首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To assess the interaction between testosterone (T) treatment and acclimation to different salinities, seawater-acclimated gilthead sea bream (Sparus auratus) were implanted with slow-release coconut oil implants alone (control) or containing T (5 μg/g body mass). After 5 days, eight fish of control and T-treated groups were sampled. The same day, eight fish of each group were transferred to low salinity water (LSW, 6 ppt, hypoosmotic test), seawater (SW, 38 ppt, control test) and high salinity water (HSW, 55 ppt, hyperosmotic test) and sampled 9 days later. Gill Na+, K+-ATPase activity increased in HSW-acclimated fish with respect to SW- and LSW-acclimated fish in both control and T-treated groups. Kidney Na+, K+-ATPase activity was also enhanced in HSW-acclimated fish, but only in T-treated group. From a metabolic point of view, most of the changes observed can be attributed to the action of salinity and T treatment alone, since few interactions between T treatment and osmotic acclimation to different salinities were observed. Those interactions included in treated fish: in the liver, decreased capacity in using glucose in fish acclimated to extreme salinities; in the gills, decreased capacity in using amino acids in HSW; in the kidneys increased capacity in using amino acids in extreme salinities; and in the brain, decreased glycogen and acetoacetate levels of fish in LSW.  相似文献   

2.
L. Hammer 《Marine Biology》1968,1(3):185-190
Marine plants — phanerogams as well as algae — show a proportional decrease of photosynthetic rate, when the salinity is lowered by dilution with distilled water. Using natural water instead of distilled water, it is absolutely indispensable to take into consideration the carbon supply. Normally, the photosynthetic rate decreases in freshwater with low alcalinity, in comparison to marine water. On the other hand, using water with high contents of bicarbonates, assimilation rate is higher than in marine water. These results show that salinity may indirectly affect photosynthesis due to differences in carbon supply. The direct influence is caused by exosmosis in hypotonic media and is irreversible. — The author cannot but agree with the statement by Ogata and Matsui (1965): “It may generally be said that the changes in salinity, osmotic pressure, pH, and also carbon dioxide supply, particularly in natural sea-water, are rather inseparably associated.”  相似文献   

3.
J.-C. Chen  J.-L. Lin 《Marine Biology》1994,120(1):115-121
Hemolymph osmolality and tissue water of laboratory-reared Penaeus chinensis Osbeck juveniles (0.83 to 1.86 g) were investigated, after they had been transferred individually from 10, 20, 30 and 40 ppt to 10, 20, 30 and 40 ppt for 0.25, 0.5, 1, 2, 5 and 10 d, respectively. Hemolymph osmolality and tissue water of shrimp were stablilized within 5 d after they had been subjected to a sudden change in salinity from each salinity level. Hemolymph osmolality had a positively linear relationship with medium osmolality. Tissue water decreased with increased medium osmolality, and decreased with increased hemolymph osmolality. The mean (SD) isosmotic point was 703 (8) mOsm kg–1 which is equivalent to 24.2 (1.0) ppt. P. chinensis juveniles exhibited hyperosmotic regulation in salinities below isosmotic value, and hypoosmotic regulation in those above. The shrimp originally adapted to high salinity levels (30 and 40 ppt) showed less fluctuation of tissue water than those adapted to low salinity levels (10 and 20 ppt) when they were subjected to a sudden change in salinity.  相似文献   

4.
Egg mortality of Baltic cod (Gadus morhua L.), collected off northern Gotland, Sweden, in 1990, was studied in four different salinities — 10 and 15 ppt (salinity of the principal spawning areas of Baltic cod) and 5 and 7 ppt (salinity above the halocline) — in laboratory experiments. Mortality was high during the first 4 d of development, but after gastrulation mortality was low in all salinities tested, except for 5 ppt, in which mortality increased slightly before hatching. Mortality during hatching varied considerably with salinity. No hatching occurred in 5 ppt salinity, and only a few larvae survived in 7 ppt salinity; in contrast, mortality during hatching was comparatively low in salinities of 10 and 15 ppt.  相似文献   

5.
We tested the effects of osmotic stress on survival, developmental rate, and level of HSPs on American horseshoe crab (Limulus polyphemus) embryos. Animals were maintained in the laboratory at an ambient salinity of 20 ppt and then exposed to 4-h osmotic shocks at salinities of 10, 30, 40, 50, and 60 ppt, with a control group at 20 ppt. Horseshoe crab embryos had 100% developmental success (defined as individuals reaching the first instar or trilobite larval stage) at all salinities. However, osmotic stresses, especially hyperosmotic conditions, slowed the rate of development. Embryos subjected to osmotic stress showed higher levels of HSP70 and HSP90 than control animals kept at a salinity of 20 ppt. HSPs are of value to horseshoe crab embryos in surviving the fluctuating salinities that are typical of estuarine beach habitats.  相似文献   

6.
The effects of salinity and acclimation time on the net photosynthetic responses of 3 estuarine red algae, Bostrychia radicans Mont., Caloglossa leprieurii (Mont.) J. Ag., and Polysiphonia subtilissima Mont., from Great Bay Estuary, New Jersey, USA, were investigated. The algae were cultured in a series of synthetic seawater media of 5, 15, 25 and 35% S for acclimation periods of 0, 2, 4, 8, and 16 days prior to determining their photosynthetic responses. All species were euryhaline, and demonstrated photosynthesis at all the above salinities. B. radicans, which was more common towards the mouth of the estuary, had a maximum photosynthetic rate at 25% S, whilst C. leprieurii and P. subtilissima, which were more common towards the head of the estuary, had photosynthetic maxima between 15 and 25%, and at 15%, respectively. The curves relating net photosynthesis to salinity were usually similar within a species at different acclimation periods, although statistically significant differences were sometimes noted. The acclimation periods producing maximal net photosynthesis were 0, 2 and 4 days for B. radicans, and 4 days for C. leprieurii, whilst for P. subtilissima there was no significant difference in response for any acclimation period over the range of salinities studied.  相似文献   

7.
Changes in salinity affect the metabolic rate of the sympagic amphipodOnisimus glacialis collected from the Barents Sea in 1986 and 1988. When transferred from 35 to 5 ppt S, oxygen consumption and ammonia excretion both increase three-fold during the first 5 h of exposure, and they remain high throughout the rest of the experimental period (26 h). During 24-h acclimation to various salinities (5 to 45 ppt), the amphipods exhibit a respiratory and excretory response to hyper- and hypoosmotic stress; however, a rather constant O:N atomic ratio (around 15) was obtained at the experimental salinities, indicating protein/lipids as metabolic substrate. Both rates of oxygen consumption and ammonia excretion increased with an increasing osmotic difference (0 to 650 mOsm) between the haemolymph and the environmental medium, indicating higher energy requirements for osmotic and ionic regulation at low salinities. In amphipods abruptly transferred from 35 to 5 ppt, a minor decrease of the haemolymph sodium concentrations together with an increased ammonia excretion output indicate a counter-ion regulation of NH 4 + and Na+ during hyposmotic stress.  相似文献   

8.
We studied the early life history of diadromous gobies in Dominica, West Indies, from May 1989 to May 1991, emphasising Sicydium punctatum Perugia. The transition of newly hatched larvae from upriver nest sites to the sea was studied in laboratory experiments. Newly hatched larvae are negatively buoyant but avoid settling to the bottom by active swimming during drift to the sea. Laboratory experiments evaluated salinity preferences and effects on swimming endurance. Larvae in haloclines actively selected low to intermediate salinities. Initially (0 to 5-d post-hatch), larvae minimized exposure to salinities >10 ppt, but later (5 to 8-d) occupied increasingly saline water. Larvae in no-choice freshwater or seawater treatments ceased activity at 4 to 5 d, but in haloclines larvae remained active up to 8 d post-hatch. Salinities <10 ppt are important for early survival of sicydiine gobies. Implications for larval survival and transport are discussed.  相似文献   

9.
《Ecological modelling》2006,190(1-2):15-40
Models aiming to simulate growth under salinity stress and varied climatic conditions must rely on accurate methods for predicting transpiration and photosynthesis. Traditionally, models have described salinity stress as a decrease in water uptake caused by a low osmotic potential in the soil; however, many physiological studies suggest that reduced plant growth observed under saline conditions could be caused by increased respiration. Explicit calculation of photosynthesis and respiration enables both approaches to be tested and compared in a simulation model. We used an integrated ecosystems model (the CoupModel) to simulate photosynthesis and transpiration over a range of salinities. The model was calibrated and tested on two sets of data (two different seasons) on saline water, drip-irrigated tomato from lysimeter trials in the Arava Valley, Israel. Yields for the spring season were significantly lower than during the first autumn season even though transpiration was higher. As a result, water use efficiency differed by a factor of two between seasons. The model was successful in capturing this large variation, which was caused primarily by high levels of radiation and vapour pressure deficits during spring. For autumn the salinity stress approach in which water uptake was reduced performed well, whereas during spring the increased respiration approach correlated better with measurements. The concept of water use efficiency was found to be a useful tool for interpreting the accumulated effects of climatic and environmental conditions on particular agricultural systems. An attempt to simulate tomatoes grown in production beds indicated that the model set-up was also able to describe conventional cropping systems.  相似文献   

10.
Juvenile weakfish, Cynoscion regalis (Bloch and Schneider, 1801), exhibit significant spatial diffrences in growth rate and condition factor among estuarine nursery zones in Delaware Bay. The potential influence of temperature and salinity on the suitability of estuarine nursery areas for juvenile weakfish was investigated in laboratory experiments by measuring ad libitum feeding rate, growth rate and gross growth efficiency of juveniles collected in Delaware Bay in 1990 (40 to 50 mm standard length; 1.4 to 2.1 g) in 12 temperature/salinity treatments (temperatures: 20, 24, 28°C; salinities: 5, 12, 19, 26 ppt) representing conditions encountered in different estuarine zones during spring/summer. Feeding rates (FR) increased significantly with temperature at all salinities, ranging from 10 to 15% body wt d-1 at 20°C to 33–39% body wt d-1 at 28°C. Specific growth rates (SGR) ranged from 1.4 to 9.4% body wt d-1 (0.3 to 1.5 mm d-1) and gross growth efficiencies (K 1) varied from 13.6 to 26.4% across temperature/salinity combinations. Based on nonlinear multiple regression models, predicted optimal temperatures for SGR and K 1 were 29 and 27°C, respectively. Salinity effects on SGR and K 1 were significant at 24 and 28°C where predicted optimal salinity was 20 ppt. At these warmer temperatures, SGR and K 1 were significantly lower at 5 than at 19 ppt despite higher FR at 5 ppt. Therefore, maximum growth rate and growth efficiency occurred under conditions characteristic of mesohaline nurseries. This finding is consistent with spatial patterns of growth in Delaware Bay, implying that physicochemical gradients influence the value of particular estuarine zones as nurseries for juvenile weakfish by affecting the energetics of feeding and growth. Laboratory results indicate a seasonal shift in the location of physiologically optimal nurseries within estuaries. During late spring/early summer, warmer temperatures in oligohaline areas permit higher feeding rate and faster growth compared to mesohaline areas. By mid-late summer, spatial temperature gradients diminish and mesohaline areas provide more suitable physicochemical conditions for growth rate and growth efficiency whereas oligohaline areas become energetically stressful. Substantial mortality occurred at 5 ppt and 28°C, providing additional evidence that oligohaline conditions are stressful during late summer. Furthermore, juveniles provided a choice among salinities in laboratory trials preferred those salinities which promoted higher growth rates. The extensive use of oligohaline nurseries by juvenile weakfish despite the potential for reduced growth rate and growth efficiency suggests this estuarine zone may provide a substantial refuge from predation.  相似文献   

11.
Zostera marina L. was studied at the Izembek Lagoon, Alaska Peninsula. Two morphologically different forms, tidepool and subtidal, can be distinguished. Both show a high tolerance to different salinities and temperatures. The plasmatic resistance was found in a range of distilled H2O up to 3.0 seawater (24 h) and between-6° and 34°C (12 h). Within these resistance limits, the photosynthesis, which has its maximum in normal (1.0) seawater, decreases nearly to zero not only in distilled H2O but even in 2.0 seawater, and increases with the temperature in the tidepool form up to 35°C, but in the subtidal form up to 30°C only. At higher temperatures photosynthesis declines sharply in both forms. Respiration has its minimum in distilled H2O and at 0°C and increases with increasing salinity and temperature.Dedicated to Prof. Dr. Dr. h. c. mult. K. Mothes, Halle, Germany (DDR) on the occasion of his 70th birthday.  相似文献   

12.
Temperature and salinity are important environmental factors affecting the normal functioning of marine animals, particularly animals such as sea urchins living in shallow waters and tide pools. Here, we evaluated the effect of different combinations of temperature and salinity on early embryos of the endemic New Zealand sea urchin Evechinus chloroticus. Animals were collected at Matheson’s Bay (36º18′17′′S; 174º47′51′′E) in north-eastern New Zealand in February 2013. Embryos were exposed to five salinities (29, 31, 34, 35 and 37 ppt) and two temperatures (18 and 21 °C) during the first 24 h of development. Low salinity (29 ppt) affected all parameters (fertilization, development rate, gastrulation and normal development), with ca. 50 % of embryos surviving at 29 ppt, whereas seawater temperature only affected development rate and gastrulation. An increase in temperature from 18 to 21 °C minimized the negative effect of low salinity (≤31 ppt) on development rate and gastrulation of E. chloroticus. Overall, the results of this study suggest that early embryos of E. chloroticus have developmental plasticity to withstand reductions in salinity up to 29 ppt; however, it is still unknown whether the surviving embryos will be able to complete larval development at low salinities, particularly whether the embryos and larvae are carried into extreme environments such as estuaries where salinity is even lower. Multistressor studies are very important for climate change research as multiple environmental factors will act together in the wild, having major consequences for development and recruitment of marine invertebrates.  相似文献   

13.
The rotifer Brachionus plicatilis is euryhaline (growing between 2 and 97 ppt) and has previously been considered an osmoconformer. We suggest that B. plicatilis is an osmoregulator, exhibiting a pattern of Na+/K+ ATPase activity in response to salinity consistent with that of other osmoregulating euryhaline invertebrates. To examine salinity tolerance, growth rates between 5 and 60 ppt were determined. The activity of Na+/K+ ATPase was examined, over the same range of salinities, by measuring ATPase activity in rotifer homogenates in the presence and absence of a Na+/K+ ATPase inhibitor. Maximum specific growth rate (0.95 day–1) occurred at 16 ppt, highest mean amictic eggs per female (1.41) occurred at 20 ppt, and both parameters decreased rapidly as salinity increased. Egg development time was constant with salinity at 0.92 days. The activity of Na+/K+ ATPase per milligram protein increased from 3.9 µmol h–1 at 5 ppt to 6.8 µmol h–1 at 50 ppt and accounted for 15 and 30% of total ATPase activity, respectively. We suggest that these observations are consistent with increasing stress at high salinities and the occurrence of a hypo-osmoregulatory response. Given the high ATP consumption of Na+/K+ ATPase at high salinities, it is possible that a proportion of the corresponding decreases in growth rate and egg production are a direct cost of regulation.Communicated by J.P. Thorpe, Port Erin  相似文献   

14.
Predatory efficiency of Diplonychus rusticus (Fabricius) was recorded at different prey density with different salinity ranges. When the salinity level (ppt) was increased, the predation rate of the bug decreased. Fifth nymphal stage showed higher predation in the 2, 4 and 6 ppt levels of salinityin both 1 hr and 24 hr period of exposure at prey densities 50, 100, 150 and 200. At prey density 150, adult bugs killed more prey in the 2 ppt level of salinity in both lhr and 24 hr treatments.  相似文献   

15.
Notwithstanding the great importance of the salinity factor in the marine environment, the knowledge of influence of salinity on growth of marine benthic algae is very limited. Rate of growth (mg, cm2) and O2 output of the intertidal red algaPorphyra umbilicalis from Helgoland, North Sea, were measured during a 3 week culture in 3 different salinities (1/2-, 1- and 2-concentrated artificial sea water; Table 1). Under hypertonic conditions (2-concentrated sea water) growth rate and photosynthesis rate were depressed, compared to values obtained in normal concentrated sea water. Under hypotonic conditions (1/2-concentrated sea water), growth expressed in mg was the same as in normal concentrated sea water, or higher when expressed in cm3. Rate of O2 output was almost unaltered in one of the two experiments, lowered in the other. Cell size increased at higher salinity, while swelling of cell walls and intercellular substances as well as the intensity of colouring decreased with salinity. The discrepancies between growth and photosynthesis under hypotonic conditions cannot be completely explained by the observed influences of salinity on morphological structures (cell size, swelling of cell substances). Detailed studies on the time course of photosynthesis and respiration rates, and preparation of a metabolic balance for the algae are necessary.  相似文献   

16.
Balanus subalbidus (Henry) has the most oligohaline distribution of three congeneric barnacles in Chesapeake Bay and tolerates prolonged exposure to fresh water. We studied larval settlement (i.e., permanent attachment and metamorphosis) of B. subaldius in the laboratory, over a 3 yr period, May 1989 to March 1992, under the following conditions: (1) across an array of salinities at 25°C in the presence and absence of settlement factor consisting of adult B. subalbidus extract; (2) in the presence of conspecific or congeneric settlement factors; and (3) cyprids which were, and were not, induced to delay metamorphosis were compared in their capacities to settle in a range of salinities. Discrepancies between salinity profiles of larval settlement in the laboratory and adult oligohaline distribution in the estuary were striking, and there was a significant interaction between salinity and settlement factor. Averaging results of four different batches of larvae, although peak settlement (87±9%) of B. subalbidus occurred at 2 ppt salinity in the presence of adult cue, substantial settlement also occurred at higher salinities: >70% at 5, 10 and 15 ppt; and 47% at 20 and 25 ppt. In addition, settlement in the absence of settlement factor was relatively high (>50%) and peaked at mid-salinity ranges (e.g. 56±10% at 15 ppt). Variation observed in settlement among larval batches reflected detailed differences in settlement between adjacent test salinities. No difference in settlement occurred between replicate aliquots of cyprids within a batch. Cyprids of B. subalbidus settled most abundantly in the presence of settlement factor extracted from conspecifics, followed in decreasing order by settlement factor extracted from B. improvisus and B. eburneus. Delay of metamorphosis produced by keeping B. subalbidus cyprids for 8 d at 5°C resulted in a decreased level of settlement, but settlement frequency patterns of delayed and non-delayed cyprids were indistinguishable relative to salinity. These results indicate that the oligohaline distribution of adult B. subalbidus is probably not determined by larval behavior at settlement. We suggest that pre-settlement behavior, resulting in larval retention in low saline waters, could be an important factor in determining distribution of this species.  相似文献   

17.
Several species of phytoplankton were grown in unialgal, but not bacteria-free, cultures. These clones when exposed to varying salinities, from 5 to 35, showed a marked increase in their rates of photosynthesis at low salinities. The optimum requirement of salinity, however, varied in different species. Observations on the relative abundance of phytoplankton in an estuary, where the salinity changes were fairly large, confirmed that, within limits, waters with low salinities support a greater abundance of phytoplankton in nature. The wide adaptability of phytoplankton to changes in salinity corresponds to the conditions brought about by the monsoon system along the southwest coast of India, where large dilutions are associated with the enrichment of water with nutrients.  相似文献   

18.
Physiological responses of Nodularia harveyana to osmotic stress   总被引:1,自引:0,他引:1  
The effects of salinity stress on biomass yield, photosynthetic O2 evolution and nitrogenase activity were investigated using axenic cultures of Nodularia harveyana (Thwaites) Thuret originally isolated from a salt marsh at Gibraltar Point, Lincolnshire, UK in 1971 and studied in this laboratory in 1983. Biomass yields, as chlorophyll a per culture, were highest in the 0 to 100% seawater (0 to 35 sea salt) range with negligible growth in 200% seawater; growth on NH 4 + was greater than on N2 and NO 3 - , which did not differ significantly from each other. In short-term experiments, photosynthetic O2 evolution remained high at salinities up to 150% seawater (52.5 sea salt); nitrogenase activity remained high at salinities up to 100% seawater (35 sea salt). The major internal low molecular weight carbohydrate which accumulated in response to increased salinity was sucrose, the levels of which fluctuated markedly and rapidly in response to salinity change.  相似文献   

19.
Gracilaria verrucosa (Hudson) Papenfuss exposed to nutrient enriched media (0.1 mM PO4; 1.0 mM NH 4 + ) by pulse feeding 2 h every third day for a period of 5 wk at 20°C and 25–30 salinity showed significantly higher rates of photosynthesis regardless of photon flux density correlated with increased pigment levels. Algae in nonenriched media showed significantly higher levels of soluble carbohydrates and decreased levels of phycoerythrin and chlorophyll a. Photosynthetic and respiratory responses to temperature 15°, 25°, 30°C and salinity (15, 25, 30 S) combinations indicate broad tolerances by both nutrient enriched and non-nutrient enriched algae. Photosynthetic and respiratory rates were highest at the high temperatures. Pulse-fed algae had significantly higher photosynthetic rates than non-nutrient enriched plants at all temperature and salinity combinations. Non-nutrient enriched algae had significantly higher respiratory rates than nutrient enriched algae at only 30°C and 15. The respiratory rates of both nutrient enriched and non-nutrient algae decreased under combinations of higher temperatures and salinities. G. verrucosa, grown without nutrients, has lower tolerances to environmental stresses.  相似文献   

20.
The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of amphibian populations worldwide, but management options are limited. Recent studies show that sodium chloride (NaCl) has fungicidal properties that reduce the mortality rates of infected hosts in captivity. We investigated whether similar results can be obtained by adding salt to water bodies in the field. We increased the salinity of 8 water bodies to 2 or 4 ppt and left an additional 4 water bodies with close to 0 ppt and monitored salinity for 18 months. Captively bred tadpoles of green and golden bell frog (Litoria aurea) were released into each water body and their development, levels of B. dendrobatidis infection, and survival were monitored at 1, 4, and 12 months. The effect of salt on the abundance of nontarget organisms was also investigated in before and after style analyses. Salinities remained constant over time with little intervention. Hosts in water bodies with 4 ppt salt had a significantly lower prevalence of chytrid infection and higher survival, following metamorphosis, than hosts in 0 ppt salt. Tadpoles in the 4 ppt group were smaller in length after 1 month in the release site than those in the 0 and 2 ppt groups, but after metamorphosis body size in all water bodies was similar . In water bodies with 4 ppt salt, the abundance of dwarf tree frogs (Litoria fallax), dragonfly larvae, and damselfly larvae was lower than in water bodies with 0 and 2 ppt salt, which could have knock‐on effects for community structure. Based on our results, salt may be an effective field‐based B. dendrobatidis mitigation tool for lentic amphibians that could contribute to the conservation of numerous susceptible species. However, as in all conservation efforts, these benefits need to be weighed against negative effects on both target and nontarget organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号