首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
镉胁迫对向日葵幼苗生长和生理特性的影响   总被引:7,自引:0,他引:7  
采用溶液培养方法,研究了不同浓度镉(0、0.05、0.1、0.5和1 mg/L)处理7 d对向日葵幼苗生长和生理特性的影响。结果表明:随着镉处理浓度的增加,向日葵幼苗对镉的吸收显著增加。1 mg/L镉浓度处理时,叶、茎和根中镉浓度分别为0.05 mg/L镉处理时的16.3、19.2和581倍;根中积累的镉含量明显高于叶和茎, 各浓度根部积累的镉分别为叶和茎的37.8~63倍和29.4~41倍。镉胁迫显著抑制向日葵幼苗生长和叶绿素合成,当镉浓度达1 mg/L时,整株植物生物量和总叶绿素含量分别为对照的55.9%和52.6%。镉胁迫下向日葵幼苗游离脯氨酸和丙二醛(MDA)含量显著增加,1 mg/L镉浓度时,根中含量分别为对照的4和5.8倍。向日葵幼苗可溶性蛋白含量和过氧化物酶(POD)活性变化与镉胁迫浓度呈明显的倒U字型关系,可溶性蛋白含量在0.05 mg/L镉浓度时达到最大值,叶、茎、根中的POD活性分别在0.1、0.1和0.05 mg/L镉浓度时达到最大值。  相似文献   

2.
In this study, the interaction between temperature and heavy metal stress was investigated in two wheat varieties (Triticum aestivum L. cv. Gerek-79 and Bolal-2973). Effects of different concentrations of lead and cadmium (0, 50, 100, 250, 500 mg l(-1)) simultaneously applied at various temperatures (8/4, 25/18, 35/26 degrees C day/night) to the seedlings were detected by measuring changes in the plant length, percentage of dry weight, chlorophyll (a, b, a/b), total soluble phenolics, and free proline. At the high cadmium concentrations, significant changes occurred in plant length and in the amounts of dry weight, chlorophyll, total soluble phenolics, and free proline. Significant differences were not observed in the parameters examined for the lead treatments. These data indicated that heavy metal toxicity increases in parallel with temperature. In addition, lead did not have any toxic effects on plants in sand-perlite mixture at 500 mg l(-1), whereas cadmium showed toxic effect even at such low concentrations as 50 mg l(-1).  相似文献   

3.
The effect of both increased concentrations (0.01 and 1 mg l(-1)) of fluoranthene (FLT) and the duration of exposure (18 and 25 days) on the growth and photosynthetic processes in pea plants (Pisum sativum L., cv. Garde) was investigated. FLT concentration in roots and shoot of pea plants was also determined. The obtained results demonstrated that the higher concentration of FLT (1 mg l(-1)) significantly inhibited the growth of the pea plants after 25 days of the application, also affected the content of photosynthetic pigments (chlorophyll a, b and carotenoids), and the primary photochemical processes of photosynthesis. In chlorophyll fluorescence parameters, the significant increase of F(0) values and the decrease of F(V)/F(M) and Phi(II) values was recorded. The Hill reaction of isolated chloroplasts of pea plants was significantly inhibited after 25 days by presence of FLT (0.01 and 1 mg l(-1)) in nutrient solution, while after 18 days no significant response of Hill reaction activity was recorded. The fluoranthene content in roots and shoot of pea plants increased with increasing FLT concentration in the environment and the substantial accumulation of FLT was observed in the roots.  相似文献   

4.
The copper (Cu) resistance of Arctostaphylos uva-ursi was tested in a pot experiment (lasting 8 weeks) using rooted cuttings originating from an area near the Harjavalta Cu-Ni smelter, SW Finland. The fine roots were moderately infected by arbutoid mycorrhizae. The plants were exposed to five Cu levels (1, 10, 22, 46 and 100 mg l(-1)) given repeatedly together with a nutrient solution. The critical Cu concentration in the nutrient solution inhibiting the growth of A. uva-ursi was below 10 mg l(-1) Cu (EC(50) value for biomass production 3.3 mg l(-1) Cu). This concentration was clearly lower than the value we have found earlier for other dwarf shrubs under similar experimental conditions. Most of the Cu given accumulated in the roots and old stems. The results suggest that A. uva-ursi cuttings were relatively sensitive to Cu despite the ability of the adult clones to grow in Cu-contaminated soil. The adult clones extend their roots into the less toxic deeper soil layers, which may facilitate the avoidance of heavy metals.  相似文献   

5.
Cadmium is a heavy metal, which, even at low concentrations, can be highly toxic to the growth and development of both plants and animals. Plant species vary extensively in their tolerance to excess cadmium in a growth medium and very few cadmium-tolerant species have been identified. In this study, tumbleweed plants (Salsola kali) grown in an agar-based medium with 20 mgl(-1) of Cd(II) did not show phytotoxicity, and their roots had the most biomass (4.5 mg) (P < 0.05) compared to the control plants (2.7 mg) as well as other treated plants. These plants accumulated 2696, 2075, and 2016 mg Cd kg(-1) of dry roots, stems, and leaves, respectively. The results suggest that there is no restricted cadmium movement in tumbleweed plants. In addition, the amount of Cd found in the dry leaf tissue suggests that tumbleweed could be considered as potential cadmium hyperaccumulating species. X-ray absorption spectroscopy studies demonstrated that in roots, cadmium was bound to oxygen while in stems and leaves, the metal was attached to oxygen and sulfur groups. This might imply that some small organic acids are responsible for Cd transport from roots to stems and leaves. In addition, it might be possible that the plant synthesizes phytochelatins in the stems, later coordinating the absorbed cadmium for transport and storage in cell structures. Thus, it is possible that in the leaves, Cd either exists as a Cd-phytochelatin complex or bound to cell wall structures. Current studies are being performed in order to elucidate the proposed hypothesis.  相似文献   

6.
Zhang XH  Zhu YG  Lin AJ  Chen BD  Smith SE  Smith FA 《Chemosphere》2006,64(10):1627-1632
A glasshouse pot experiment was conducted to investigate the effect of the fungicide chlorothalonil on the growth of upland rice, in the absence or presence of the arbuscular mycorrhizal fungus (AMF) Glomus mosseae (NM and GM treatments). The plants were grown with three concentrations of chlorothalonil (0, 50 and 100 mg kg(-1) soil). Mycorrhizal colonization decreased significantly with increasing chlorothalonil concentrations. Plant biomass decreases were smaller in GM plants than in non-mycorrhizal (NM) plants. Mycorrhizal dependency was the highest with 50 mg kg(-1) chlorothalonil. Chlorothalonil affected physiological processes in upland rice irrespective of inoculation. Chlorothalonil at 50 and 100 mg kg(-1) increased ascorbate peroxidase (APX) activity and soluble protein concentrations in shoots and roots of NM upland rice. However, values of APX, catalase (CAT) and peroxidase (POD) were reduced more in GM plants than in NM plants. These results showed that chlorothalonil induced oxidative stress in upland rice and it is needed to evaluate the side effects of chlorothalonil on rice and AMF.  相似文献   

7.
This study examines the possibility of using Spirulina (Arthrospira) platensis TISTR 8217 to remove low concentrations of cadmium (less than 100 mg/l) from wastewater. The cyanobacteria were exposed to six different cadmium concentrations for 96 h, and the growth rate was determined using an optical density at 560 nm. The inhibiting concentration (IC50) was estimated using probit analysis. The IC50 at 24, 48, 72, and 96 h were 13.15, 16.68, 17.28, and 18.35 mg/l Cd, respectively. Cellular damage was studied under a light microscope and a transmission electron microscope. Swollen cells and fragmented filaments were observed. Cell injury increased with increasing concentrations of cadmium. Ultrastructural changes were observed in the algae exposed to cadmium concentrations both close to IC50 (14.68 mg/l) and at IC50 (18.35 mg/l). The alterations induced by cadmium were disintegration and disorganization of thylakoid membranes, presence of large intrathylakoidal space, increase of polyphosphate bodies, and cell lysis. In addition, the cadmium adsorption by algal cells was studied. Environmental factors were found to have an effect on biosorption. The uptake of cadmium was not affected by the temperature of the solution, but the sorption was pH dependent. The optimum pH for biosorption of algal cells was 7. The cadmium uptake process was rapid, with 78% of metal sorption completed within 5 min. The sorption data fit well to the Langmuir isotherm. The maximum adsorption capacity for S. platensis was 98.04 mg Cd per g biomass.  相似文献   

8.
Han WY  Shi YZ  Ma LF  Ruan JY  Zhao FJ 《Chemosphere》2007,66(1):84-90
Tea is a widely consumed beverage. However, recent studies revealed that there were an increasing number of cases of tea products exceeding the former maximum permissible concentration (MPC) in China for Pb (2 mg kg(-1)). Tea Pb contamination is an issue affecting trade and consumer confidence. Root uptake of Pb could contribute significantly to Pb accumulation in tea leaves due to the strong acidity of many tea garden soils. We conducted pot and field experiments to evaluate the effect of liming on Pb uptake by tea plants on two highly acidic soils (pH3.6). Additions of CaCO(3) significantly increased soil pH by up to 1 unit and decreased soil extractable Pb by up to 32%. Liming resulted in a decrease in the proportion of Pb in the exchangeable and carbonate-bound fractions, with a concurrent increase in the fractions bound to Fe/Mn oxides and residues. Liming significantly decreased Pb concentrations of fine roots, stems and new shoots of tea plants in the pot experiment. In the field experiments, the effect of liming was not significant during the first year following CaCO(3) application, but became significant during the second and third years and Pb concentration in the new shoots was decreased by approximately 20-50%, indicating that liming of acidic tea garden soils is an effective way to reduce Pb contamination of tea. The study also reveals a distinct seasonal variation, with Pb concentration in the new shoots following the order of spring>autumn>summer.  相似文献   

9.
Geng CN  Zhu YG  Tong YP  Smith SE  Smith FA 《Chemosphere》2006,62(4):608-615
Two cultivars of winter wheat (Triticum aestivum L.) (Jing 411 and Lovrin 10) were used to investigate arsenate (As) uptake and distribution in plants grown in hydroponic culture and in the soil. Results showed that without As addition, Lovrin 10 had higher biomass than Jing 411 in the soil pot experiment; in the hydroponic experiment Lovrin 10 had similar root biomass to and lower shoot biomass than Jing 411. Increasing P supply from 32 to 161 microM resulted in lower tissue As concentrations, and increasing As supply from 0 to 2,000 microM resulted in lower tissue P concentrations. Increasing P supply tended to increase shoot-to-root ratios of As concentrations, and increasing As supply tended to decrease shoot-to-root ratios of As concentrations. Both cultivars invested more in root production under P deficient conditions than under P sufficient conditions. Lovrin 10 invested more biomass production to roots than Jing 411, which might be partly responsible for higher shoot P and As concentrations and higher shoot-to-root ratios of As concentrations. Moreover, Lovrin 10 allocated less As to roots than Jing 411 and the difference disappeared with decreasing P supply.  相似文献   

10.
Bioaccumulation and physiological effects of mercury in Sesbania drummondii   总被引:1,自引:0,他引:1  
Israr M  Sahi S  Datta R  Sarkar D 《Chemosphere》2006,65(4):591-598
The accumulation of mercury and its effect on growth, photosynthesis and antioxidative responses were studied in Sesbania drummondii seedlings. Mercury concentration in shoots as well as in the roots increased with increasing Hg concentrations in the growth solution. The accumulation of Hg was more in roots than shoots. At 100 mg l-1 Hg concentration, shoots accumulated 998 mg Hg kg -1 dry weight (dw) while roots accumulated 41,403 mg Hg kg-1 dw. Seedlings growth was not significantly affected at lower concentrations of Hg. A concentration of 100 mg l-1 Hg inhibited growth by 36.8%, with respect to control. Photosynthetic activity was assessed by measuring chlorophyll a fluorescence by determination of Fv/Fm and Fv/Fo values. Photosynthetic integrity was not affected up to 50 mg l-1 Hg concentration, however, concentrations higher than 50 mg l-1 affected photosynthetic integrity. Sesbania responded to Hg induced oxidative stress by modulating non-enzymatic antioxidants [glutathione (GSH) and non-protein thiols (NPSH)] and enzymatic antioxidants: superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR). Glutathione content and GSH/GSSG ratio increased up to a concentration of 50 mg l-1 while slight down at 100 mg l-1 Hg. The content of NPSH significantly increased with increasing Hg concentrations in the growth medium. The activities of antioxidative enzymes, SOD, APX and GR followed the same trends as antioxidants first increased up to a concentration of 50 mg l-1 Hg and then slight decreased. The results of present study suggest that Sesbania plants were able to accumulate and tolerate Hg induced stress using an effective antioxidative defense mechanisms.  相似文献   

11.
Zhu Y  Christie P  Laidlaw AS 《Chemosphere》2001,42(2):193-199
A randomised block glasshouse pot experiment compared the growth and Zn uptake of mycorrhizal and nonmycorrhizal white clover plants grown in a sterile soil/sand mixture containing 25 mg Zn kg(-1) to which five application rates of Zn (as ZnSO4) from 0 to 400 mg kg(-1) were made. Two mycorrhizal inocula infected roots from the field and from clover trap cultures, were compared. Mycorrhizal infection (ranging from 33% to 46% of total root length) and Zn application had little effect on plant growth. Increasing Zn application rate led to increased uptake of Zn in roots and shoots (especially roots), but the increases were significantly greater in non-mycorrhizal controls than in mycorrhizal treatments. In contrast, P uptake was higher in mycorrhizal than in non-mycorrhizal plants. Plants that received trap culture inoculum had significantly lower Zn uptake than those that received field inoculum. The results indicate that mycorrhizal infection may have exerted some protective effect against plant Zn accumulation at the range of soil Zn concentrations studied and may have immobilised Zn in or near the roots to some extent. However, this mycorrhizal effect cannot be explained simply by tissue dilution, hyphal sequestration or root immobilisation of Zn.  相似文献   

12.
Dong J  Wu F  Zhang G 《Chemosphere》2006,64(10):1659-1666
Tomato (Lycopersicon esculentum) seedlings were grown in four cadmium (Cd) levels of 0-10 microM in a hydroponic system to analyze the antioxidative enzymes, Cd concentration in the plants, and the interaction between Cd and four microelements. The results showed that there was a significant increase in malondialdehyde (MDA) concentration, and superoxide dismutase (SOD) and peroxidase (POD) activities in the plants subjected to 1-10 microM Cd. This indicates that Cd stress induces an oxidative stress response in tomato plants, characterized by an accumulation of MDA and increase in activities of SOD and POD. Root, stem and leaf Cd concentrations increased with its exposure Cd level, and the highest Cd concentration occurred in roots, followed by leaves and stems. A concentration- and tissue-dependent response was found in the four microelement concentrations to Cd stress in the tomato leaves, stems and roots. Regression analysis showed that there was a significantly negative correlation between Cd and Mn, implying the antagonistic effect of Cd on Mn absorption and translocation. The correlation between Cd and Zn, Cu and Fe were inconsistent among leaves, stems and roots.  相似文献   

13.
Removal of cyanide by woody plants   总被引:4,自引:0,他引:4  
Hydrogen cyanide is a high volume production chemical that causes severe environmental problems. The toxicity of potassium cyanide (KCN) to basket willow trees (Salix viminalis) was tested. In aqueous solution, 2 mg CN l(-1) as KCN depressed the transpiration after 72 h about 50%. Trees exposed to 0.4 mg CN l(-1) in aqueous solution showed initially a depression of transpiration, but recovered. Doses of 8 and 20 mg CN l(-1) in aqueous solution were quickly mortal to the trees. At the end of the test, almost all cyanide had disappeared from the solutions. Levels of cyanide in plants were related to the toxicity, with no elevated levels of cyanide in plants exposed to 0.4 mg CN l(-1). Willows grown in sand survived 423.5 h irrigation with 20 mg CN l(-1). Willows grown in sand irrigated with 50 mg CN l(-1) died within a few days. The roots of the surviving willows were able to consume about 10 mg CN kg fresh weight(-1)h(-1). Vascular plants possess the enzymes beta-cyanoalanine synthase and beta-cyanoalanine hydrolase, which convert free cyanide to the amino acid asparagine. The in vivo capacity of woody plants (willow, poplar, elder, rose, birch) to remove cyanide was evaluated. Tests were performed with detached leaves and roots in KCN solutions of different concentrations. The highest removal capacity was obtained for basket willow hybrids (Salix viminalis x schwerinii). The Michaelis-Menten kinetics was determined. Realistic values of the half-saturation constant, K(M), were between 0.6 and 1.7 mg CN l(-1); the maximum metabolic capacity, v(max), was around 9.3 mg CN kg fresh weight(-1)h(-1). The removal of cyanide by plants might be useful in phytoremediation and treatment of wastewater from gold mining.  相似文献   

14.
We studied the effects of heavy metal exposure on host plant choice and performance of the grass miner Chromatomyia milii (Diptera, Agromyzidae). Cadmium decreased plant growth in a dose-dependent way. C. milii preferred the control to the cadmium-exposed plants for feeding and oviposition. Moreover, preference for the control plants increased with increasing cadmium exposure of the alternative choice. Adult and offspring performance decreased with increasing plant cadmium exposure. This suggests that, at least under our laboratory conditions, host choice of C. milii is adaptive under pollution stress. Foliar cadmium concentration increased and the soluble sugar concentration decreased with increasing cadmium exposure. Regression analysis showed that both latter components might be responsible for the decrease in performance of C. milii on cadmium-exposed plants. The protein and amino acid concentration of the leaves, the amount of structural defenses, and water concentration were not affected by the cadmium treatment.  相似文献   

15.
Song NH  Yin XL  Chen GF  Yang H 《Chemosphere》2007,68(9):1779-1787
Chlorotoluron is a phenylurea herbicide that is widely used for controlling grass weeds in the land of cereal, cotton and fruit production. However, extensive use of this herbicide may lead to its accumulation in ecosystems, thus inducing the toxicity to crops and vegetables. To assess chlorotoluron-induced toxicity in plants, we performed the experiment focusing on the metabolic adaptation of wheat plants (Triticum aestivum) to the chlorotoluron-induced oxidative stress. The wheat plants were cultured in the soils with chlorotoluron at concentrations of 0-25mg/kg. Chlorotoluron accumulation in plants was positively correlated with the external chlorotoluron concentrations, but negatively with the plant growth. Treatment with chlorotoluron induced the accumulation of O(2)(-) and H(2)O(2) in leaves and resulted in the peroxidation of plasma membrane lipids in the plant. We measured the endogenous proline level and found that it accumulated significantly in chlorotoluron-exposed roots and leaves. To understand the biochemical responses to the herbicide, activities of the antioxidant enzymes, such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were assayed. Analysis of SOD activity by non-denaturing polyacrylamide gel electrophoresis (PAGE) revealed that there were three isoforms in the roots and leaves, but the isoforms in the tissues showed different patterns. Also, using the native PAGE, 6 isoforms of root POD and 10 in leaves were detected. The total activity of POD in roots was significantly enhanced. Activities of APX in roots and leaves showed a similar pattern. The CAT activities were generally suppressed under the chlorotoluron exposure.  相似文献   

16.
Sheng XF  Xia JJ 《Chemosphere》2006,64(6):1036-1042
This study focuses on the screening of cadmium-resistance bacterial strains from heavy metal-polluted soils to examine their plant growth promotion and cadmium uptake in rape (Brassica napus). A large number of bacteria were isolated from heavy metal-polluted soil in Nanjing, China. Thirty isolates showing cadmium-resistance on Cd-amended medium were selected and evaluated for their potential to solubilize cadmium carbonate in solution culture. Atomic absorption spectrometer analysis showed variable amounts of water-soluble Cd (ranging from 24 to 117 mg l(-1)) released by the cadmium-resistant bacterial strains from cadmium carbonate. Qualitative analysis confirmed the presence of indole acetic acid as the auxin in the culture of these cadmium-resistant bacterial strains. Root elongation assay conducted on rape under gnotobiotic conditions demonstrated increases (up to 31%) in root elongation of inoculated rape seedlings compared to the control plants. Based upon cadmium-resistance, bio-activation of CdCO3 and growth-promoting activity, three isolates were selected for promoting plant growth and uptake of cadmium from cadmium-amended soil in pot experiments. Inoculation with the isolates was found to increase root dry weight (ranging from 8% to 20%) and shoot dry weight (ranging from 6% to 25%) of rape. An increase in cadmium content varying from 16 to 74%, compared to the non-inoculated control, was observed in rape plants cultivated in soil treated with 100 mgCd kg(-1) (as CdCl2) and inoculated with the isolates. The bacterial isolates were also able to colonize and develop in the rhizosphere soil of rape after root inoculation.  相似文献   

17.
The growth and metal uptake of two willow clones (Salix fragilis 'Belgisch Rood' and Salix viminalis 'Aage') was evaluated in a greenhouse pot experiment with six sediment-derived soils with increasing field Cd levels (0.9-41.4 mg kg-1). Metal concentrations of eight elements were measured in roots, stems and leaves and correlated to total and soil water metal concentrations. Dry weight root biomass, number of leaves and shoot length were measured to identify eventual negative responses of the trees. No growth inhibition was observed for both clones for any of the treatments (max. 41.4 mg kg-1 Cd, 1914 mg kg-1 Cr, 2422 mg kg-1 Zn, 655 mg kg-1 Pb), allowing their use for phytoextraction on a broad range of contaminated sediments. However, dry weight root biomass and total shoot length were significantly lower for S. viminalis compared to S. fragilis for all treatments. Willow foliar Cd concentrations were strongly correlated with soil and soil water Cd concentrations. Both clones exhibited high accumulation levels of Cd and Zn in aboveground plant parts, making them suitable subjects for phytoextraction research. Cu, Cr, Pb, Fe, Mn and Ni were found mainly in the roots. Bioconcentration factors of Cd and Zn in the leaves were highest for the treatments with the lowest soil Cd and Zn concentration.  相似文献   

18.
In the present experiment the seeds of Cicer arietinum (L.) cv. Uday were inoculated with specific Rhizobium grown in sandy loam soil and were allowed to grow for 15 days. At this stage, the seedlings were supplied with 0, 50, 100 or 150 microM of cadmium in the form of cadmium chloride and sprayed with 0.01 microM of 28-homobrassinolide (HBL) at 30-day stage. The data indicated that plant fresh and dry mass, number of nodules, their fresh and dry mass, leghemoglobin content, nitrogen and carbohydrate content in the nodules, leaf chlorophyll content, nitrate reductase and carbonic anhydrase activities decreased proportionately with the increasing concentrations of cadmium but the content of proline and the activities of catalase, peroxidase and superoxide dismutase increased. The ill effect, generated by cadmium, was overcome if the stressed plants were sprayed with HBL.  相似文献   

19.
Wu FB  Chen F  Wei K  Zhang GP 《Chemosphere》2004,57(6):447-454
Hydroponic experiment was carried out to study the effect of three Cd levels on glutathione (GSH), free amino acids (FAA), and ascorbic acid (ASA) concentration in the different tissues of 2 barley cultivars with different Cd tolerance. Cadmium concentration in both roots and shoots increased with external Cd level, while biomass and ASA concentration declined, and Wumaoliuling, a Cd-sensitive genotype was more affected than ZAU 3, a Cd-tolerant genotype. The effect of Cd on GSH concentration was dose- and time-dependent. In the 5 d exposure, root GSH concentration increased in 0.5 microM Cd treatment compared with control, but decreased significantly in 5 microM Cd treatment, irrespective of genotypes. However, in the 10 d exposure, GSH concentration in all plant tissues decreased with increasing Cd levels in the culture medium, and Wumaoliuling was much more affected than ZAU 3. Cadmium treatment greatly altered FAA concentration and composition in plants. The effect of Cd on glutathione (Glu) concentration in roots varied with genotypes. ZAU 3 showed a steady increase in root Glu concentration in both 0.5 and 5 microM Cd treatments, while Wumaoliuling was decreased by 38.0% in 5 microM Cd treatment, compared with the control. The results indicate that GSH and ASA are attributed to Cd tolerance in barley plants, and the relative less reduction in GSH concentration in ZAU 3 under Cd stress relative to the control may account for its higher Cd tolerance.  相似文献   

20.
The repeated use of copper (Cu) fungicides to control vine downy mildew has led to long-term accumulation of Cu in vineyard soils which now raises the issue of the potential bioavailability of Cu for various living organisms including plant species. The bioavailable Cu can be defined as the portion of soil Cu that can be taken up by roots, for a given plant species. In order to evaluate the bioavailability of Cu to plants, a pot experiment was conducted in glasshouse conditions with a crop species (maize) and 12 soils sampled in the upper horizon of 10 vineyard plots (total Cu ranging from 38 to 251 mg kg-1) and two woodland plots (control soils that had not received any Cu application; total Cu amounting to 20-26 mg kg-1). These soils were selected for their diverse physical (large range of particle size distribution) and chemical (from acid to calcareous soils) properties. After 35 days of growth, plant shoots were harvested for analysis. The roots were separated from soil particles for further analysis. The concentrations of Cu in the roots and aerial parts of the maize were then compared with the amounts of Cu extracted from the soil by a range of conventional extractants. Observed Cu concentrations in maize roots which have grown in contaminated vineyard soils were very high (between 90 and 600 mg kg-1), whereas Cu concentrations in the aerial parts varied only slightly and remained low (< 18 mg kg-1). Root Cu concentrations observed for maize increased with increasing total Cu content in the soil and with decreasing soil CEC. Cu accumulation in maize roots may be as high in calcareous soils as in acid soils, suggesting that soil pH had little influence. In the case of the vineyard soils studied, the lack of correlation found for maize between Cu concentrations in roots and in the aerial parts, suggests that an analysis of the aerial parts would not be a good indicator of plant Cu uptake, as it provides no insight into the real amount of Cu transferred from the soil to the plant. For maize, our results show that extraction with organic complexing agents (EDTA, DTPA) and extraction with ammonium acetate seem to provide a reasonably good estimate of root Cu concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号