. Body size might be important because larger males either produce more sperm or perform better in mounting females. We found no evidence for a trade-off between body size and emergence time. Moreover, male removal manipulations revealed that males quickly adapt their guarding behaviour to changes in the competitive environment. Under reduced competition, males guarded their partners for shorter periods. In conclusion, these sib-mating ant males are under selection to develop fast, to live long, to be large and to be able to respond to the competitive situation in the nest.  相似文献   

15.
The purpose of my study was to determine whether male body size, a trait known to be important to mating success, covaries with offspring performance. I tested the effects of male body size on the performance of Bufo bufo tadpoles reared at two food levels by mating large, small, and naturally-mated males to the same females. Survival of tadpoles in the high-food environment was affected by male size class, but in the opposite way to that expected. Tadpoles sired by large males had the lowest survival, and those sired by small males the highest. Neither body size at metamorphosis nor larval period were affected by male size class alone, but male size interacted with the female contribution: tadpoles sired by large males had short larval periods and large size at metamorphosis with some females,but long larval periods and small body sizes with others. Food level had a significant effect on both size at metamorphosis and larval period, and interacted with female contribution, but not male size class. This indicated that female contribution to tadpoles was dependent on food level, but that the effects of male size were not differentially expressed by tadpoles at the two food levels. My results indicate that traits with a direct effect on offspring fitness are not enhanced by large male body size, yet some males and females produced offspring with significantly better performance. I suggest that evolutionary change in this mating system is unlikely to occur through the non-random mating of males based on body size alone.  相似文献   

16.
Summary Body size in the field cricket,Gryllus bimaculatus, contributes to fitness through its effects on competitive male mating success and female fecundity and is a character chosen by females at mating. If females are to benefit from preferentially mating with large males they must be able to pass on the advantages of large size to their offspring. The heritabilities of four aspects of body size were estimated by parent-offspring regression. All aspects were shown to have heritable genetic variation despite the fact that theory predicts characters which contribute to fitness should not be heritable. There may therefore be the potential for female choice in this species to be adaptive. Some possible mechanisms for the maintenance of heritable variation are discussed.  相似文献   

17.
In many animals, conspicuous coloration functions as a quality signal. Indicator models predict that such colors should be variable and condition dependent. In Habronattus pyrrithrix jumping spiders, females are inconspicuously colored, while males display brilliant red faces, green legs, and white pedipalps during courtship. We tested the predictions of the indicator model in a field study and found that male body condition was positively correlated with the size, hue, and red chroma of a male’s facial patch and negatively correlated with the brightness of his green legs. These traits were more condition dependent than non-display colors. We then tested a dietary mechanism for condition dependence using two experiments. To understand how juvenile diet affects the development of coloration, we reared juvenile spiders on high- and low-quality diets and measured coloration at maturity. To understand how adult diet affects the maintenance of coloration, we fed wild-caught adults with high- or low-quality diets and compared their coloration after 45 days. In the first experiment, males fed high-quality diet had redder faces, suggesting that condition dependence is mediated by juvenile diet. In the second experiment, red coloration did not differ between treatments, suggesting that adult diet is not important for maintaining the color after it is produced at maturity. Diet had no effect on green coloration in either experiment. Our results show different degrees of condition dependence for male display colors. Because red is dependent on juvenile diet, it may signal health or foraging ability. We discuss evidence that green coloration is age dependent and alternatives to indicator models for colorful displays in jumping spiders.  相似文献   

18.
The evolution and ecology of consistent behavioural variation, or personality, is currently the focus of much attention in natural populations. Associations between personality traits and parasite infections are increasingly being reported, but the extent to which multiple behavioural traits might be associated with parasitism at the same time is largely unknown. Here, we use a population of great tits, Parus major, to examine whether infection by avian malaria (Plasmodium and Leucocytozoon) is associated with three behavioural traits assayed under standardized conditions. All of these traits are of broad ecological significance and two of them are repeatable or heritable in our population. Here, we show weak correlations between some but not all of these behavioural traits, and sex-dependent associations between all three behavioural traits and parasite infection. Infected males showed increased problem-solving performance whereas infected females showed reduced performance; furthermore, uninfected females were four times more likely to solve problems than uninfected males. Infected females were more exploratory than uninfected females, but infection had no effect on males. Finally, infected males were more risk-averse than uninfected males but females were unaffected. Our results demonstrate the potential for complex interactions between consistent personality variation and parasite infection, though we discuss the difficulty of attributing causality in these associations. Accounting for complex parasite-behaviour associations may prove essential in understanding the evolutionary ecology of behavioural variation and the dynamics of host–parasite interactions.  相似文献   

19.
Offspring size is strikingly variable within species. Although theory can account for variation in offspring size among mothers, an adaptive explanation for variation within individual broods has proved elusive. Theoretical considerations of this problem assume that producing offspring that are too small results in reduced offspring viability, but producing offspring that are too large (for that environment) results only in a lost opportunity for increased fecundity. However, logic and recent evidence suggest that offspring above a certain size will also have lower fitness, such that mothers face fitness penalties on either side of an optimum. Although theory assuming intermediate optima has been developed for other diversification traits, the implications of this idea for selection on intra-brood variance in offspring size have not been explored theoretically. Here we model the fitness of mothers producing offspring of uniform vs. variable size in unpredictably variable environments and compare these two strategies under a variety of conditions. Our model predicts that producing variably sized offspring results in higher mean maternal fitness and less variation in fitness among generations when there is a maximum and minimum viable offspring size, and when many mothers under- or overestimate this optimum. This effect is especially strong when the viable offspring size range is narrow relative to the range of environmental variation. To determine whether this prediction is consistent with empirical evidence, we compared within- and among-mother variation in offspring size for five phyla of marine invertebrates with different developmental modes corresponding to contrasting levels of environmental predictability. Our comparative analysis reveals that, in the developmental mode in which mothers are unlikely to anticipate the relationship between offspring size and performance, size variation within mothers exceeds variation among mothers, but the converse is true when optimal offspring size is likely to be more predictable. Together, our results support the hypothesis that variation in offspring size within broods can reflect an adaptive strategy for dealing with unpredictably variable environments. We suggest that, when there is a minimum and a maximum viable offspring size and the environment is unpredictable, selection will act on both the mean and variance of offspring size.  相似文献   

20.
Female mate choice based on visual traits appears to be rare in lizards. Field observations suggest that females of the lizard Lacerta monticola preferred to mate with larger/older males. Although older males are usually green and larger, and younger males brown and smaller, there is some overlap in size and coloration between age classes. Thus, visual cues may not always be reliable indicators of a male's age. We hypothesized that female mate-choice preferences may be based on males' pheromones, which might transmit information about characteristics such as age. In a laboratory experiment, we analyzed the effect of age of males on attractiveness of their scents to females. When we offered scents of two males of different age, females associated preferentially with scents of older males. This suggested that females were able to assess the age of males by chemical signals alone, and that females preferred to be in areas scent-marked by older males. Thus, females may increase their opportunities to mate with males of high quality, or may avoid harassment by sneaking young males. This result agreed with field observations on females mating with old males, and rejection of advances by young males. Our results also suggested that female preference for older males may depend on their own body size. Large females showed a strong preference for older males, whereas smaller females were not so selective. This, together with males' preference for large females, might lead to size-assortative matings. We suggest that the quality and/or quantity of male pheromones could communicate to the female heritable male genetic quality (i.e. age) and thereby serve as the basis of adaptive female choice in lizards.Communicated by W.E. Cooper  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号