首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reactions between ozone and terpenes have been shown to increase the concentrations of submicron particles in indoor settings. The present study was designed to examine the influence of air exchange rates on the concentrations of these secondary organic aerosols as well as on the evolution of their particle size distributions. The experiments were performed in a manipulated office setting containing a constant source of d-limonene and an ozone generator that was remotely turned “on” or “off” at 6 h intervals. The particle number concentrations were monitored using an optical particle counter with eight-channels ranging from 0.1–0.2 to>2.0 μm diameter. The air exchange rates during the experiments were either high (working hours) or low (non-working hours) and ranged from 1.6 to>12 h−1, with intermediate exchange rates. Given the emission rates of ozone and d-limonene used in these studies, at an air exchange rate of 1.6 h−1 particle number concentration in the 0.1–0.2 μm size-range peaked 1.2 h after the ozone generator was switched on. In the ensuing 4.8 h particle counts increased in successive size-ranges up to the 0.5–0.7 μm diameter range. At higher air exchange rates, the resulting concentrations of total particles and particle mass (calculated from particle counts) were smaller, and at exchange rates exceeding 12 h−1, no excess particle formation was detectable with the instrument used in this study. Particle size evolved through accretion and, in some cases, coagulation. There was evidence for coagulation among particles in the smallest size-range at low air exchange rates (high particle concentrations) but no evidence of coagulation was apparent at higher air exchange rates (lower particle concentrations). At higher air exchange rates the particle count or size distributions were shifted towards smaller particle diameters and less time was required to achieve the maximum concentration in each of the size-ranges where discernable particle growth occurred. These results illustrate still another way in which ventilation affects human exposures in indoor settings. However, the ultimate effects of these exposures on health and well being remain to be determined.  相似文献   

2.
Chemical characteristics of aerosol and rainfall samples collected at five sites in Minnesota and one site in west-central Wisconsin during the summer of 1982 were generally similar with respect to the relative proportions of major constituents. The most abundant species measured in the aerosol was sulfate, occurring predominantly in the fine fraction ( < 2.5 μm aerodynamic diameter). The rain chemistry was also dominated by sulfate but not to the same extent as the aerosol. The concentrations of crustal materials in both the aerosol and the rain followed a gradient in which concentrations increased with proximity of the sampling site to the prairie. The concentrations of crustal materials in the aerosol were correlated with their concentrations in subsequent rain, whereas concentrations of other constituents were not significantly correlated between aerosol and rain. Since the aerosol was sampled at the surface this result provided evidence that crustal materials were transported at lower altitudes and were scavenged to a greater degree by below-cloud mechanisms. The measured components in aerosols were divided by factor analysis into: ammonium sulfates, crustal materials, and a group containing nitrates, metals and other materials.  相似文献   

3.
A physical-chemical model which is an extension of that of Hong and Carmichael (1983) is used to investigate the role of formaldehyde in cloud chemistry. This model takes into account the mass transfer of SO2, O3, NH3, HNO3, H2O2, CO2, HCl, HCHO, O2, OH and HO2 into cloud droplets and their subsequent chemical reactions. The model is used to assess the importance of S(IV)-HCHO adduct formation, the reduction of H2O2 by HCHO, HCHO-free radical interactions, and the formation of HCOOH in the presence of HCHO in cloud droplets.Illustrative calculations indicate that the presence of HCHO inhibits sulfate production rate in cloud droplets. The direct inhibition of sulfate production rate in cloud water due to nucleophilic addition of HSO3 to HCHO(aq) to form hydroxymethanesulfonate (HMSA) is generally low for concentrations of HCHO typical of ambient air. However, inhibition of sulfate production due to formaldehyde-free radical interactions in solution can be important. These formaldehyde-free radical reactions can also generate appreciable quantities of formic acid.  相似文献   

4.
5.
6.
Chemical leasing is a new and innovative approach of selling chemicals. It aims at reducing the risks emanating from hazardous substances and ensuring long-term economic success within a global system of producing and using chemicals. This paper explores how, through chemical leasing, the consumption of chemicals, energy, resources and the generation of related wastes can be reduced. It also analyses the substitution of hazardous chemicals as a tool to protect environmental, health and safety and hence ensure compliance with sustainability criteria. For this, we are proposing an evaluation methodology that seeks to provide an answer to the following research questions: (1) Does the application of chemical leasing promote sustainability in comparison to an existing chemicals production and management system? 2. If various chemical leasing project types are envisaged, which is the most promising in terms of sustainability? The proposed methodology includes a number of basic goals and sub-goals to assess the sustainability for eight different chemical leasing case studies that have been implemented both at the local and the national levels. The assessment is limited to the relative assessment of specific case studies and allows the comparisons of different projects in terms of their relative contribution to sustainable chemistry. The findings of our assessment demonstrate that chemical leasing can be regarded as promoting sustainable chemistry in five case studies with certainty. However, on the grounds of our assessment, we cannot conclude with certainty that chemical leasing has equivalent contribution to sustainable chemistry in respect of three further case studies.  相似文献   

7.
A one-dimensional eddy diffusion model was used to investigate the fate of 1,1,1,2-tetrafluoroethane (F-134a) in the atmosphere. The substitution of F-134a for F-12 (CF2Cl2) used in mobile air conditioning applications would eliminate the possibility of chlorine-related stratospheric ozone depletion from those applications and would introduce no more, and probably less, hydrogen fluoride (HF) into the stratosphere than the continued use of F-12. Such a substitution would only be possible if a commercial process is developed which can produce F-134a in suitable quantities.  相似文献   

8.
Five mercury (Hg) chemistry models are compared using the same data set for model initialisation. All five models include gas-phase oxidation of Hg(0) to Hg(II) (except for one model), fast reduction–oxidation aqueous reactions between Hg(0) and Hg(II), and adsorption of Hg(II) species to soot particles within droplets. However, the models differ in their detailed treatments of these processes. Consequently, the 48-h simulations reveal similarities but also significant discrepancies among the models. For the simulation that included all Hg species (i.e., Hg(0), Hg(II) and Hg(p)) as well as soot in the initial conditions, the maximum simulated Hg(II) aqueous concentrations ranged from 55 to 148 ng l−1 whereas the minimum concentrations ranged from 20 to 110 ng l−1. These results suggest that further experimental work is critically needed to reduce the current uncertainties in the formulation of Hg chemistry models.  相似文献   

9.

Background, aim, and scope  

Methacrylates are α, β-unsaturated esters that are widely used in the polymer plastics and resins production. Kinetic information of NO3 radical reactions is especially scarce and a good understanding of all the atmospheric oxidation processes of these compounds is necessary in order to determine lifetimes in the atmosphere and to evaluate the impact of these reactions on the formation of ozone and other photooxidants.  相似文献   

10.
11.
The formation characteristics of aerosol particles from pulverized coal pyrolysis in high temperatures are studied experimentally. By conducting a drop-tube furnace, fuel pyrolysis processes in industrial furnaces are simulated in which three different reaction temperatures of 1000, 1200, and 1400 degrees C are considered. Experimental observations indicate that when the reaction temperature is 1000 degrees C, submicron particles are produced, whereas the particle size is dominated by nanoscale for the temperature of 1400 degrees C. Thermogravimetric analysis of the aerosol particles stemming from the pyrolysis temperature of 1000 degrees C reveals that the thermal behavior of the aerosol is characterized by a three-stage reaction with increasing heating temperature: (1) a volatile-reaction stage, (2) a weak-reaction stage, and (3) a soot-reaction stage. However, with the pyrolysis temperature of 1400 degrees C, the volatile- and weak-reaction stages almost merge together and evolve into a chemical-frozen stage. The submicron particles (i.e., 1000 degrees C) are mainly composed of volatiles, tar, and soot, with the main component of the nanoscale particles (i.e., 1400 degrees C) being soot. The polycyclic aromatic hydrocarbons (PAHs) contained in the aerosols are also analyzed. It is found that the PAH content in generated aerosols decreases dramatically as the pyrolysis temperature increases.  相似文献   

12.
城市污水厂污泥高温好氧堆肥氮素转变行为研究   总被引:1,自引:1,他引:1  
采用两段式高温好氧堆肥工艺 ,研究了污泥堆肥中氮素转变规律。研究表明 ,硝化作用受到温度和NH+ 4 N含量的影响显著。一次发酵中 ,堆料平均温度高于 4 0℃ ,硝化作用受到强烈抑制 ;二次发酵后期 ,由于NH+ 4 N浓度降低 ,故硝化过程减缓。不同调理剂及操作条件对氮素损失影响较大 ,利用腐熟堆肥作为调理剂可以减少氮素损失。适当降低堆料温度、增加初始含水率及适当减少初始挥发份含量等措施均可在一定程度上减少氮素损失  相似文献   

13.
14.
The significance of heterogeneous mechanisms in controlling gas-phase NOx (NO, NO2) mixing ratios in polluted urban air, especially during nighttime, is not well established. Several recent studies have suggested that carbon soot can provide an effective surface for mediating the inter conversion among several NOy members. However, a number of such reactions reported in the literature have widely varying reaction probabilities and often conflicting pathways. We evaluated several of these reactions and choose the NO2 conversion to HONO on the surface of soot particles for further analysis with a box photochemical model. These calculations show that the conversion of NO2 to HONO on particle surfaces produces a large, measurable signal (up to several parts per billion) in nighttime HONO mixing ratios. Inclusion of this reaction was also shown to have significant impacts on ozone, OH and HO2 in the polluted planetary boundary layer (PBL). The sensitivity of these results to the different reaction rate probabilities (γ) and particle surface areas was also examined. Results are then evaluated to find the combination of γ and surface areas that would mostly likely occur in the PBL within the limitations of the model.  相似文献   

15.
16.
17.
18.
介绍了一种新型的高性能金属微孔过滤材料———烧结金属丝网过滤材料及其特性。将该过滤材料应用于高温煤气的除尘过程中 ,试验表明 ,处理效果良好。对于煤气含尘浓度在 3 70 0— 490 0mg Nm3的煤气 ,经处理后 ,可降至 2 0mg Nm3以下 ,过滤效率 >99.5 %。  相似文献   

19.
The oxygen-18 enrichment in sulfates formed at high temperatures (475–500°C) by platinum-catalyzed air oxidation of SO2 to SO3 in humidified air, was found to be several parts per thousand higher than in the air oxygen, SO2, or water vapor from which the sulfates were formed. Variation of the δ18O in the sulfates showed little dependence on variation of the δ18O in the water vapor. The mechanism of sulfate formation involved isotopic exchange between the air oxygen and water vapor, isotopic exchange between the water vapor and SO2, and formation of the hydrate, H2SO4· 3H2O.When Fe2O3 or V2O5 was heated in mixtures of air, water vapor, and SO2, some of the SO2 was analytically oxidized (via SO3 formation) to sulfate of relatively high δ18O and the remainder to chemisorbed sulfate of relatively low δ18O. Charcoal and fly ash (containing unburned carbon and basic oxides) reacted with the SO2 to yield chemisorbed sulfates of relatively low δ18O.  相似文献   

20.
Indoor and outdoor concentrations of HCl, HNO3, HCOOH and CH3COOH were determined in two medieval churches in Cyprus, during July 2003 and March 2004. The high air exchange rate through the open windows and doors led to lower indoor, compared to outdoor, acid concentrations in July 2003. Indoor pollutant emissions and a low air exchange rate resulted in higher indoor compared to outdoors acid concentrations in both churches during March 2004. Indoor to outdoor inorganic acid ratios were higher than the corresponding indoor to outdoor organic acid ratios during July 2003, whilst the opposite trend was observed during March 2004. Direct acid emission from candle burning appears to play a major role in the observed indoor acid concentrations. Emissions of volatile organic compounds from other sources, like humans, cleaning products and incense, led also to formation or depletion of the gaseous acids via homogeneous photochemical, heterogeneous and dark reaction sequences. Chemical reaction pathways were extensively investigated and appear to explain the observed results. The apparent indoor acid deposition velocities ranged between 0.05 and 0.15 cm s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号