首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
中国近15年气溶胶光学厚度时空分布特征   总被引:1,自引:0,他引:1  
利用MODIS 04_L2气溶胶日产品统计其月度、季度及年度均值数据,研究中国大陆地区近15a气溶胶光学厚度(AOD)空间分布状况;通过Spearman秩相关检验法,探讨中国大陆地区近15a的AOD年均值与季均值的逐年变化趋势.结果表明:在空间分布上,我国AOD多年均值高值中心主要位于四川盆地、南疆盆地、华中地区、长江三角洲、华北平原、关中平原,珠江三角洲地区也有小范围的高值区;低值中心主要位于川西和藏东南、内蒙和冀北交界以及河套地区.在逐年变化趋势上,西北地区AOD值主要呈下降趋势,其中川西和藏东南、陕甘宁交界呈显著下降趋势;东部地区AOD值主要呈现上升趋势,且华中地区、长江三角洲、华北平原以及关中平原呈显著上升趋势;在全国范围内AOD年均值整体呈现上升趋势,但趋势不显著;AOD值随季节变化较显著,具体表现为春夏较高、秋冬较低;AOD高值区以及呈上升趋势的地区基本都处在胡焕庸线东南,表明人类活动对AOD值影响比较显著.  相似文献   

2.
上海地区大气气溶胶光学厚度的遥感监测   总被引:1,自引:1,他引:1  
采用V5.2算法,以MODIS 1B数据为数据源,利用Matlab软件进行数据预处理,反演了上海地区大气气溶胶光学厚度(AOD). 将AOD反演值分别与NASA的MOD04-L2气溶胶产品(10 km×10 km)以及CE-318太阳光度计实测结果进行对比. 结果表明:V5.2算法与NASA气溶胶产品相比,其精度更好,分辨率更高. 基于V5.2算法和利用MODIS遥感影像反演结果,分析了上海市典型天气AOD; 同时,将反演值与城市空气污染指数(API)进行了对比. 结果表明:AOD从一定程度上可以反映地面大气污染状况. 上海2008年AOD 12月最小,大气相对较清洁,6月最大,大气相对较浑浊;AOD的日际变化呈早晚高、中午略低的趋势,其中每日的09:00和18:00出现全天最高值,12:00左右也会出现小高峰.   相似文献   

3.
首先分别对西南地区84个气象站1980年前后的能见度资料进行了均一性处理,建立了各站1961-2013年的能见度长序列数据,再结合水汽压、天气现象资料反演建立了1961-2013年西南地区的气溶胶光学厚度(AOD)长时间序列资料,研究了四川盆地的气溶胶光学厚度的长期变化及其与气温的关系.结果表明,西南地区AOD在四川盆地形成一高值区,四川盆地AOD明显大于云贵高原和川西地区.四川盆地AOD阶段变化明显,从1961-1996年不断增加,线性增加趋势十分显著,高达0.046/10 a,尤其是从1980年代到1990年代中期显著增加且维持在较高值,到1990年代中后期(1996年左右)转为下降趋势.四川盆地在1997年左右开始的显著增暖比全国和全球1980年代中期开始的增暖明显滞后,气溶胶的冷却效应在一定程度上可以解释四川盆地在1980年代至1990年代中期气温偏低.从季节来看,春季AOD的显著增加与四川盆地春季气温变冷的关系相比其它季节更密切.此外,四川盆地AOD与气温日较差存在显著的负相关关系,AOD从1961-1996年不断增加,对四川盆地温度日变化幅度有明显减缓作用.从季节来看,春季AOD与气温日较差的负相关关系相比其他季节更为明显.  相似文献   

4.
长江三角洲地区大气气溶胶光学厚度研究   总被引:11,自引:0,他引:11  
利用在浙江临安太阳光度计测得的气溶胶光学厚度与MODIS lever2气溶胶产品进行对比,得到较好的相关。给出长江三角洲地区的光学厚度季节和月平均分布图以及几个城市光学厚度的逐月平均值,并分析这一地区气溶胶光学厚度特征。为更好的研究区域空气污染,利用长江三角洲地区几个城市的空气污染指数(API)与MODIS气溶胶光学厚度(AOD)进行对比,提出一种污染监测手段。  相似文献   

5.
北京地区大气气溶胶光学厚度的观测和分析   总被引:11,自引:2,他引:11       下载免费PDF全文
利用中国科学院大气物理研究所研制的中分辨率太阳-天光光谱自动观测系统(MORSAS)于北京对太阳直射光谱和天空散射光谱进行准连续观测,其中无云情况(包括晴天和浑浊天气)下的观测资料用于获取大气气溶胶光学厚度.该仪器与一台美国NASA主持的国际气溶胶观测网仪器CIMEL CE-318太阳光度计进行对比观测,二者所得结果一致性较好.作者给出了近3年北京地区大气气溶胶光学厚度和表征粒子谱宽度的Angstrom指数(a)的变化情况.与20世纪90年代中期相比,近3年北京秋冬季气溶胶光学厚度有所减小,表明北京的环境治理有一定成效;而春季气溶胶光学厚度则在近2年有明显增加,源自沙尘天气,且Angstrom指数亦变小,表明大粒子比例增加,因此需要加强对沙尘源的治理.  相似文献   

6.
河北省气溶胶标高时空变化及其成因   总被引:1,自引:0,他引:1       下载免费PDF全文
以2012年河北省20个监测站的MODIS AOD(气溶胶光学厚度)和近地面水平能见度数据为基础,应用Peterson 模型和高斯模型,计算气溶胶标高月均值年内变化模型系数;应用全微分近似计算原理,构建了气溶胶标高时空变化的成因模型.结果表明:①全省平均气溶胶标高以夏季最高,为3.298 km;春、秋季次之,分别为2.864和2.284 km;冬季最低,为1.597 km. 全省气溶胶标高空间分布以夏季地域差异最显著,最大值为3.193 km;冬季地域差异最小,最大值为1.487 km. ②在全省尺度上,大气颗粒物排放强度和大气边界层高度每变化1%时,将会引致气溶胶标高分别变化0.577%和0.143%,二者对气溶胶标高变化的贡献率分别为80.1%和19.9%;在省内6个次级区域尺度上,大气颗粒物排放强度越大的区域,大气边界层高度对气溶胶标高的贡献率越大,如冀中南平原、沧州沿海平原和冀东平原的贡献率分别达到63.7%、57.8%、54.2%;反之则贡献率较低,如冀中平原、冀西北山区和冀东北山区的贡献率则分别仅为45.4%、32.6%、8.6%.   相似文献   

7.
杭州市大气气溶胶光学厚度研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2011~2012年杭州国家基准气候站内太阳光度计(CE-318)观测资料,分析杭州市气溶胶光学厚度(AOD)和Angstrom波长指数(α)的变化特征.结果表明,2011~2012年杭州市AOD500nm年平均值为0.86?0.47,α440~870nm年平均值为1.25?0.23.AOD季节变化特征不明显,主要与该地区天气形势以及内外源影响密切相关.α季节变化差异也不大,受北方带来的沙尘气溶胶影响,春季α略偏低.AOD呈现单峰型日变化特征,峰值出现在15:00,谷值出现在06:00,午后AOD明显升高主要与强烈的太阳辐射引起光化学反应产生的二次气溶胶以及近地层气溶胶在湍流输送作用下向城市上空扩散有关.从频率分布来看,AOD和α频率分布均呈现明显的单峰特征,并且较好的符合对数正态分布.α在高值区间1.1~1.7出现频率为77.8%,表明杭州市以平均半径较小的气溶胶粒子为主,属于城市-工业型气溶胶类型.杭州市AOD的高值(1.0)主要表现为粗模态气溶胶以及细模态气溶胶的吸湿增长.  相似文献   

8.
长江三角洲大气气溶胶光学厚度分布和变化趋势研究   总被引:9,自引:3,他引:6  
利用2000~2005年MODIS Level 2气溶胶产品分析了长江三角洲区域气溶胶光学厚度的分布和季节变化特点.结果显示,近年来长江三角洲气溶胶光学厚度值较高的区域逐年增加,光学厚度大于1.0的区域面积增加最快.根据城市气溶胶季节变化特征研究,发现长江三角洲地区各主要城市近年气溶胶有逐渐增加的趋势.统计结果表明,平原城市群气溶胶年峰值出现在夏季;山区城市群气溶胶年峰值出现在春季.平原城市群光学厚度增加速度大于山区城市群.  相似文献   

9.
杭州市大气气溶胶光学厚度研究   总被引:4,自引:0,他引:4       下载免费PDF全文
利用2011~2012年杭州国家基准气候站内太阳光度计(CE-318)观测资料,分析杭州市气溶胶光学厚度(AOD)和Angstrom波长指数(α)的变化特征.结果表明,2011~2012年杭州市AOD500nm年平均值为0.86±0.47,α440~870nm年平均值为1.25±0.23.AOD季节变化特征不明显,主要与该地区天气形势以及内外源影响密切相关.α季节变化差异也不大,受北方带来的沙尘气溶胶影响,春季α略偏低.AOD呈现单峰型日变化特征,峰值出现在15:00,谷值出现在06:00,午后AOD明显升高主要与强烈的太阳辐射引起光化学反应产生的二次气溶胶以及近地层气溶胶在湍流输送作用下向城市上空扩散有关.从频率分布来看,AOD和α频率分布均呈现明显的单峰特征,并且较好的符合对数正态分布.α在高值区间1.1~1.7出现频率为77.8%,表明杭州市以平均半径较小的气溶胶粒子为主,属于城市-工业型气溶胶类型.杭州市AOD的高值(>1.0)主要表现为粗模态气溶胶以及细模态气溶胶的吸湿增长.  相似文献   

10.
利用2006~2017年Aqua-MODIS C006气溶胶日产品数据,选取新疆地区11个代表性城市进行分类,分析典型城市的AOD近12a变化趋势及特征.结果表明:2006~2017年间,除乌鲁木齐市AOD小幅度上升外,其余10个城市AOD均出现不同程度下降,北疆城市年均降幅较小,吐鲁番市12a间AOD下降了0.13,为哈密、焉耆等同纬度城市群中的最大降幅,南疆城市AOD年均降幅最为显著,阿克苏、喀什、和田和若羌地区AOD分别下降了0.18、0.16、0.16和0.09;AOD空间分布上,南疆为AOD峰值中心,年均值达0.50以上,北疆和东疆地区AOD年均值维持在0.20~0.22;同时,AOD具有典型的季节变化特征,春季为AOD峰值季节,夏季次之,秋、冬季AOD较低;此外,12a间新疆全区AOD出现不同程度降低,其中南疆沙尘源区为AOD下降的典型区域,减少区域呈现出沿昆仑山脉自南向北的带状分布.  相似文献   

11.
珠江三角洲气溶胶光学厚度的观测研究   总被引:18,自引:6,他引:12  
利用2004年1月至2007年6月的多波段太阳光度计数据反演珠江三角洲地区的气溶胶光学厚度(AOD),对仪器定标方法和反演结果进行了分析,并以反演结果为基准,比对检验MODIS的AOD产品.分析表明:在使用Langley法进行仪器定标时,用迭代方法进行数据筛选处理,定标结果更为合理.统计结果显示:珠三角区域春季AOD值较大,秋夏季次之,冬季较小;4个站点AOD的季节变化特征具有一致性;珠三角区域AOD的年平均值大于0.7,气溶胶造成的到达地表的直接可见光辐射透过率衰减至少有50%一60%,造成严重的霾天气;从频率分布看,AOD值主要集中在0.4~0.6区间.4个站点的α值在1.2~I.6区间内所占的比例很高.频率分布类似,表明此区域内气溶胶粒子平均有效半径较小且较一致,同属于城市-工业型气溶胶类型;α与AOD没有明显的可辨析关系,通过样本统计和典型个例分析,表明区域内清洁与污染过程气溶胶粒子模态稳定,平均半径变化不大,粒子数浓度上的差别是产生消光效果不同的主要原因.以地面太阳光度计反演的AOD为基准,验证MODIS卫星遥感的AOD,结果表明,MODIS卫星遥感AOD在珠三角区域具有较好的量化精度,并初步建立珠三角区域卫星遥感AOD的订正公式.  相似文献   

12.
基于1980~2017年MERRA-2再分析产品中的气溶胶光学厚度(AOD)数据,结合趋势分析和时空地理加权回归模型(GTWR)等方法,分析中国AOD的时空变化特征,从时空异质性视角量化自然地理和人类活动对AOD的综合影响.结果表明,1980~2017年AOD以0.0028a-1的速率呈显著上升趋势,而2009~2017年AOD以0.0083a-1的速率呈显著下降趋势.2008年前后为AOD由升到降的转折期,可能与2007年生态文明建设和2008年全球经济危机有关.胡焕庸线以东地区为AOD高值区,以人为气溶胶为主,近40a来AOD值呈显著上升趋势;胡焕庸线以西地区为AOD低值区,以自然气溶胶为主,AOD值基本不变.气温、气压、黑炭气溶胶排放和硫酸盐气溶胶排放与AOD呈正相关,降水、风速、NDVI和GDP与AOD呈负相关.AOD与影响因子间的关系具有时空异质性.从时间变化来看,降水、风速、NDVI、GDP的回归系数具有一致性,而气温、气压、黑炭气溶胶排放、硫酸盐气溶胶排放在不同年份的回归系数有正有负;从空间变化来看,中国北方地区气温与AOD间呈负相关,南方地区二者呈正相关.  相似文献   

13.
利用TM影像反演广州市气溶胶光学厚度空间分布   总被引:4,自引:2,他引:2  
利用2005年7月18日摄录的广州市TM影像,在相关研究基础上建立了适合于复杂大气状况城市尺度的气溶胶光学厚度(Aerosol Optical Depth,AOD)反演模型,研究了广州市30m空间分辨率的AOD空同分布,并与同期的广州市地面9个空气质量监测站的PM10浓度进行比较.结果表明,利用TM影像较好地反演了广州市AOD空间分布.地形、植被、建成区分布是影响广州市AOD空间分布的主要因素,AOD按照高山植被区、靠近建成区的山地植被区、建成区与平原植被区的顺序逐渐增加.地面监测的PM10浓度与AOD的相关系数为0.717,基于TM影像反演的AOD可较好地反映当日地面污染物PM10的空间分布.  相似文献   

14.
田梓莹  郑小慎 《环境科学学报》2021,41(10):4238-4246
气溶胶是影响大气环境的重要因素,气溶胶光学厚度(AOD)是气溶胶的重要光学特征参数之一,气溶胶类型分析可以对区域大气研究提供科学依据.基于2015年12月—2019年11月AERONET数据选取的11个典型站位不同波段的AOD进行层次聚类分析,将所选站位最终划分为北京、沿海、太湖、西藏4个区域.然后基于图形分类法划分为6种气溶胶类型(清洁、沙漠粉尘、大陆、次大陆、城市工业和生物质燃烧型).北京区域主要的气溶胶类型为城市工业型和大陆型,其中冬季主要为大陆型和清洁型、春季为大陆型和城市工业型、夏季和秋季主要为城市工业型气溶胶;沿海区域主要的气溶胶类型为大陆型气溶胶,其中冬、夏和秋季主要为大陆型和清洁型、春季主要为城市工业型和大陆型气溶胶;太湖区域城市工业型气溶胶占比最多,为41.96%,冬、春和夏季主要为城市工业型气溶胶,秋季主要为大陆型气溶胶;西藏区域清洁型气溶胶占比为80.53%,春夏秋冬四季以清洁型气溶胶为主.  相似文献   

15.
通过对地面观测资料进行均一性处理和反演,建立了湖北省黄石市近60年气溶胶光学厚度(AOD)的时间序列,采用气候趋势分析、相关分析等方法,研究了AOD与降水之间的关系.结果表明:近60年黄石市气溶胶光学厚度(AOD)总体上呈显著增加趋势,最大值出现在1991年.随着AOD值的显著增加,年平均降水发生日数显著减少,其中,小雨日数下降更明显,而中雨、大雨日数有增加趋势,暴雨日数的变化趋势不明显.小雨雨量随着AOD值的显著增加而减少,而中雨及以上等级降水量的变化趋势不明显.总之,近60年黄石市气溶胶光学厚度(AOD)的增加,对降水日数和降水量都有一定的影响,其相关性有待进一步研究.  相似文献   

16.
利用多光谱旋转遮蔽影带辐射计(Multi-Filter Rotating Shadowband Radiometer,MFRSR)测定了我国长江三角洲中部的太湖地区2008年5月至2009年4月期间415 nm、500 nm、615 nm、673 nm、870 nm波段的全天空总辐射、散射辐射和直接辐射通量密度,结合球形粒子的Mie散射理论反演了该地区大气气溶胶粒子谱,并对结果进行了分析.结果表明:受人为活动的影响,该地区工作日和非工作日气溶胶光学厚度和粒子谱的日变化存在明显的差异,工作日上午6:00-9:00时间内,细粒子的生成远大于非工作日这一期间细粒子的生成.太湖地区气溶胶光学厚度常年较高,500 nm波段的年平均值为0.8038±0.7924,夏季最大(0.9359±0.7389),冬季最小(0.6209±0.5500);气溶胶粒子谱表现出双峰分布,一种是位于半径0.15 μm附近的细模态,另一种是半径3μm左右的粗模态,且夏季和秋季细粒子较多,而其他季节粗粒子较多.气溶胶光学厚度以及气溶胶粒子谱分布的季节变化受到气象条件的显著影响.降水过程对大气气溶胶具有明显的冲刷作用,并且降水后大气气溶胶的增加与气溶胶粒子大小有关,积聚态粒子浓度的增加比粗模态粒子的增加更快.  相似文献   

17.
环境一号卫星CCD相机应用于陆地气溶胶的监测   总被引:7,自引:2,他引:7       下载免费PDF全文
环境一号卫星CCD相机应用在陆地气溶胶的监测中,因缺少短波红外通道,使地表反射的去除变得异常困难.应用改进的暗目标法,利用辐射传输方程(6S)构建查找表,对CCD相机数据进行图像重采样和辐射定标处理,进而对查找表进行插值,获得气溶胶光学厚度(AOD)分布.通过AERONET地基数据的验证及与MODIS气溶胶产品的对比表明,环境一号卫星CCD相机对陆地气溶胶的监测结果在AOD较大(>0.2)时,精度与MODIS相近;在AOD较小(<0.2)时,结果欠理想.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号