首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tracer-based ground-water ages, along with the concentrations of pesticides, nitrogen species, and other redox-active constituents, were used to evaluate the trends and transformations of agricultural chemicals along flow paths in diverse hydrogeologic settings. A range of conditions affecting the transformation of nitrate and pesticides (e.g., thickness of unsaturated zone, redox conditions) was examined at study sites in Georgia, North Carolina, Wisconsin, and California. Deethylatrazine (DEA), a transformation product of atrazine, was typically present at concentrations higher than those of atrazine at study sites with thick unsaturated zones but not at sites with thin unsaturated zones. Furthermore, the fraction of atrazine plus DEA that was present as DEA did not increase as a function of ground-water age. These findings suggest that atrazine degradation occurs primarily in the unsaturated zone with little or no degradation in the saturated zone. Similar observations were also made for metolachlor and alachlor. The fraction of the initial nitrate concentration found as excess N2 (N2 derived from denitrification) increased with ground-water age only at the North Carolina site, where oxic conditions were generally limited to the top 5 m of saturated thickness. Historical trends in fluxes to ground water were evaluated by relating the times of recharge of ground-water samples, estimated using chlorofluorocarbon concentrations, with concentrations of the parent compound at the time of recharge, estimated by summing the molar concentrations of the parent compound and its transformation products in the age-dated sample. Using this approach, nitrate concentrations were estimated to have increased markedly from 1960 to the present at all study sites. Trends in concentrations of atrazine, metolachlor, alachlor, and their degradates were related to the timing of introduction and use of these compounds. Degradates, and to a lesser extent parent compounds, were detected in ground water dating back to the time these compounds were introduced.  相似文献   

2.
Eleven drinking water treatment plants, located downstream of textile plants or pulp and paper mills, have been sampled monthly during a year for the analysis of 17 nonylphenol ethoxylates (NP1-17EO) and two nonylphenoxycarboxylic acids (NP1-2EC). At all but one plant, results in the drinking water, for the sum of these 19 substances, range between below detection levels and 6.7 microg/l. Annual means are between 0.02 and 2.8 microg/l. At the other plant, the yearly average concentration is 10.4 microg/l and the monthly maximum is 43.3 microg/l. In the surface (pre-treatment) water, the annual mean concentrations of the 11 plants range between 0.14 and 17.8 microg/l and the recorded instantaneous maximum is 55.3 microg/l. According to Canadian health authorities, drinking water is a negligible route of human exposure to nonylphenolic compounds, even at the highest concentrations found in this study. After transformation of the data into nonylphenol equivalents, about 20% of the surface water samples exceed the Canadian 1 microg/l nonylphenol water quality guideline for the protection of aquatic life. Some results also exceed Québec's 6 microg/l nonylphenol guideline. The efficiency of the plants in removing nonylphenolic compounds from drinking water is highly variable, ranging from 11% to 99%.  相似文献   

3.
Hung DQ  Thiemann W 《Chemosphere》2002,47(4):357-367
Fifteen insecticides, which were banned in Vietnam in the period from 1990 to 1998, were chosen for the investigation of surface water samples in Hanoi and its surroundings. The investigation was focused on an area of approximately 30 by 20 km. Thirty water samples, in total were analysed: 11 samples from the Red river, seven from the Duong river, four from various lakes (West lake, Thuyen Quang, Bay Mau, Ba Mau), six from irrigation canals and two samples from wells. The procedure was repeated in November 1998 and in August 1999. The results showed that the contamination of the banned pesticides was highest in the rivers and then in the irrigation canals, followed by the lakes and wells. These pesticides could hardly be determined in just two drinking water samples (wells) and their concentrations rarely exceeded detection limits (0.05-0.25 ng l(-1)). The mean concentrations of sigmaHCHs (alpha, beta, gamma, delta-HCH) and sigmaDDTs (2,4'-, 4,4'-DDE; 2,4'-, 4,4'-DDD; 2,4'-, 4,4'-DDT) in the rivers were 17.2 +/- 71.8 and 43.7 +/- 79.9 ng l(-1) in the dry season (DS, November 1998), 29.3 +/- 117 and 56.1 +/- 65.6 ng l(-1) in the rainy season (RS, August 1999), respectively. However, the highest concentration of DDTs detected in a river sample (DS): 0.324 microg l(-1) was much lower than their allowable limit of concentration in surface waters, which is accorded with Criteria of Vietnam (1995) (DDTs < 10 microg l(-1)). Moreover, endrin, heptachlor, aldrin were also detected in most of water samples with considerable mean concentrations in rivers: 25.3 +/- 40.5, 17.4 +/- 23.8, 11.0 +/- 9.02 ng l(-1) in the DS and 18.5 +/- 23.2, 19.3 +/- 29.0, 12.8 +/- 8.44 ng l(-1) in the RS, respectively. Heptachlor epoxide (isomer A) and dieldrin were detected in some water samples with lowest concentrations.  相似文献   

4.
Chlorofluorocarbons CFC-11 (CCl(3)F), CFC-12 (CCl(2)F(2)), and CFC-113 (CCl(2)F-CClF(2)) are used in hydrology as transient tracers under the assumption of conservative behavior in the unsaturated and saturated soil zones. However, laboratory and field studies have shown that these compounds are not stable under anaerobic conditions. To determine the degradation rates of CFCs in a tropical environment, atmospheric air, unsaturated zone soil gas, and anoxic groundwater samples were collected in Araihazar upazila, Bangladesh. Observed CFC concentrations in both soil gas and groundwater were significantly below those expected from atmospheric levels. The CFC deficits in the unsaturated zone can be explained by gas exchange with groundwater undersaturated in CFCs. The CFC deficits observed in (3)H/(3)He dated groundwater were used to estimate degradation rates in the saturated zone. The results show that CFCs are degraded to the point where practically no (<5%) CFC-11, CFC-12, or CFC-113 remains in groundwater with (3)H/(3)He ages above 10 yr. In groundwater sampled at our site CFC-11 and CFC-12 appear to degrade at similar rates with estimated degradation rates ranging from approximately 0.25 yr(-1) to approximately 6 yr(-1). Degradation rates increased as a function of reducing conditions. This indicates that CFC dating of groundwater in regions of humid tropical climate has to be carried out with great caution.  相似文献   

5.
Concentrations of Cu, Zn, Pb and Ni in the scalp hair of male and female donors, with an age range of 6-60 years, were determined by ICP atomic emission spectroscopy. The donors were drawn from the densely populated city of Lahore and the relatively less-populated capital city of Islamabad for comparative evaluation of the metal levels in relation to age, sex and location. Linear regression analyses and correlation between paired metals indicated a positive correlation between Cu and Zn for both sexes ( [Formula: see text] ) and between Pb and Ni ( [Formula: see text] ) for males and females of Lahore. Metal concentrations varied between the two cities and the two sexes. The highest mean concentration was found for Zn at 180.5 microg g(-1) for males and 202.4 microg g(-1) for females from Lahore, while for counterparts from Islamabad the values were 105.2 microg g(-1) and 206.6 microg g(-1). Copper showed an identical mean concentration (20.8 microg g(-1)) in the hair of both males and females from Lahore; however, relatively lower mean concentrations (7.7 and 10.8 microg g(-1)) were observed for donors from Islamabad. Mean Pb concentrations in hair of male donors from Lahore and Islamabad were 9.4 and 7.0 microg g(-1), respectively; in female groups the concentrations were 14.3 and 5.7 microg g(-1), respectively. Ni showed the lowest concentration range (4.3-4.5 microg g(-1)) of all the four metals for subjects from Lahore, and this was higher than the corresponding range (2.0-3.2 microg g(-1)) for subjects from Islamabad. The findings are discussed in relation to the available data from the literature.  相似文献   

6.
Polychlorinated biphenyls (PCBs) were measured in the air and water over the Hudson River Estuary during six intensive field campaigns from December 1999 to April 2001. Over-water gas-phase SigmaPCB concentrations averaged 1100 pg/m3 and varied with temperature. Dissolved-phase SigmaPCB concentrations averaged 1100 pg/L and displayed no seasonal trend. Uncertainty analysis of the results suggests that PCBs with 5 or fewer chlorines exhibited net volatilization. The direction of net air/water exchange could not be determined for PCBs with 6 or more chlorines. Instantaneous net fluxes of SigmaPCBs ranged from +0.2 to +630 ng m(-2) d(-1). Annual fluxes of SigmaPCBs were predicted from modeled gas-phase concentrations, measured dissolved-phase concentrations, daily surface water temperatures and wind speeds. The net volatilization flux was +62 microg m(-2) yr(-1), corresponding to an annual loss of +28 kg/yr of SigmaPCBs from the Hudson River Estuary for the year of 2000.  相似文献   

7.
The chemical fate and movement of pesticides may be subject to transient storage in unsaturated soils during periods of light rainfall, and subsequent release into shallow groundwater by increased rainfall. The objective of this study was to conduct field-scale experiments to determine the relative importance of transient storage and subsequent release of agrichemicals from the vadose zone into potential aquifers. Two field-scale experiments were conducted under a rain exclusion shelter. In the 1x experiment, atrazine and chlorpyrifos were applied at application-rate equivalents (1.6 kg ha(-1) and 1.3 kg ha(-1), respectively). In the 4x experiment, atrazine was applied in an amount that was four times greater than that usually applied to fields (6.7 kg ha(-1)). Water was either applied to simulate rain or withheld to simulate dry periods. In the 1x experiment, atrazine was detected in the water samples whereas chlorpyrifos was not detected in the majority of the samples. The dry period imposed on the treatment plot did not appear to result in storage of the chemicals, whereas the wet period resulted in greater leaching of atrazine, although the concentrations remained less than the Maximum Contaminant Level of 3 microg L(-1). Both chemicals were detected in soil samples collected from a 20- to 30-cm depth, but it appeared that both chemicals dissipated before the field experiment was concluded. It appeared that the one-time application of atrazine and chlorpyrifos at the label rates did not result in a sufficient mass to be stored and flushed in significant concentrations to the saturated zone. When atrazine was applied at 4x and a longer drought period was imposed on the treatment plot, the resulting concentrations of dissolved atrazine were still less than 3 microg L(-1) . Atrazine was detected in only the near-surface (0 to 15 cm) soil samples and the herbicide dissipated before the onset of the dry period in the treatment plot. The results of this field study demonstrated that atrazine and chlorpyrifos were not sufficiently persistent to be stored and then released in significantly large concentrations to the saturated zone. The dissipation half-life of atrazine in the 4x application was about 44 days. This study, in addition to others, suggested that atrazine may be less persistent in surface soil than has been generally reported.  相似文献   

8.
Fu J  Zhou Q  Liu J  Liu W  Wang T  Zhang Q  Jiang G 《Chemosphere》2008,71(7):1269-1275
Very few studies have investigated the heavy metal contents in rice samples from a typical E-waste recycling area. In this study, 10 heavy metals (As, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni and Pb) in 13 polished rice and relevant hull samples, six relevant paddy soil samples were investigated. The geometric mean concentrations of Cd, Cu and Hg in soil samples were 1.19, 9.98 and 0.32 microg g(-1), respectively, which were 4.0, 2.0 and 1.1-folds of the maximum allowable concentration (MAC) (0.30, 50.00, 0.30 microg g(-1), respectively) for Chinese agricultural soils. The analyzed metal concentrations were significantly different between rice and relevant hull except for As, Cd and Hg (p<0.05). All metal concentrations, except for Co, in rice hull were higher than those in polished rice. The geometric mean of Pb in polished rice reached 0.69 microg g(-1), which was 3.5-folds higher than the MAC (0.20 microg g(-1)) by the safety criteria for milled rice. Cd contents in 31% of the rice samples exceeded the national MAC (0.20 microg g(-1)), and the arithmetic mean also slightly exceeded national MAC. In addition, Cd and Pb contents in local rice were much higher than commercial rice samples examined in this work and previous studies. Comparing the tolerable daily intakes given by FAO/WHO with the mean estimated daily intakes; Pb daily intake through rice consumption in this area was 3.7 microg day(-1)kg(-1) body weight (bw), which already exceeded the FAO tolerable daily intake, and the Cd daily intake (0.7 microg day(-1)kg(-1) bw) through rice had already taken up 70% of the total tolerable daily intake (1 microg day(-1)kg(-1) bw). The daily intake of Hg and As through rice was much lower than the tolerable daily intakes, but bioaccumulation of Hg through the food chain and intake of As from other food stuff should also be of concern.  相似文献   

9.
Contamination of industrial sites by wood preservatives such as chromated copper arsenate (CCA) may pose a serious threat to groundwater quality. The objective of this study was to characterise the spatial variability of As and Cr concentrations in the solid phase and in the soil water at a former wood impregnation plant and to reveal the fundamental transport processes. The soil was sampled down to a depth of 2m. The soil water was extracted in situ from the vadose zone over a period of 10 months at depths of 1 and 1.5m, using large horizontally installed suction tubes. Groundwater was sampled from a depth of 4.5m. Results showed that arsenic and chromium had accumulated in the upper region of the profile and exhibited a high spatial variability (As: 21-621 mg kg(-1); Cr: 74-2872 mg kg(-1)). Concentrations in the soil water were high (mean As 167 microg L(-1); Cr: 62 microg L(-1)) and also showed a distinct spatial variability, covering concentration ranges up to three orders of magnitude. The variability was caused by the severe water-repellency of the surface soil, induced by the concurrent application of creosote wood preservatives, which leads to strong preferential flow as evident from a dye experiment. In contrast to soil water concentrations, only low As concentrations (<12 microg L(-1)) were detected in the groundwater. High Cr concentrations in the groundwater (approx. 300 microg L(-1)), however, illustrated the pronounced mobility of chromium. Our study shows that at sites with a heterogeneous flow system in the vadose zone a disparity between flux-averaged and volume-averaged concentrations may occur, and sampling of soil water might not be adequate for assessing groundwater concentrations. In these cases long-term monitoring of the groundwater appears to be the best strategy for a groundwater risk assessment.  相似文献   

10.
Total particulate carbon (TPC), which includes both elemental carbon and particulate organic carbon, total suspended particulate matter (TSP) and dissolved organic carbon (DOC) were measured in 53 cloud water samples collected using a passive 'Harp-wire' cloud collector at weekly intervals at a hill-top site in southern Scotland (Dunslair Heights, 602 m above sea level) between December 1990 and April 1992. The concentrations of TPC, TSP and DOC were in the range 0.03-6.9 mg 1(-1) (median 1.05 mg l(-1)), 2.6-51.6 mg l(-1) (median 13.6 mg l(-1)) and 0.-14 mg l(-1) (median 3.6 mg l(-1)), respectively. The concentrations of TPC, TSP and DOC were greatest in winter (December-February), up to 6.9, 42 and 4.6 mg l(-1) respectively in 1990-1991 and up to 6.0, 51 and 14 mg l(-1), respectively, in 1991-1992. Particulate carbon in cloud water samples comprised 1-47% of the TSP. Concentrations of major anions (Cl(-), NO(-)(3), SO(2-)(4)) and pH were measured on the same water samples. Estimates of cloud liquid water content from January to April 1992 were derived from measured wind speeds and volumes of water collected. These estimates suggested that the air contained up to 1.2 microg TPC m(-3), 16 microg TSP m(-3) and 2.3 microg DOC m(-3), which are typical of concentrations to be expected in rural air. There was no correlation between concentrations of DOC in cloud water and either TPC or TSP, indicating that the sources and partitioning of DOC and TPC in the atmosphere are different. The largest concentrations of TPC coincided with the largest concentrations of non-marine sulphate, and although there was a significant linear correlation between the two sets of data, the log-transformed data were not correlated. Concentrations of TPC were significantly correlated with concentrations of other particulate matter (TSP-TPC), suggesting that similar sources and/or partitioning processes were involved in determining concentrations in cloud. Concentrations of DOC in cloud were significantly correlated (p < 0.02) with concentrations of nitrate, suggesting that sources of DOC were related to the emission and chemistry of nitrogen oxides. The very large concentrations of particulate carbon, especially in winter, indicate that carbon-catalysed oxidation of sulphur dioxide by molecular oxygen in cloud water may be a significant pathway when concentrations of hydrogen peroxide are small.  相似文献   

11.
The concentrations of strontium and barium have been measured in water, sediment and the shells of mussels (Mytilus edulis) from a river system in the Sunart region of Scotland, UK. The aim was to establish the fate and mobility of these elements, which are slowly being released from old mine workings on the Strontian granites. Enhanced strontium (1500-2000 microg l(-1) and 250-290 microg l(-1)) and barium concentrations (316 microg l(-1) and 83 microg l(-1)) were found in the waters originating from the two mine drains studied. Both element were also found at significant levels in the river sediments taken from the vicinity of each drainage site (Sr: 225 microg g(-1) and 120-125 microg g(-1); Ba: 1380 microg g(-1) and 126-170 microg g(-1)). The data suggests that the sediments are acting as a reservoir for these group II cations from where they become distributed throughout the river system. Strontium is found to be incorporated into the shells (3.16-3.46 microg g(-1)) and pearls (3.57 microg g(-1)) of the blue mussel, located at the estuarine margin some 10 km downstream, at values close to the maximum expected (3.3% by weight of the calcium content). The study presents a view of the fate of barium and strontium in a river system over a prolonged period of time. As such it provides valuable information for studies that seek to model the impact of the accidental release of barium and strontium (including the important radionuclide 90Sr) into the environment.  相似文献   

12.
Systematic measurement of fine particulate matter (aerodynamic diameter less than 2.5 microm [PM2.5]) mass concentrations began nationally with implementation of the Federal Reference Method (FRM) network in 1998 and 1999. In California, additional monitoring of fine particulate matter (PM) occurred via a dichotomous sampler network and several special studies carried out between 1982 and 2002. The authors evaluate the comparability of FRM and non-FRM measurements of PM2.5 mass concentrations and establish conversion factors to standardize fine mass measurements from different methods to FRM-equivalent concentrations. The authors also identify measurements of PM2.5 mass concentrations that do not agree with FRM or other independent PM2.5 mass measurements. The authors show that PM2.5 mass can be reconstructed to a high degree of accuracy (r2 > 0.9; mean absolute error approximately 2 microg m(-3)) from PM with an aerodynamic diameter < or =10 microm (PM10) mass and species concentrations when site-specific and season-specific conversion factors are used and a statewide record of fine PM mass concentrations by combining the FRM PM2.5 measurements, non-FRM PM2.5 measurements, and reconstructions of PM2.5 mass concentrations. Trends and spatial variations are evaluated using the integrated data. The rates of change of annual fine PM mass were negative (downward trends) at all 22 urban and 6 nonurban (Interagency Monitoring of Protected Visual Environments [IMPROVE]) monitoring locations having at least 15 yr of data during the period 1980-2007. The trends at the IMPROVE sites ranged from -0.05 to -0.25 microg m(-3) yr(-1) (median -0.11 microg m(-3) yr(-1)), whereas urban-site trends ranged from -0.13 to -1.29 microg m(-3) yr(-1) (median -0.59 microg m(-3) yr(-1)). The urban concentrations declined by a factor of 2 over the period of record, and these decreases were qualitatively consistent with changes in emissions of primary PM2.5 and gas-phase precursors of secondary PM. Mean PM2.5 mass concentrations ranged from 3.3 to 7.4 microg m(-3) at IMPROVE sites and from 9.3 to 37.1 microg m(-3) at urban sites.  相似文献   

13.
Karaca F  Alagha O  Ertürk F 《Chemosphere》2005,59(8):1183-1190
Inhalable particulate matter (PM10) has been monitored at several stations by Istanbul Municipality. On the other hand, information about fine fraction aerosols (PM2.5) in Istanbul atmosphere was not reported. In this study, 86 daily aerosol samples were collected between July 2002 and July 2003. The PM10 annual arithmetic mean value of 47.1 microg m(-3), was lower than the Turkish air quality standard of 60 microg m(-3). On the other hand, this value was found higher than the annual European Union air quality PM(10) standard of 40 microg m(-3). Furthermore, the annual mean concentration of PM2.5 20.8 microg m(-3) was found higher than The United States EPA standard of 15 microg m(-3). The statistics and relationships of fine, coarse, and inhalable particles were studied. Cyclic behavior of the monthly average concentrations of PM10 and PM2.5 data were investigated. Several frequency distribution functions were used to fit the measured data. According to Chi-squared and Kolmogorov-Smirnov tests, the frequency distributions of PM2.5 and PM10 data were found to fit Log-logistic functions.  相似文献   

14.
This paper presents the results of a detailed field investigation that was performed for studying groundwater recharge processes and solute downward migration mechanisms prevailing in the unsaturated zone overlying a chalk aquifer in Belgium. Various laboratory measurements were performed on core samples collected during the drilling of boreholes in the experimental site. In the field, experiments consisted of well logging, infiltration tests in the unsaturated zone, pumping tests in the saturated zone and tracer tests in both the saturated and unsaturated zones. Results show that gravitational flows govern groundwater recharge and solute migration mechanisms in the unsaturated zone. In the variably saturated chalk, the migration and retardation of solutes is strongly influenced by recharge conditions. Under intense injection conditions, solutes migrate at high speed along the partially saturated fissures, downward to the saturated zone. At the same time, they are temporarily retarded in the almost immobile water located in the chalk matrix. Under normal recharge conditions, fissures are inactive and solutes migrate slowly through the chalk matrix. Results also show that concentration dynamics in the saturated zone are related to fluctuations of groundwater levels in the aquifer. A conceptual model is proposed to explain the hydrodispersive behaviour of the variably saturated chalk. Finally, the vulnerability of the chalk to contamination issues occurring at the land surface is discussed.  相似文献   

15.
In this study, the green-lipped mussel, Perna viridis (L.), was exposed to two concentrations of benzo[a]pyrene (B[a]P) (0.3 microg l(-1); 3 microg l(-1)) and two concentrations of Aroclor 1254 (0.5 microg l(-1); 5 microg l(-1)). In addition, a mixture of the contaminants was used (0.3 microg l(-1) B[a]P+0.5 microg l(-1) Aroclor 1254; 3 microg l(-1) B[a]P+5 microg l(-1) Aroclor 1254). All concentrations were nominal. A suite of enzymes [glutathione S transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR)], glutathione (GSH) level and lipid peroxidation (LPO) in the mussel gill and hepatopancreas were monitored over 18 days. CAT and GSH in gill tissue were positively correlated with concentration of Aroclor 1254. Activity of hepatic GST and SOD was significantly related to body burden of Aroclor 1254. LPO, GR and GPx in gill and hepatopancreas and hepatic GST were positively correlated with B[a]P concentration. The results indicate the importance of using biomarkers specific to the type of contaminant(s) that are likely to be present. Controlled laboratory experiments, such as this study, are useful in ascertaining biomarkers suitable for use with complex contaminant mixtures in the marine environment.  相似文献   

16.
This study aimed to evaluate (1) the capacity of the green alga Pseudokirchneriella subcapitata and the waterflea Daphnia magna to regulate copper when exposed to environmentally realistic copper concentrations and (2) the influence of multi-generation acclimation to these copper concentrations on copper bioaccumulation and homeostasis. Based on bioconcentration factors, active copper regulation was observed in algae up to 5 microg Cu L(-1) and in daphnids up to 35 mug Cu L(-1). Constant body copper concentrations (13+/-4 microg Cu g DW(-1)) were observed in algae exposed to 1 through 5 microg Cu L(-1) and in daphnids exposed to 1 through 12 microg Cu L(-1). At higher exposure concentrations, there was an increase in internal body copper concentration, while no increase was observed in bioconcentration factors, suggesting the presence of a storage mechanism. At copper concentrations of 100 microg Cu L(-1) (P. subcapitata) and 150 microg Cu L(-1) (D. magna), the significant increases observed in body copper concentrations and in bioconcentration factors may be related to a failure of this regulation mechanism. For both organisms, internal body copper concentrations lower than 13 microg Cu g DW(-1) may result in copper deficiency. For P. subcapitata acclimated to 0.5 and 100 microg Cu L(-1), body copper concentrations ranged (mean+/-standard deviation) between 5+/-2 microg Cu g DW(-1) and 1300+/-197 microg Cu g DW(-1), respectively. For D. magna, this value ranged between 9+/-2 microg Cu g DW(-1) and 175+/-17 microg Cu g DW(-1) for daphnids acclimated to 0.5 and 150 microg Cu L(-1). Multi-generation acclimation to copper concentrations >or =12 microg Cu L(-1) resulted in a decrease (up to 40%) in body copper concentrations for both organisms compared to the body copper concentration of the first generation. It can be concluded that there is an indication that P. subcapitata and D. magna can regulate their whole body copper concentration to maintain copper homeostasis within their optimal copper range and acclimation enhances these mechanisms.  相似文献   

17.
Organotin compounds (OTC) are highly toxic pollutants and have been mostly investigated so far in aquatic systems and sediments. The concentrations and fluxes of different organotin compounds, including methyl-, butyl-, and octyltin species in precipitation and fog were investigated in a forested catchment in NE Bavaria, Germany. Contents, along with the vertical distribution and storages in two upland and two wetland soils were determined. During the 1-year monitoring, the OTC concentrations in bulk deposition, throughfall and fog ranged from 1 ng Sn l(-1) to several ten ng Sn l(-1), but never over 200 ng Sn l(-1). The OTC concentrations in fog were generally higher than in throughfall and bulk deposition. Mono-substituted species were the dominant Sn species in precipitation (up to 190 ng Sn l(-1)) equaling a flux of up to 70 mg Sn ha(-1) a(-1). In upland soils, OTC contents peaked in the forest floor (up to 30 ng Sn g(-1)) and decreased sharply with the depth. In wetland soils, OTC had slightly higher contents in the upper horizons. The dominance of mono-substituted species in precipitation is well reflected in the contents and storages of OTC in both upland and wetland soils. The ratios of OTC soil storages to the annual throughfall flux ranged from 20 to 600 years. These high ratios are probably due to high stability and low mobility of OTC in soils. No evidence was found for methylation of tin in the wetland soils. In comparison with sediments, concentrations and contents of organotin in forest soils are considerably lower, and the dominant species are less toxic. It is concluded that forested soils may act as sinks for OTC deposited from the atmosphere.  相似文献   

18.
A set of soil columns was constructed to simulate discharge of disinfected tertiary treated wastewater to a river via nearby land application or indirect discharge. The system was primarily designed to observe the fate of metal ions and nutrients. The following three experiments were conducted: (1) flow through saturated soils only, which simulates indirect discharge where water is directly applied to groundwater; (2) flow through unsaturated soil followed by saturated flow, which simulates vadose then saturated zone transport; and (3) saturated flow only using ethylene diamine tetraacetic acid-metal chelates, which determined effects of metal organic complexes on metal mobility through the soil. Metal ion attenuation was substantial but not complete in experiments 1 and 2 (removal: 68% Cu2+, 43% Ni2+, 98% Pb2+, and 96% Hg2+), which was somewhat contrary to modeling results. Cyanide attenuation was also monitored (92% removal). In experiment 3, lead attenuation was somewhat reduced (92% removal) and delayed (requiring additional residence time); copper attenuation was significantly reduced (38% removal) and delayed; and nickel concentrations were higher in the 28-day sample (> 80 microg/L) than in the column feed water (58 microg/L). Near-complete denitrification and total phosphorus attenuation were observed. For the water quality constituents studied, unsaturated (vadose zone) transport did not appear to add additional benefit.  相似文献   

19.
Pekey B  Karakaş D  Ayberk S 《Chemosphere》2007,67(3):537-547
Wet deposition and dry deposition samples were collected in an urban/industrialized area of Izmit Bay, North-eastern Marmara Sea, Turkey, from September 2002 to July 2003. The samples were analyzed for sixteen polycyclic aromatic hydrocarbon (PAH) compounds by using HPLC-UV technique. Wet and dry deposition concentrations and fluxes of PAHs were determined. The results showed that PAH concentrations were high because of industrial processes, heavy traffic and residential areas next to the sampling site. Total dry deposition flux of the fifteen 3-6 ring PAHs was 8.30 microg m(-2)day(-1), with a range of 0.034-1.77 microg m(-2)day(-1). The total wet deposition flux of the fifteen 3-6 ring PAHs was 1716 microg m(-2) 11 month(-1), with a range of 10-440 microg m(-2) 11 month(-1). Significant seasonal differences were observed in both types of deposition samples. The winter fluxes of total PAHs were 1.5 and 2.5 times greater than those of the warm period for wet and dry deposition samples, respectively. Factor analysis of dry deposition samples and back trajectory analysis of wet deposition samples were also used to characterize and identify the PAH emission sources in this study.  相似文献   

20.
Bollmohr S  Day JA  Schulz R 《Chemosphere》2007,68(3):479-488
This study assesses the risk of current-use pesticides in a temporarily open estuary in South Africa by developing probabilistic risk estimates. Particle-associated pesticides (chlorpyrifos, prothiofos, cypermethrin, fenvalerate, endosulfan and p,p-DDE) and physicochemical parameters (salinity, temperature, flow, and total organic content (TOC)) were measured in the Lourens River estuary (Western Cape) twice a month over a period of two years and equilibrium partitioning theory was applied to calculate concentrations of pesticides in the water. The 90th percentile concentrations of pesticides associated to suspended particles and the calculated concentrations in water were 34.0microg kg(-1) and 0.15microg l(-1) for prothiofos, 19.6microg kg(-1) and 0.45microg l(-1) for chlorpyrifos and 18.6microg kg(-1) and 0.16microg l(-1) for endosulfan. Highest average concentrations were found around the summer season due to higher application rates and as a result of the low flow during this season. Species sensitivity distribution indicated a 1.5-2.8 times higher toxicity (hazardous concentration HC5) for marine organisms compared to freshwater organisms. The calculated concentrations in the water exceeded all threshold values suggested by international water guidelines. Chlorpyrifos and endosulfan posed the highest acute risk to the Lourens River estuary. No sufficient toxicity data and threshold values were found for prothiofos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号