首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于太湖夏季9个水功能分区的水质监测结果,综合考虑生物因子(叶绿素a浓度)、营养盐因子(总氮、总磷)、理化因子(水体透明度、高锰酸盐指数)作为评价指标,运用印第安人茅舍型突变模型对太湖的富营养化程度进行定量判别和分析。结果表明:太湖营养化程度时空分布不均。6月份,竺山湖的综合突变隶属度值为0.363;7月份,五里湖、梅梁湖、竺山湖及西部沿岸区的综合突变隶属度值分别为0.328、0.371、0.344及0.337;8月份,梅梁湖和西部沿岸区的综合突变隶属度值分别为0.373和0.362。因此太湖西部、北部的富营养化程度较高,处于中度富营养化状态。  相似文献   

2.
基于2011~2019年鄱阳湖17个国控监测点位的水质数据,采用综合污染指数、综合营养状态指数和蔚蓝城市水质指数法分析了各湖区的水质时空演变特征与趋势,利用主成分分析法对湖区的主要影响因素进行探索,综合评价"十二五"和"十三五"时期鄱阳湖的水质变化及其演变规律.结果表明:①在时间上,2011~2015年鄱阳湖水质呈下降趋势;2016~2019年鄱阳湖水质总体呈向好趋势但富营化现象依然存在;各年水质状况具有明显的水期变化特征且波动明显,主要表现为:丰水期>平水期>枯水期.②在空间上,2011~2015年各湖区的综合污染指数均呈上升趋势,蔚蓝城市水质指数等级以一般为主;2016~2019年各湖区整体呈向好趋势,东北湖湖区水质改善明显;2011~2019年主湖湖区水质状况波动最为显著,南湖湖区相较于其他湖区水质污染情况最为严重.③从影响因素来看,2011~2019年鄱阳湖湖区主要超标指标为总磷(TP)、总氮(TN)、氨氮(NH4+-N)和高锰酸盐指数;"十二五"期间鄱阳湖受到化工企业及农业面源的污染影响较为严重,"十三五"期间城镇居民生活对水质的影响作用呈逐年上升趋势.  相似文献   

3.
"零点行动"前后太湖水质比较分析   总被引:2,自引:0,他引:2  
孙卫红 《环境科技》2003,16(1):35-36
通过“零点行动”前后的1998年、1999年太湖湖体总氮,总磷,叶绿素浓度分布与比较,说明太湖仍然处于富营养状态,“零点行动”并没有从根据上改善太湖水质。  相似文献   

4.
根据《地表水环境质量评价办法》中规定的方法,对沈阳辉山水库进行了水质和富营养化状态评价,并对污染源和水质污染特性进行了分析。结果显示:水库水质类别为劣Ⅴ类,水质状况为重度污染。富营养化综合营养状态指数为34.44,辉山水库水质为中营养化水平,水库没有藻类水华的产生。水库主要污染指标为总磷、总氮和悬浮物,分别超出国家地表水Ⅲ类标准的14.2倍、5.85倍和2.72倍。整个库区水质变化不均匀,水质变化受库区沿岸污染物排放影响较大,辉山明渠上游和某工厂暗渠排污口输入是水库主要污染源,库区周围动迁后的荒地和蚯蚓养殖,是辉山水库地面径流和农业污染污染源。  相似文献   

5.
基于灰色聚类法和模糊综合法的水质评价   总被引:5,自引:1,他引:4  
根据2008年9月从昆承湖布设的12个监测点采集的样本中水质指标(叶绿素a、总磷、总氮和高锰酸盐指数)的浓度值,采用了灰色聚类法及模糊综合评价法对样本水质进行富营养化评价.灰色聚类法先建立白化权函数并无量纲化灰类来消除各水质指标浓度值量级差异的影响,然后根据水质指标浓度阈值的大小赋以其权值,综合水质指标对各级富营养状态...  相似文献   

6.
根据2003—2012年水质逐月监测数据和水文气象资料,对新安江水库水质和营养状态变化进行分析,探讨了新安江水库水质演变规律及其与水文气象因子之间的关系.结果表明,近10年间新安江水库总磷、总氮、生化需氧量和p H存在显著的年际变化.叶绿素a浓度上升趋势明显.综合营养状态指数显示水库营养状态由贫营养逐步向中营养转变.营养盐和叶绿素a浓度存在显著空间差异性,河流区高于过渡区和湖泊区,且丰水期高于枯水期,说明水库营养盐主要来自面源污染.年均气温及水温呈下降趋势,降雨量、出入库流量则呈上升趋势,相关分析表明水文气象因子对水质指标影响较大.  相似文献   

7.
“十一五”期间滴水湖富营养化评价   总被引:2,自引:0,他引:2  
采用综合营养状态指数TLI(Σ)对"十一五"期间滴水湖富营养化状态、时空分布特征及变化趋势进行了评价及分析。结果表明:滴水湖水质整体处于轻度富营养状态,石皮泐港进水口的综合营养状态指数大于湖区各点位;每年4月-5月和8月-10月两个时间段,滴水湖综合营养状态指数较高;"十一五"期间,滴水湖的富营养化状态呈现不显著下降的趋势。建议加强对水体叶绿素a浓度等生物指标的监测,以更全面地评价滴水湖的营养状态。  相似文献   

8.
为探究大溪水库水质时空变化规律和影响因素,利用2011—2015年大溪水库常规水质调查数据,综合分析了大溪水库主要污染物浓度、水质等级和富营养化指数的时空变化特征,并对其影响因素进行了解析.结果表明:总氮、总磷、叶绿素a和高锰酸盐指数具有明显的季节性差异(p0.05),总氮、总磷浓度表现出与降水季节性变化的一致性,在夏季最高;Chl-a浓度在夏、秋季高,冬、春季低,与总磷呈现显著正相关(p0.05),与氮磷比呈显著负相关(p0.05);COD_(Mn)呈现夏、秋季高于冬、春季的季节变化规律;在空间上,按空间分布特征将大溪水库分为3个区域:河口区Z1、湖心区Z2和大坝区Z3,分区统计结果显示,Z1区水质最差,而Z2和Z3区水质较好.2011—2015年的水库水质等级评价表明,全库83%的区域达到了地表水III类水质要求,仅Z1区域范围内处于地表IV类水限定范围内,约占水库面积的17%;2011—2015年间全库区水体富营养化指数(TLI)低于50,属于中营养状态.大溪水库水质的季节性波动受降水影响显著,以地表径流和入库河流携带输入外源污染为主要污染源,调整当地土地利用结构,减少农业施肥量与旅游业污水排放,削减入库水体的污染物浓度,是保护大溪水库的关键.  相似文献   

9.
武汉市沙湖港富营养化状况分析与评价   总被引:2,自引:2,他引:0  
根据2007年6月~2008年6月对武汉市沙湖港的水质监测,探讨了沙湖港水质变化特征和富营养化水平。结果表明:沙湖港DO一般在0~2.5mg/L范围内,为缺氧性环境。除硝酸盐氮未超标,氨氮、总氮和总磷均超标。根据地表水环境质量标准(GB3838-2002)中Ⅳ类标准,在各监测点的超标率,总磷均为100%,氨氮分别为86%、95%、100%、100%,总氮分别为90%、95%、95%、95%。总磷平均浓度大于0.660mg/L,为极富营养状态;总氮平均浓度大于4.60mg/L,为极富营养状态。丰水期流量大,氨氮、硝酸盐氮、总磷浓度低于枯水期和平水期。汇入沙湖港的东湖港对氨氮、总磷贡献较大,氨氮浓度偏高,最高达18.30mg/L。总氮是主要污染物,污染指数范围9.49~1.39。氮是沙湖港水体富营养化的限制因素,建议重点控制氮的含量。  相似文献   

10.
太湖氮、磷自净能力的实验与模型模拟   总被引:4,自引:2,他引:2  
韩涛  翟淑华  胡维平  张红举  李钦钦 《环境科学》2013,34(10):3862-3871
于2011年9月对太湖竺山湖开展了1次湖区实验,根据质量平衡原理,通过进出竺山湖湖区河道以及竺山湖湾心、湾口水量、水质测量,弄清了竺山湖湖区营养物质进出以及消纳规律,从而为完善水量-水质模型参数提供依据,也为进一步研究太湖水体自净能力提供了基础资料.采用EcoTaihu模型模拟了太湖营养物质的循环以及自净能力,根据竺山湖湖区实测结果对模型进行了验证,实验得到竺山湖湖区总氮年自净能力为1 979 t,总磷年自净能力为119 t,通过EcoTaihu模型计算得到竺山湖总氮年自净能力为1 911 t,总磷年自净能力为116 t,实测数据和模型较为吻合.模型计算结果表明,2006、2008、2010年太湖氮元素自净能力分别为4.00、4.27、4.11万t.2006、2008、2010年太湖磷元素自净能力分别为1 566、1 798、1 712 t.  相似文献   

11.
武汉水果湖水质特征变化研究   总被引:1,自引:1,他引:0  
为探索城市湖泊受人类活动影响水质变化规律,以武汉水果湖为例,于2012年5月至2013年4月选取水果湖有代表性的6个采样点,对总磷、总氮、COD水质指标进行监测,采用综合污染指数法对水质现状进行评价,并分析了其变化与气象因素的关系。结果表明:水果湖总磷浓度在8月份较高,最高达到2 mg/L,总磷变化与同期月平均气温和日照在整体变化趋势上较为一致;总氮浓度在4月和1月份最高达3 mg/L,全年呈波浪起伏状,且总氮含量与同期风速有一定的相关关系;COD浓度在5~7月最高达85 mg/L。整体各月水质情况4~8月水质为劣Ⅴ类,1月和11月Ⅴ类,其余月份为Ⅳ类。从空间情况看与东湖连通之处水质相对较好,为Ⅴ类,与沙湖连通处为劣Ⅴ类。  相似文献   

12.
东江源流域不同空间尺度景观格局对水质影响分析   总被引:2,自引:1,他引:1  
以东江源流域为研究区,基于水质监测和土地利用类型数据,综合运用景观指数法、相关性分析和冗余分析,研究了2017~2019年水质空间变化特征,揭示了东江源流域景观格局与水质的响应关系.结果表明:①东江源流域水质整体偏好,但寻乌水总氮污染仍旧严重,截至2019年,全部监测点总氮年均浓度都超过Ⅲ类水质标准限值.②景观水平上,水质与景观形状指数、斑块个数和香农多样性指数呈正相关,与最大斑块指数和聚集度指数呈负相关.类型水平上,建设用地是东江源流域总氮和总磷输出的主要来源;林地景观形状指数和斑块个数与氨氮呈正相关,林地斑块个数与总磷呈正相关,林地最大斑块指数和聚集度指数与总磷呈负相关;草地斑块个数与总磷呈正相关,草地聚集度指数与总磷呈负相关.③重视监测点2000 m缓冲区范围内景观格局的优化,增强林草地连通性,合理配置城镇污水集中处理设施,强化废弃矿区治理,加强耕地集约化处理,在耕地集中分布区域增强其岸边防护林建设,有助于提高东江源流域水生态功能.  相似文献   

13.
重庆市巴南区花溪河富营养化水平评价   总被引:1,自引:0,他引:1       下载免费PDF全文
周富春  胡霞 《环境工程》2017,35(9):141-144
以2009—2015年的花溪河水质监测数据为依据,用营养状态质量指数法评价巴南区花溪河的富营养化水平。结果表明:按营养水平划分依据规定,南湖断面水质较好且其富营养化水平为贫营养化水平,花溪河中下游监测断面石龙桥和敬老院都为富营养水平,石龙桥水质最差,主要污染因子为氨氮、总氮、总磷。石龙桥与敬老院断面间,丰水期、枯水期、平水期的营养质量指数值(NQI)都大于3,营养等级均为Ⅲ级。  相似文献   

14.
洞庭湖水质及富营养状态评价   总被引:4,自引:0,他引:4  
根据2009年洞庭湖水质监测数据,参照GB3838-2002中Ⅲ类水质标准,采用单因子评价法、综合污染指数法和综合营养指数法对洞庭湖水质及富营养状况进行评价。单因子法结果表明,在总氮、总磷不参与评价的情况下,2009年洞庭湖湖体水质整体为优;湖水中总氮、总磷污染严重,监测断面总磷浓度均劣于Ⅲ类水质要求。综合营养指数评价结果表明,洞庭湖水质处于中营养和轻度富营养水平;综合污染指数评价进一步表明,洞庭湖湖体水质劣于入湖口水质,入湖口水质劣于出湖口水质的分布特征。  相似文献   

15.
为了解近10年来阳宗海的水质变化特征及砷污染事件发生后砷的治理成效,对2012—2021年的水质监测数据进行了研究,结果发现:化学需氧量、总磷、总氮、砷等主要监测指标削减明显,综合污染指数和综合营养状态指标呈显著下降趋势,说明近10年来阳宗海水质有所改善,特征污染物砷治理成效显著。  相似文献   

16.
以水质监测资料为基础,采用综合营养状态指数法(TLI法)和线性插值评分法(SCO法)2种模式,相互印证并综合评价2008.5—2011.6厦门石兜-坂头水库库区水体营养状态。应用Daniel的趋势检验,对评价时段内水库水体营养状态和水质参数(总氮、总磷以及氮磷浓度比)变化趋势进行分析。结果表明:2008年5月-2011年6月期间,石兜-坂头水库水体营养状态为中营养至轻-中度富营养;在此评价期内,总磷、总氮、氮磷比值趋势变化不显著;水体营养状态变化趋势也没有显著意义,始终在中营养至(轻-中度)富营养状态区间波动。水库周边环境及水质的监管措施能否及时到位是影响库区水体营养状态变化的关键。  相似文献   

17.
洱海营养状态一直保持在中营养程度,有逐渐过渡到初级富营养湖泊的趋势,总氮和有机物的迅速增加是洱海富营养化的主要原因。总氮含量以每年0.01 mg/L的速度迅速增长;高锰酸盐指数以每年0.02 mg/L的速度增长;总磷含量虽然变化不大,年平均浓度约0.02 mg/L,但仍为富营养化的限制指标。如果总磷含量开始增加,在总氮和有机物含量高值背景下,富营养化将随总磷含量的增大迅速上升,水质恶化不可挽回。  相似文献   

18.
根据2003~2010年的黄坛水库水质监测数据,选取有代表性的溶解氧、高锰酸盐指数、五日生化需氧量、总磷、氨氮和总氮6项指标,运用季节性Kendall检验法对黄坛水库水质变化趋势进行分析,结果表明:黄坛水库水质的高锰酸盐指数呈高度显著下降趋势,五日生化需氧量、总磷和氨氮呈显著下降趋势,溶解氧和总氮无明显变化趋势。  相似文献   

19.
深圳荔枝湖富营养化综合治理工程效果研究   总被引:1,自引:0,他引:1  
分析和比较了深圳荔枝湖综合治理工程运行9个月内不同湖区水体的叶绿素a、总磷、总氮及透明度的变化,探讨了综合治理工程对城市富营养化湖泊荔枝湖的水质改善情况.结果表明,治理工程运行期间全湖湖水营养水平控制在较低水平(总磷<0.1 mg·L-1,总氮<1.5 mg·L-1),四湖区藻类水平北湖区(16.77μg·L-1)和东湖区(21.45μg·L-1)较低,南湖区(35.83μg·L-1)、西湖区(32.69μg·L-1)相对较高,全湖水体透明度提高(全湖平均>0.5 m);治理工程将湖水水质由劣Ⅴ类改善为Ⅳ类,由重富营养化水平改善为富营养化水平.  相似文献   

20.
基于GIS的太湖水质及营养状态分区评价研究   总被引:1,自引:0,他引:1  
本文以国家环保部太湖流域环境监测网中心站1994-2000年的水质监测的监测数据为基础,运用地理信息系统(GIs)分别对太湖进行了单因素水质评价分区和多因素富营养化综合评价与分区,结果显示太湖水质基本在Ⅳ类以上,污染较严重,太湖已全面进入富营养化状态,重富营养化区位于太湖北部,面积为5.9%,主要分布在五里湖、梅梁湾,竺山湖;中度富营养化区在西部岸边带和中北部岸边带地区,面积为33.2%;轻度富营养化区从太湖湖心向东到东太湖,面积最大,占6 O.9%.整体上呈现自北而南、自西向东从重度富营养程度向轻度富营养程度扩散的趋势.研究结果为太湖综合治理提供了理论依据,并确定太湖的重点治理湖区应是太湖北部的五里湖、梅梁湾、竺山湖和贡湖湾的西北部,同时太湖富营养化治理应注重控源和生态修复相结合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号