首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 90,674 wildland fires that burned 2.9 million ha at an estimated suppression cost of $1.6 billion in the United States during the 2000 fire season demonstrated that forest fuel loading has become a hazard to life, property, and ecosystem health as a result of past fire exclusion policies and practices. The fire regime at any given location in these regions is a result of complex interactions between forest biomass, topography, ignitions, and weather. Forest structure and biomass are important aspects in determining current and future fire regimes. Efforts to quantify live and dead forest biomass at the local to regional scale has been hindered by the uncertainty surrounding the measurement and modeling of forest ecosystem processes and fluxes. The interaction of elevated CO2 with climate, soil nutrients, and other forest management factors that affect forest growth and fuel loading will play a major role in determining future forest stand growth and the distribution of species across the southern United States. The use of satellite image analysis has been tested for timely and accurate measurement of spatially explicit land use change and is well suited for use in inventory and monitoring of forest carbon. The incorporation of Landsat Thematic Mapper data coupled with a physiologically based productivity model (PnET), soil water holding capacity, and historic and projected climatic data provides an opportunity to enhance field plot based forest inventory and monitoring methodologies. We use periodic forest inventory data from the USDA Forest Service's Forest Inventory and Analysis (FIA) project to obtain estimates of forest area and type to generate estimates of carbon storage for evergreen, deciduous, and mixed forest classes for use in an assessment of remotely sensed forest cover at the regional scale for the southern United States. The displays of net primary productivity (NPP) generated from the PnET model show areas of high and low forest carbon storage potential and their spatial relationship to other landscape features for the southern United States. At the regional scale, predicted annual NPP in 1992 ranged from 836 to 2181 g/m2/year for evergreen forests and 769-2634 g/m2/year for deciduous forests with a regional mean for all forest land of 1448 g/m2/year. Prediction of annual NPP in 2050 ranged from 913 to 2076 g/m2/year for evergreen forest types to 1214-2376 g/m2/year for deciduous forest types with a regional mean for all forest land of 1659 g/m2/year. The changes in forest productivity from 1992 to 2050 are shown to display potential areas of increased or decreased forest biomass. This methodology addresses the need for spatially quantifying forest carbon in the terrestrial biosphere to assess forest productivity and wildland fire fuels.  相似文献   

2.
The village with its characteristic zones of different land use from the center to the periphery is a basic unit of Europe's cultural landscapes. However, loss of the authentic pre-industrial village structure characterized by a fine-grained structure of arable land and wooded grasslands is a threat to both cultural heritage and biodiversity in many rural landscapes. Therefore, it is important that the extent and rate of change of such authentic villages in a landscape can be monitored. We studied to what extent loss of authenticity with increasing time after abandonment can be assessed by quantitative analysis and visual interpretation of satellite images. The study was carried out in the Bieszczady Mountains, SE Poland in 1999. Using Landsat Thematic Mapper data from 1998, both the grain size of landscape elements (size of fields) and land-cover composition (encroachment of shrub and forest) were quantitatively described 6 type villages representing different stages of deterioration of the authentic village structure. Historical maps were used to delineate the border of the villages and the former extension of forest and open land was measured. The present land use and the degree of abandonment expressed as grain size and forest encroachment were mapped using satellite data. Deterioration occurred along 2 transformation paths: abandonment and ultimately becoming forest, or intensified agriculture, respectively. To validate these results we classified 22 other villages in a 1000 km2 area by visual interpretation of the original satellite images into 1 of 4 types. We then collected historical data on human population changes over the past six decades. The classification of village authenticity was clearly related to the rate of human population decline. We address the importance of validating and applying this approach for rapid assessment of the authenticity of cultural landscapes in European regions being subject to ongoing as well as expected future change, related to expansion of the European Union. Finally, we argue that the village represents a scale at which integration of natural and social sciences is possible.  相似文献   

3.
From the perception of human populations, we can assess the changes occurring in certain landscapes and the factors that cause those changes. Such studies have proven helpful in increasing the knowledge of the history of a landscape, recognizing past formations and projecting its future. Our research objective was to determine how a landscape dominated by the palm tree Attalea speciosa, a species of ecological, economic, and cultural importance, has been changing over time by synthesizing and comparing historical documents and local perceptions. This study was conducted in Araripe Environmental Protection Area, Northeast Region, Brazil. To understand local landscape change, we interviewed active harvesters in four communities in which A. speciosa use has been documented. Historical documents were evaluated as a complement to the interview data. According to local informants, areas previously used for cultivation and animal husbandry that were abandoned or decimated by droughts in the region may have fostered the expansion of a monodominant A. speciosa forest. Furthermore, other forms of landscape management resulting from human population growth may also have affected the current and past distribution of this forest.  相似文献   

4.
With 20% of the world’s forests, Russia has global potential in bioeconomy development, biodiversity conservation and climate change mitigation. However, unsustainable forest management based on ‘wood mining’ reduces this potential. Based on document analysis, participant observations and interviews, this article shows how non-state actors—environmental NGOs and forest companies—address forest resource depletion and primary forest loss in Russia. We analyse two key interrelated forest discourses driven by non-state actors in Russia: (1) intensive forest management in secondary forests as a pathway towards sustained yield and primary forest conservation; (2) intact forest landscapes as a priority in primary forest conservation. We illustrate how these discourses have been integrated into policy debates, institutions and practices and discuss their relation to relevant global discourses. The article concludes that despite successful cases in conserving intact forest landscapes, there is still a frontier between sustainable forest management discourses and forestry practice in Russia.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01643-6.  相似文献   

5.
There is a long history of fire management in African savannas, but knowledge of historical and current use of fire is scarce in savanna-woodland biomes. This study explores past and present fire management practices and perceptions of the Khwe (former hunter-gatherers) and Mbukushu (agropastoralists) communities as well as government and non-government stakeholders in Bwabwata National Park in north-east Namibia. Semi-structured interviews and focus groups were used in combination with satellite data (from 2000 to 2015), to investigate historical and current fire management dynamics. Results show that political dynamics in the region disrupted traditional fire practices, specifically a policy of fire suppression was initiated by colonial governments in 1888 and maintained during independence until 2005. Both the Khwe and Mbukushu communities use early season (i.e. between April and July) fires for diverse interrelated historical and current livelihood activities, and park management for managing late season fires. The Mbukushu community also use late season burns to prepare land for crops. In this study, we use a pyrogeographic framework to understand the human dimension of fires. This study reveals how today’s fire management practices and policies, specifically the resurgence of early season burning are entrenched in the past. Understanding and acknowledging the social and cultural dynamics of fire, alongside participatory stakeholder engagement is critical for managing fires in the future.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01351-7) contains supplementary material, which is available to authorized users.  相似文献   

6.
Michael R. Coughlan 《Ambio》2015,44(8):705-717
Fire-use and the scale and character of its effects on landscapes remain hotly debated in the paleo- and historical-fire literature. Since the second half of the nineteenth century, anthropology and geography have played important roles in providing theoretical propositions and testable hypotheses for advancing understandings of the ecological role of human–fire-use in landscape histories. This article reviews some of the most salient and persistent theoretical propositions and hypotheses concerning the role of humans in historical fire ecology. The review discusses this history in light of current research agendas, such as those offered by pyrogeography. The review suggests that a more theoretically cognizant historical fire ecology should strive to operationalize transdisciplinary theory capable of addressing the role of human variability in the evolutionary history of landscapes. To facilitate this process, researchers should focus attention on integrating more current human ecology theory into transdisciplinary research agendas.  相似文献   

7.
Conflicting perspectives on forests has for a long time challenged forest policy development in Sweden. Disagreements about forest futures create intractable deadlocks when stakeholders talk past each other. The purpose of this study is to move beyond this situation through the application of participatory backcasting. By comparing visions of the future forest among stakeholder groups, we highlight contemporary trajectories and identify changes that were conceived as desirable. We worked with four groups: the Biomass and Bioenergy group, the Conservation group, the Sami Livelihood group and the Recreation and Rural Development group; in total representatives from 40 organizations participated in workshops articulating the groups’ visions. Our results show well-known tensions such as intrinsic versus instrumental values but also new ones concerning forests’ social values. Identified synergies include prioritization of rural development, new valued-added forest products and diversified forest management. The results may feed directly into forest policy processes facilitating the process and break current deadlocks.  相似文献   

8.
GOAL, SCOPE AND BACKGROUND: Ozone is the most important air pollutant in Europe for forest ecosystems and the increase in the last decades is significant. The ozone impact on forests can be calculated and mapped based on the provisional European Critical Level (AOT40 = accumulated exposure over a threshold of 40 ppb, 10,000 ppb x h for 6 months of one growing season calculated for 24 h day(-1)). For Norway spruce, the Austrian main tree species, the ozone risk was assessed in a basis approach and because the calculations do not reflect the health status of forests in Austria, the AOT40 concept was developed. METHODS: Three approaches were outlined and maps were generated for Norway spruce forests covering the entire area of Austria. The 1st approach modifies the AOT40 due to the assumption that forests have adapted to the pre-industrial levels of ozone, which increase with altitude (AOTalt). The 2nd approach modifies the AOT40 according to the ozone concentration in the sub-stomata cavity. This approach is based on such factors as light intensity and water vapour saturation deficit, which affect stomatal uptake (AOTsto). The 3rd approach combines both approaches and includes the hemeroby. The pre-industrial ozone level approach was applied for autochthonous ('natural') forest areas, the ozone-uptake approach for non-autochthonous ('altered') forest areas. RESULTS AND DISCUSSION: The provisional Critical Level (AOT40) was established to allow a uniform assessment of the ozone risk for forested areas in Europe. In Austria, where ozone risk is assessed with utmost accuracy due to the dense grid of monitoring plots of the Forest Inventory and because the continuously collected data from more than 100 air quality measuring stations, an exceedance up to the five fold of the Critical Level was found. The result could lead to a yield loss of up to 30-40% and to a severe deterioration in the forest health status. However, the data of the Austrian Forest Inventory and the Austrian Forest Damage Monitoring System do not reflect such an ozone impact. Therefore, various approaches were outlined including the tolerance and avoidance mechanisms of Norway spruce against ozone impact. Taking into consideration the adaptation of forests to the pre-industrial background level of ozone, the AOT40 exceedances are markedly reduced (1st approach). Taking into account the stomatal uptake of ozone, unrealistic high amounts of exceedances up to 10,000 ppb x h were found. The modelled risk does not correspond with the health status and the wood increment of the Austrian forests (2nd approach). Consolidating the forgoing two approaches, a final map including the hemeroby was generated. It became clear that the less natural ('altered') forested regions are highly polluted. This means, that more than half of the spruce forests are endangered by ozone impact and AOT40 values of up to 30,000 ppb x h occur (3rd approach). CONCLUSIONS: The approaches revealed that a plausible result concerning the ozone impact on spruce forests in Austria could only be reached by combining pre-industrial ozone levels, ozone flux into the spruce needles and the hemeroby of forests.  相似文献   

9.
The natural range of variation of ecosystems provides reference conditions for sustainable management and biodiversity conservation. We review how the understanding of natural reference conditions of boreal forests in northern Europe has changed from earlier perceptions of even-aged dynamics driven by stand-replacing disturbances towards current understanding highlighting the role of non-stand-replacing disturbances and the resultant complex forest dynamics and structures. We show how earlier views and conceptual models of forest disturbance dynamics, including the influential ASIO model, provide estimates of reference conditions that are outside the natural range of variation. Based on a research synthesis, we present a revised forest reference model incorporating the observed complexity of ecosystem dynamics and the prevalence of old forests. Finally, we outline a management model and demonstrate its use in forest ecosystem management and show how regional conservation area needs can be estimated. We conclude that attaining favourable conservation status in northern Europe’s boreal forests requires increasing emphasis on ecosystem management and conservation for old forest characteristics.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01444-3) contains supplementary material, which is available to authorized users.  相似文献   

10.
Termination of fire along with active removal of deciduous trees in favor of conifers together with anthropogenic transformation of productive forest into agricultural land, have transformed northern European coniferous forests and reduced their deciduous component. Locally, however, in the villages, deciduous trees and stands were maintained, and have more recently regenerated on abandoned agricultural land. We hypothesize that the present distribution of the deciduous component is related to the village in-field/out-field zonation in different regions, which emerges from physical conditions and recent economic development expressed as land-use change. We analyzed the spatial distribution of deciduous stands in in-field and out-field zones of villages in 6 boreal/hemiboreal Swedish regions (Norrbotten, Angermanland, J?mtland, Dalarna, Bergslagen, Sm?land). In each region 6 individual quadrates 5 x 5 km centered on village areas were selected. We found significant regional differences in the deciduous component (DEC) in different village zones. At the scale of villages Angermanland had the highest mean proportion of DEC (17%) and J?mtland the lowest (2%). However, the amounts of the DEC varied systematically in in-field and out-field zones. DEC was highest in the in-field in the south (Sm?land), but generally low further north. By contrast, the amount of DEC in the out-field was highest in the north. The relative amount of DEC in the forest edge peaked in landscapes with the strongest decline in active agriculture (Angermanland, Dalarna, Bergslagen). Because former and present local villages are vital for biodiversity linked to the deciduous component, our results indicate a need for integrated management of deciduous forest within entire landscapes. This study shows that simplified satellite data are useful for estimating the spatial distribution of deciduous trees and stands at the landscape scale. However, for detailed studies better thematic resolution is needed to determine biologically relevant differences in quality of deciduous stands.  相似文献   

11.
Major land use changes such as deforestation and restoration influence water resources in agriculture–forest landscapes. Changes are observed in water flows, groundwater infiltration, water quality and rainfall. Interdisciplinary water–forest research has unravelled biophysical parts of the interplay that influences forest and water resources. In this Perspective paper, we propose an expanded interdisciplinary research approach to study water and policies in agriculture–forest frontiers. The approach differs in four important aspects from previous ones: (i) a conceptual ‘frontier’ understanding; an analytical focus on (ii) agriculture and (iii) policy–water linkages; (iv) empirical attention to northern and southern countries. The approach is put into practice with the “Pendulum” framework, with interventions and the agriculture–forest frontier oscillating over time between exploitation and restoration. Through the approach, a better understanding will be provided on the dynamic interplay of water and policies in oscillating agriculture–forest frontiers, with changing outcomes for people and environment.  相似文献   

12.
Private forest owners are the main forest ownership group within Europe, and important conservation values have been found on their land. Yet, small plot sizes, societal heterogeneity, and structural changes impede developing and implementing effective conservation programs in private forests. We present a systematic literature review focusing on small-scale private forest owners and their perspectives on nature conservation by synthesizing research approaches, social-ecological drivers, and policy recommendations. Conservation perspectives were positively related to female gender, higher levels of education, formalized forest management, an active relation to the forest, and ecological values of the property. In contrast, high age, rural orientation, economic forest management factors, large parcel size, and economic and sentimental property values negatively influenced conservation perspectives. Applying a natural resource conflict management framework, we synthesized recommendations covering three dimensions: substance, procedure, relationship. Considering perspectives of small-scale private forest owners in current forestry decision-making has great potential to strengthen sustainable forest management that integrates nature conservation and resource use.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01615-w.  相似文献   

13.
Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area's ability to sequester carbon in terrestrial ecosystems. As the ecosystems within a landscape change due to natural or anthropogenic processes, they may go from being a carbon sink to a carbon source or vice versa. Satellite image analysis has been tested for timely and accurate measurement of spatially explicit land use change and is well suited for use in inventory and monitoring of terrestrial carbon. The coupling of Landsat Thematic Mapper (TM) data with a physiologically based forest productivity model (PnET-II) and historic climatic data provides an opportunity to enhance field plot-based forest inventory and monitoring methodologies. We use periodic forest inventory data from the U.S. Department of Agriculture (USDA) Forest Service's Forest Inventory and Analysis (FIA) Program to obtain estimates of forest area and type and to generate estimates of carbon storage for evergreen, deciduous, and mixed-forest classes. The area information is used in an accuracy assessment of remotely sensed forest cover at the regional scale. The map display of modeled net primary production (NPP) shows a range of forest carbon storage potentials and their spatial relationship to other landscape features across the southern United States. This methodology addresses the potential for measuring and projecting forest carbon sequestration in the terrestrial biosphere of the southern United States.  相似文献   

14.
- DOI: http:/dx.doi.org/10.1065/espr2005.06.262 Goal, Scope and Background The anthropogenic environmental emissions of chloroacetic acids and volatile organochlorines have been under scrutiny in recent years because the two compound groups are suspected to contribute to forest dieback and stratospheric ozone destruction, respectively. The two organochlorine groups are linked because the atmospheric photochemical oxidation of some volatile organochlorine compounds is one source of phytotoxic chloroacetic acids in the environment. Moreover, both groups are produced in higher amounts by natural chlorination of organic matter, e.g. by soil microorganisms, marine macroalgae and salt lake bacteria, and show similar metabolism pathways. Elucidating the origin and fate of these organohalogens is necessary to implement actions to counteract environmental problems caused by these compounds. Main Features While the anthropogenic sources of chloroacetic acids and volatile organochlorines are relatively well-known and within human control, knowledge of relevant natural processes is scarce and fragmented. This article reviews current knowledge on natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soils, with particular emphasis on processes in the rhizosphere, and discusses future studies necessary to understand the role of forest soils in the formation and degradation of these compounds. Results and Discussion Reviewing the present knowledge of the natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soil has revealed gaps in knowledge regarding the actual mechanisms behind these processes. In particular, there remains insufficient quantification of reliable budgets and rates of formation and degradation of chloroacetic acids and volatile organochlorines in forest soil (both biotic and abiotic processes) to evaluate the strength of forest ecosystems regarding the emission and uptake of chloroacetic acids and volatile organochlorines, both on a regional scale and on a global scale. Conclusion It is concluded that the overall role of forest soil as a source and/or sink for chloroacetic acids and volatile organochlorines is still unclear; the available laboratory and field data reveal only bits of the puzzle. Detailed knowledge of the natural degradation and formation processes in forest soil is important to evaluate the strength of forest ecosystems for the emission and uptake of chloroacetic acids and volatile organochlorines, both on a regional scale and on a global scale. Recommendation and Perspective As the natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soil can be influenced by human activities, evaluation of the extent of this influence will help to identify what future actions are needed to reduce human influences and thus prevent further damage to the environment and to human health caused by these compounds.  相似文献   

15.
The maintenance of biodiversity by securing representative and well-connected habitat networks in managed landscapes requires a wise combination of protection, management, and restoration of habitats at several scales. We suggest that the integration of natural and social sciences in the form of "Two-dimensional gap analysis" is an efficient tool for the implementation of biodiversity policies. The tool links biologically relevant "horizontal" ecological issues with "vertical" issues related to institutions and other societal issues. Using forest biodiversity as an example, we illustrate how one can combine ecological and institutional aspects of biodiversity conservation, thus facilitating environmentally sustainable regional development. In particular, we use regional gap analysis for identification of focal forest types, habitat modelling for ascertaining the functional connectivity of "green infrastructures", as tools for the horizontal gap analysis. For the vertical dimension we suggest how the social sciences can be used for assessing the success in the implementation of biodiversity policies in real landscapes by identifying institutional obstacles while implementing policies. We argue that this interdisciplinary approach could be applied in a whole range of other environments including other terrestrial biota and aquatic ecosystems where functional habitat connectivity, nonlinear response to habitat loss and a multitude of economic and social interests co-occur in the same landscape.  相似文献   

16.
Forest transitions may significantly contribute to climate change mitigation but also change forest use, affecting the local people benefiting from forests. We analyze forest transitions as contested processes that simplify multifunctional landscapes and alter local livelihoods. Drawing on the Theory of Access, we develop a conceptual framework to investigate practices of multifunctional forest use and the mechanisms that exclude local forest use(r)s during forest transitions in nineteenth century Austria and twenty-first century Lao PDR. Based on historical sources, interviews and secondary literature, we discuss legal, structural and social-metabolic mechanisms to exclude multifunctional forest practices, marginalizing peasants and shifting cultivators. These include, for example, the increasing enforcement of private ownership in forests or the shift from fuelwood to coal in Austria and restrictive land use planning or the expansion of private land concessions in Laos. By integrating political ecology and environmental history in forest transitions research we unravel shifting power relations connected to forest change.  相似文献   

17.
The dynamic forest ecosystem model ForSAFE was applied at 16 coniferous forest sites in Sweden to investigate past and future changes in soil chemistry following changes in atmospheric deposition. The simulation shows a considerable historical soil acidification. Acidification in the southwest, where deposition has been greatest, was more expressed in the deepest soil layers, while it was more evenly distributed through the soil profile in central Sweden, and was greater in the upper soil layers in the north. The simulation also shows that a slight recovery took place after the reduction in emissions, but was counteracted by the effect of harvesting. The simulation predicts an increase in the number of acidified sites in the future. The results also suggest that future acidification will be mainly due to the enhanced tree growth resulting from the chronic high deposition of nitrogen and the removal of soil base cations through harvesting.  相似文献   

18.
Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered.  相似文献   

19.
Felton  Adam  Löfroth  Therese  Angelstam  Per  Gustafsson  Lena  Hjältén  Joakim  Felton  Annika M.  Simonsson  Per  Dahlberg  Anders  Lindbladh  Matts  Svensson  Johan  Nilsson  Urban  Lodin  Isak  Hedwall  P. O.  Sténs  Anna  Lämås  Tomas  Brunet  Jörg  Kalén  Christer  Kriström  Bengt  Gemmel  Pelle  Ranius  Thomas 《Ambio》2020,49(5):1050-1064

The multi-scale approach to conserving forest biodiversity has been used in Sweden since the 1980s, a period defined by increased reserve area and conservation actions within production forests. However, two thousand forest-associated species remain on Sweden’s red-list, and Sweden’s 2020 goals for sustainable forests are not being met. We argue that ongoing changes in the production forest matrix require more consideration, and that multi-scale conservation must be adapted to, and integrated with, production forest development. To make this case, we summarize trends in habitat provision by Sweden’s protected and production forests, and the variety of ways silviculture can affect biodiversity. We discuss how different forestry trajectories affect the type and extent of conservation approaches needed to secure biodiversity, and suggest leverage points for aiding the adoption of diversified silviculture. Sweden’s long-term experience with multi-scale conservation and intensive forestry provides insights for other countries trying to conserve species within production landscapes.

  相似文献   

20.
Extensive changes in land cover during the 20th century are known to have had detrimental effects on biodiversity in rural landscapes, but the magnitude of change and their ecological effects are not well known on regional scales. We digitized historical maps from the beginning of the 20th century over a 1652 km2 study area in southeastern Sweden, comparing it to modern-day land cover with a focus on valuable habitat types. Semi-natural grassland cover decreased by over 96 % in the study area, being largely lost to afforestation and silviculture. Grasslands on finer soils were more likely to be converted into modern grassland or arable fields. However, in addition to remaining semi-natural grassland, today’s valuable deciduous forest and wetland habitats were mostly grazed grassland in 1900. An analysis of the landscape-level biodiversity revealed that plant species richness was generally more related to the modern landscape, with grazing management being a positive influence on species richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号