首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial and seasonal changes in the distribution, composition, and concentrations of aliphatic hydrocarbons were investigated in sediment cores of Ubeji, Ifie, and Egbokodo Creeks in the Niger Delta, Nigeria. A total of 222 sediment core samples were collected during the wet season (August 2010) and the dry season (January 2011). The samples were dried, soxhlet extracted, fractionated and analyzed for aliphatic hydrocarbons by using a gas chromatograph with flame ionization detector (GC-FID). The concentrations of aliphatic hydrocarbons ranged from 37 to 286,894 μg/kg (wet season) and from 30 to 11,773 μg/kg (dry season). The concentrations of n-alkanes for a number of stations in this study are comparable to sites with high anthropogenic activities in the Niger Delta. The carbon preference index (CPI) and the pristane/phytane ratios showed that the major source of hydrocarbon pollution in the sediment core was from petrogenic origin.  相似文献   

2.
Aliphatic (ALI) and aromatic (ARO) hydrocarbon concentrations, composition and sources were evaluated in waters, sediments, soils and biota to assess the impact of approximately 1000 tons of oil spilled in Rio de la Plata coastal waters. Total ALI levels ranged from 0.4-262 microg/l in waters, 0.01-87 microg/g in sediments, 5-39 microg/g in bivalves, 12-323 microg/g in macrophytes to 948-5187 microg/g in soils. ARO varied from non-detected 10 microg/l, 0.01-1.3 mug/g, 1.0-16 microg/g, 0.5-6.9 microg/g to 22-67 microg/g, respectively. Offshore (1, 5, 15 km) waters and sediments were little affected and contained low background hydrocarbon levels reflecting an effective wind-driven transport of the slick to the coast. Six months after the spill, coastal waters, sediments, soils and biota still presented very high levels exceeding baseline concentrations by 1-3 orders of magnitude. UCM/resolved aliphatic ratio showed a clear trend of increasing decay: coastal waters (3.3) < macrophytes (6.7) < soils (9.4) < offshore sediments (13) < coastal sediments (17) < clams (52). All environmental compartments consistently indicated that the most impacted area was the central sector close to Magdalena city, specially low-energy stream embouchures and bays which acted as efficient oil traps. The evaluation of hydrocarbon composition by principal component analysis indicated the predominance of biogenic (algae, vascular plant cuticular waxes), background anthropic, pyrogenic and diagenetic hydrocarbons, offshore and in non-impacted coastal sites. In contrast, polluted stations presented petrogenic signatures characterized by the abundance of isoprenoids, low molecular weight n-alkanes and methylated aromatics in different stages of alteration. The petrogenic/biogenic ratio ( n-C23) and petrogenic/pyrogenic relationship (methylated/unsubstitued PAH) discriminated the samples according to the different degree of impact. The following paper present the results of the study of the progress of hydrocarbon disappearance in sediments and soils 13 and 42 months after the spill.  相似文献   

3.
Ye B  Zhang Z  Mao T 《Chemosphere》2007,68(1):140-149
Surficial sediment samples were collected from three rivers and six canals in Tianjin, China and analyzed for petroleum hydrocarbons. Chemical compositions and distribution patterns, as well as possible sources, of the petroleum hydrocarbons in the sediments were discussed. A series of petroleum hydrocarbons, including n-alkanes, isoprenoid alkanes, anteiso-alkanes, alkyl hexamethylene, hopanes and steranes were detected in the samples. The concentration of petroleum hydrocarbons varied in a wide range of 0.072-3.000 mg g(-1) in the surficial sediment of the rivers and canals in Tianjin. In the samples studied, the total concentrations of petroleum hydrocarbons in the sediment samples from North Canal, South Canal, and G3 segment of South Sewage Canal were higher than those from Hai River, South Sewage Canal and North Sewage Canal. Accumulation of pollutants in the sediments from reaches close to urban area was also observed. The PHC spatial variability is mostly affected by many local inputs. The main sources of petroleum hydrocarbons in the sediment in Tianjin were considered to be petroleum importation and biochemical degradation of organisms, including cuticular of aquatic vegetation and algae.  相似文献   

4.
The 6-month assessment of the oil spill impact in the Rio de la Plata described in the preceding paper [Colombo, J.C., Barreda, A., Bilos, C., Cappelletti, N., Demichelis, S., Lombardi, P., Migoya, M.C., Skorupka, C., Suarez, G., 2004. Oil spill in the Rio de la Plata estuary, Argentina: 1 - biogeochemical assessment of waters, sediments, soils and biota. Environmental Pollution] was followed by a 13- and 42-month campaigns to evaluate the progress of hydrocarbon decay. Average sediment hydrocarbon concentrations in each sampling include high variability (85-260%) due to contrasting site conditions, but reflect a significant overall decrease after 3 years of the spill: 17 +/- 27, 18 +/- 39 to 0.54 +/- 1.4 microg g(-1) for aliphatics; 0.44 +/- 0.49, 0.99 +/- 1.6 to 0.04 +/- 0.03 microg g(-1) for aromatics at 6, 13 and 42 months, respectively. Average soil hydrocarbon levels are 100-1000 times higher and less variable (61-169%) than sediment values, but display a clear attenuation: 3678 +/- 2369, 1880 +/- 1141 to 6.0 +/- 10 microg g(-1) for aliphatics and 38 +/- 26, 49 +/- 32 to 0.06 +/- 0.04 microg g(-1) for aromatics. Hydrocarbon concentrations modeled to first-order rate equations yield average rate constants of total loss (biotic+abiotic) twice as higher in soils (k = 0.18-0.19 month(-1)) relative to sediments (0.08-0.10 month(-1)). Individual aliphatic rate constants decrease with increasing molecular weight from 0.21 +/- 0.07 month(-1) for isoprenoids and n-C27, similar to hopanes (0.10 +/- 0.05 month(-1)). Aromatics disappearance rates were more homogeneous with higher values for methylated relative to unsubstituted species (0.17 +/- 0.05 vs. 0.12 +/- 0.05 months(-1)). Continued hydrocarbon inputs, either from biogenic (algal n-C15,17; vascular plant n-C27,29) or combustion related sources (fluoranthene and pyrene), appear to contribute to reduced disappearance rate. According to the different loss rates, hydrocarbons showed clear compositional changes from 6-13 to 42 months. Aliphatics disappearance rates and compositional changes support an essentially microbiologically-mediated recovery of coastal sediments to pre-spill conditions in a 3-4 year period. The lower rates and more subtle compositional changes deduced for aromatic components, suggest a stronger incidence of physical removal processes.  相似文献   

5.
Little effort has been devoted to differentiating between hydrocarbon losses through evaporation and biodegradation in treatability studies of fuel-contaminated Antarctic soils. When natural attenuation is being considered as a treatment option, it is important to be able to identify the mechanism of hydrocarbon loss and demonstrate that rates of degradation are sufficient to prevent off-site migration. Similarly, where complex thermally enhanced bioremediation schemes involve nutrient addition, water management, air stripping and active heating, it is important to appreciate the relative roles of these mechanisms for cost minimisation. Following the loss of hydrocarbons by documenting changes in total petroleum hydrocarbons offers little insight into the relative contribution of evaporation and biodegradation. We present a methodology here that allows identification and quantification of evaporative losses of diesel range organics at a range of temperatures using successively less volatile compounds as fractionation markers. We also present data that supports the general utility of so-called biodegradation indices for tracking biodegradation progress. We are also able to show that at 4 degrees C indigenous Antarctic soil bacteria degrade Special Antarctic Blend fuel components in the following order: naphthalene and methyl-napthalenes, light n-alkanes, then progressively heavier n-alkanes; whereas isoprenoids and the unresolved complex mixture are relatively recalcitrant.  相似文献   

6.
Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil.  相似文献   

7.
Monitored natural attenuation is widely accepted as a sustainable remediation method. However, methods providing proof of proceeding natural attenuation within the water-unsaturated (vadose) zone are still relying on proxies such as measurements of reactive and non-reactive gases, or sediment sampling and subsequent mineralisation assays, under artificial conditions in the laboratory. In particular, at field sites contaminated with hydrophobic compounds, e.g. crude oil spills, an in situ evaluation of natural attenuation is needed, because in situ methods are assumed to provide less bias than investigations applying either proxies for biodegradation or off-site microcosm experiments. In order to compare the current toolbox of methods with the recently developed in situ microcosms, incubations with direct push-sampled sediments from the vadose and the aquifer zones of a site contaminated with crude oil were carried out in conventional microcosms and in situ microcosms. The results demonstrate the applicability of the in situ microcosm approach also outside water-saturated aquifer conditions in the vadose zone. The sediment incubation experiments demonstrated turnover rates in a similar range (vadose, 4.7 mg/kg*day; aquifer, 6.4 mghexadecane/kgsoil/day) of hexadecane degradation in the vadose zone and the aquifer, although mediated by slightly different microbial communities according to the analysis of fatty acid patterns and amounts. Additional experiments had the task of evaluating the degradation potential for the branched-chain alkane pristane (2,6,10,14-tetramethylpentadecane). Although this compound is regarded to be hardly degradable in comparison to n-alkanes and is thus frequently used as a reference parameter for indexing the extent of biodegradation of crude oils, it could be shown to be degraded by means of the incubation experiments. Thus, the site had a high inherent potential for natural attenuation of crude oils both in the vadose zone and the aquifer.  相似文献   

8.
Size-segregated samples of urban particulate matter (<0.95, 0.95–1.5, 1.5–3.0, 3.0–7.5, >7.5 μm) were collected in Thessaloniki, northern Greece, during winter and summer of 2007–2008, in order to study the size distribution of organic compounds such as polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons (AHs) including n-alkanes and the isoprenoids pristane and phytane, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). All organic compounds were accumulated in the particle size fraction <0.95 μm particularly in the cold season. Particulate matter displayed a bimodal normalized distribution in both seasons with a stable coarse mode located at 3.0–7.5 μm and a fine mode shifting from 0.95–1.5 μm in winter to <0.95 μm in summer. Unimodal normalized distributions, predominant at 0.95–1.5 μm size range, were found for most organic compounds in both seasons, suggesting gas-to-particle transformation after emission. A second minor mode at larger particles (3.0–7.5 μm) was observed for C19 and certain OCPs suggesting redistribution due to volatilization and condensation.  相似文献   

9.
The objective of laboratory sediment bioassays is to estimate in situ toxicity. This goal is difficult to achieve, as one of the main limitations of sediment toxicity tests is disruption of sediment geochemistry during sampling, handling and preservation. The effects of storage on the estimation of marine sediment toxicity to Crassostrea gigas embryos and larvae were investigated. Three storage methods and four storage periods were compared with three different sediment types contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and both contaminants. Freezing and freeze-drying considerably increased the toxicity of decanted sediments and their elutriates as compared to the toxicity obtained with fresh sediments. Concerning the elutriates, the toxicity found with frozen and freeze-dried sediments was correlated with DOC, ammonia and PAH contents. However, the toxicity of fresh sediments kept at 4 degrees C increased with increasing duration of storage and was also correlated with the amount of ammonia in the elutriates.  相似文献   

10.
Background, Aims and Scope It is well known that the composition of petroleum or some of its processing products changes in the environment mostly under the influence of microorganisms. A series of experiments was conducted in order to define the optimum conditions for an efficient biodegradation of petroleum pollutant, or bioremediation of different segments of the environment. The aim of these investigations was to show to what extent the hydrocarbons of a petroleum pollutant are degraded by microbial cultures which were isolated as dominant microorganisms from a surface water of a wastewater canal of an oil refinery and a nitrogen plant. Biodegradation experiments were conducted on one paraffinic, and one naphthenic type of petroleum during a three month period under aerobic conditions, varying the following parameters: Inorganic (Kp) or an organic medium (Bh) with or without exposition to light. Methods Microorganisms were analyzed in a surface water sample from a canal (Pančevo, Serbia), into which wastewater from an oil refinery and a nitrogen plant is released. The consortia of microorganisms were isolated from the water sample (most abundant species: Phormidium foveolarum - filamentous Cyanobacteria, blue-green algae and Achanthes minutissima, diatoms, algae). The simulation experiments of biodegradation were conducted with the biomass suspension and crude oils Sirakovo (Sir, paraffinic type) and Velebit (Ve, naphthenic type). After a three month period, organic substance was extracted by means of chloroform. In the extracts, the content of saturated hydrocarbons, aromatic hydrocarbons, alcohols and fatty acids was determined (the group composition). n-Alkanes and isoprenoid aliphatic alkanes, pristane and phytane, in the aliphatic fractions, were analyzed using gas chromatography (GC). Total isoprenoid aliphatic alkanes and polycyclic alkanes of sterane and triterpane types were analyzed by GC-MS. Results and discussion. Paraffinic type petroleums have a significant loss of saturated hydrocarbons. For naphthenic type petroleum, such a trend has not been observed. The most intensive degradation of n-alkanes and isoprenoid aliphatic alkanes (in paraffinic oil) and isoprenoids (in naphthenic oil) was observed using the inorganic medium Kp in the light; the microbial conversion is somewhat lower with Kp in the dark; with organic medium Bh in the light the degradation is of low intensity; with the same medium in the dark the degradation is hardly to be seen. Steranes and triterpanes were not affected by microbial degradation under the conditions used in our experiments. Obviously, the petroleum biodegradation was restricted to the acyclic aliphatics (n-alkanes and isoprenoids). Conclusion Phormidium foveolarum (filamentous Cyanobacteria - blue-green algae) and Achanthes minutissima (diatoms, algae), microbial cultures isolated as dominant algae from a surface water in a wastewater canal of an oil refinery and a nitrogen plant, have degradable effects dominantly involving petroleum hydocarbons. Petroleum microbiological degradation is more intensive when inorganic medium (in the light) is applied. Having in mind that the inorganic pollutants have been released into the canal as well, this medium reflects more the natural environmental conditions. Polycyclic alkanes of sterane and triterpane type, in spite of the fact that these compounds could be degraded, have remained unchanged regarding abundance and distribution. Since this is the case even for naphthenic type petroleum (which is depleted in n-alkanes), it can be concluded that the biodegradation of petroleum type pollutants, under natural conditions, will be restrained to the n-alkane and isoprenoid degradation. Recommendation and Outlook Performed experiments and simulations of petroleum microbiological degradation may serve for the prediction of the fate of petroleum type pollutants, as well as for definition of conditions for bioremediation of some environmental segments.  相似文献   

11.
Rates of 14C-phenanthrene mineralization in contaminated, undisturbed marine sediments were measured using the whole core injection method to assess microbial natural attenuation activity as a function of sediment depth. Submerged sediments were sampled from Eagle Harbor, a marine superfund site in Puget Sound. Experiments show significant biodegradation activities (0.0012-0.0036 day(-1)) in the sediment horizons from 0 to 10 cm. The purpose and scope of this paper is to evaluate the range of experimental conditions giving valid results; a mathematical simulation described competing contaminant 14C-phenanthrene diffusion and simultaneous biodegradation (Monod kinetics), both retarded by sorption. The effect of aging was examined with two sorption models in presumed pseudo-homogenous sediments having effective properties. The simulation predictions provide quantitative guidelines for the successful use of the whole core injection method. (1) The effective Monod constant KS' in sediment is increased by a large partition coefficient KP between sediment and water and makes the apparent 14C-phenanthrene biodegradation approach first-order kinetics. (2) When KS'>1 mg(-1) l(-1), the measured 14C-phenanthrene biodegradation extent is biased by inadequately distributed injected tracer only when less than 7% of the sediment horizon is initially probed and mixed with injected tracer. (3) A short incubation time (<20 days) is necessary when a mobile indicator, e.g., gaseous 14CO2, is used. For longer incubation times, predictions show that a 14CO2 indicator diffuses to adjacent horizons, thus smearing the depth profile of biodegradation. (4) This method employing a radiolabeled tracer provides accurate biodegradation rates for freshly contaminated sediments, and represents an upper limit to the natural phenanthrene biodegradation extents if the contaminant is aged over 50 days.  相似文献   

12.
Gagni S  Cam D 《Chemosphere》2007,67(10):1975-1981
In the last decade, a refinery plant located in Lido Adriano, East Ravenna (Italy) has been subject to mineral oil contamination. The mineral crude oil, extracted from the offshore in Adriatic sea, consisted of 78% aliphatics, cyclic alkanes and saturated polycyclic hydrocarbons, 9% aromatics, polycyclic aromatic hydrocarbons (PAHs) and alkylated derivatives, and 13% of tars/asphaltenes. Analysis of soil after 10 years of natural attenuation revealed a complete depletion of linear (n-C(9)-C(24)), light aromatics (C1-C3/benzenes) and PAHs (C2/naphthalene, C1/phenanthrene); besides a substantial degradation of isoprenoids prystane and phytane, branched and cyclic alkanes. The remaining contaminants which withstood to natural degradation was saturated polycyclic hydrocarbons (perhydro-PAH derivatives), unsaturated polycyclic hydrocarbons (tetrahydro, dihydro-PAH derivatives), terpanes, steranes and unidentified compounds. Such residues resulted in 80% reduction of its concentration after two months of laboratory treatment. Samples were extracted by organic solvents, separated by silica/alumina gel column chromatography and analyzed by gas chromatography-mass selective detector (GC-MSD). Identification and quantification of aliphatic, cyclic alkanes, typical PAHs, terpanes and steranes were carried out to chromatograms of M/Z=85, 83, individual M/Zs, M/Z=191 and 217, respectively. The present work shows that, among numerous biomarkers present in the source oil, stigmastane and two isomers of hopane showed invariable concentrations after laboratory experiments that mimic natural biodegradation in the field, so they can be used as conserved internal biomarkers. These are very useful tools to assess alterations in less stable classes of saturated compounds contained in petroleum. Marked degradation of perhydro, tetrahydro, dihydro-PAH derivatives in the laboratory treatment has been evidenced.  相似文献   

13.
The influence of oil concentration on hydrocarbon biodegradation in a sandy sediment was studied in polyvinyl chloride reactors (0.45 x 0.28 x 0.31 m) containing 76.8 kg of beach sand in natura, where the upper layer was artificially contaminated with petroleum. The oil-degrading microorganisms used consisted of a mixed culture named ND, obtained from landfarming and associated with indigenous microorganisms. On the 28th day of the process, the degradation in reactors containing sandy sediment contaminated with light Arabian oil and presenting an initial oil content of 14, 21 or 28 g kg-1 reached the following levels (%): 33.7, 32.9 and 28.9 for oil and grease; up to 88.3, 35.3 and 13.0 for C14-C26 n-alkanes; and 100, 61.3 and 59.4 for pristane, respectively. Phytane removal (37.1%) was only detected in the reactor contaminated with the lowest oil concentration studied. These results, together with the expressive bacterial growth observed (from 10(6) to 10(11) cfu g-1) give strong support to the argument that biodegradation was the dominant component of the remediation process. Susceptibility to biodegradation was inversely proportional to increasing oil contamination. The degradation of branched alkane: pristane was not repressed by the presence of n-alkanes.  相似文献   

14.
A multi-media model was developed for predicting the fate of organic chemicals in the Greater Stockholm Area, Sweden, and applied to selected polycyclic aromatic hydrocarbons (PAHs). Although urban models have been previously developed, this model is novel in that it includes sorption to pyrogenically-derived particles, commonly termed "black carbon" (BC), within the model structure. To examine the influence of BC sorption on environmental fate of PAHs, two versions of the model were generated and run: one in which sorption to BC was included and one in which BC sorption was excluded. The inclusion of BC sorption did not cause any significant variations to air levels, but it did cause an average 20-30% increase in sediment concentrations related to increased sediment solids partitioning. The model also predicted reduced advective losses out of the model domain, as well as chemical potential to diffuse from sediments, whilst total chemical inventory increased. In all cases, the lighter PAHs were more affected by BC inclusion than their heavier counterparts. We advocate the addition of sorption to BC in future multi-media fate and exposure models, which as well as influencing fate will also alter (lower) chemical availability and, thus, wildlife exposure to hydrophobic chemicals. A quantification of the latter was derived with the help of the soot-inclusive model version, which estimated a lowering of dissolved water concentrations between five and >200 times for the different PAHs of this study.  相似文献   

15.
This work presents an in situ sediment sampling method on benthic transects, specifically intended for scientific scuba diver teams. It was originally designed and developed to sample benthic surface and subsurface sediments and subaqueous soils in glacial lakes up to a maximum depth of 25 m. Tests were conducted on the Sabocos and Baños tarns (i.e., cirque glacial lakes) in the Spanish Pyrenees. Two 100 m transects, ranging from 24.5 to 0 m of depth in Sabocos and 14 m to 0 m deep in Baños, were conducted. In each test, 10 sediment samples of 1 kg each were successfully collected and transported to the surface. This sampling method proved operative even in low visibility conditions (<2 m). Additional ice diving sampling tests were conducted in Sabocos and Truchas tarns. This sampling methodology can be easily adapted to accomplish underwater sampling campaigns in nonglacial lakes and other continental water or marine environments.  相似文献   

16.
Manipulative field studies are useful for investigating cause-effect relationships between contamination and benthic community health. However, there are many challenges for creating environmentally relevant exposures and determining what measurements are necessary to correctly interpret the results. This study describes the physical and chemical changes in the properties of metal-spiked marine sediments deployed in four different locations for up to 11 months. The test sediments lost between 20% and 75% of their volume during the deployment period, with the greatest losses occurring at sites affected by strong hydrodynamic activity. More sediment was lost from clean treatments than those spiked with high metal concentrations and corresponded with differential recruitment of infauna to these treatments. In general, a greater proportion of spiked-metals remained at lower energy sites (48-85%) than at higher energy sites (15-48%). The decreased metal concentrations were attributed mostly to the loss of the metal-spiked sediments (through resuspension) and their dilution with sediments depositing from the surrounding environment. A range of recommendations are made for optimising the information gained from field-based studies using metal-spiked sediments. These include the careful documentation of physico-chemical sediment properties pre- and post-deployment, the use of co-located sediment traps and knowledge of site-specific hydrodynamic processes.  相似文献   

17.
For 503 days, unoiled control and artificially oiled sediments were incubated in situ at 20m water depth in a Mediterranean coastal area. Degradation of the aliphatic fraction of the oil added was followed by GC-MS. At the same time, terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA encoding genes was used to detect dynamics in the sulfate-reducing bacteria (SRB) community in response to the oil contamination. Specific polymerase chain reaction (PCR) primer sets for five generic or suprageneric groups of SRB were used for PCR amplification of DNA extracted from sediments. During the experiment, hydrocarbons from C(17) to C(30) were significantly degraded even in strictly anoxic sediment layers. Of the five SRB groups, only two groups were detected in the sediments (control and oiled), namely the Desulfococcus-Desulfonema-Desulfosarcina-like group and the Desulfovibrio-Desulfomicrobium-like group. Statistical analysis of community patterns revealed dynamic changes over time within these two groups following the contamination. Significant differences in community patterns were recorded in artificially oiled compared with control sediments. Cloning and sequencing of 16S rRNA encoding genes performed after 503 days showed that many of the most abundant sequences were closely related to hydrocarbonoclastic SRB which could have played an active role in the observed biodegradation of aliphatic hydrocarbons. Results from the present study provide useful information on the dynamics of dominant SRB in heavily oil-contaminated sediments and their potential for anaerobic biodegradation for the treatment of spilled oil in anoxic marine environments.  相似文献   

18.
Sediment-associated hydrocarbons can pose a risk to wildlife that rely on benthic marine food webs. We measured hydrocarbons in sediments from the habitat of protected sea otters in coastal British Columbia, Canada. Alkane concentrations were dominated by higher odd-chain n-alkanes at all sites, indicating terrestrial plant inputs. While remote sites were dominated by petrogenic polycyclic aromatic hydrocarbons (PAHs), small harbour sites within sea otter habitat and sites from an urban reference area reflected weathered petroleum and biomass and fossil fuel combustion. The partitioning of hydrocarbons between sediments and adjacent food webs provides an important exposure route for sea otters, as they consume ∼25% of their body weight per day in benthic invertebrates. Thus, exceedences of PAH sediment quality guidelines designed to protect aquatic biota at 20% of the sites in sea otter habitat suggest that sea otters are vulnerable to hydrocarbon contamination even in the absence of catastrophic oil spills.  相似文献   

19.
Bulk atmospheric deposition fluxes, air-water exchange fluxes, particle settling fluxes out of the upper water column, sediment trap fluxes in deep waters, and sediment burial fluxes of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) were simultaneously measured in the Koster Fjord, eastern Skagerak, on the Swedish west coast. The aim of the study was to compare the magnitude and direction of the compound fluxes in the system in order to diagnose key fate processes. The PCB and PAH fluxes via net atmospheric deposition, settling particles out of the surface and through deep waters, as well as into the accreting underlying sediments were shown to be remarkably similar, agreeing within a factor of a few for any given target compound. Fluxes of all PCB and PAH target compounds remained fairly constant with water column depth. Thus there was no evidence for net desorption from sinking particles. The net unidirectional and near balancing of vertical fluxes suggests a net transport of PCBs and PAHs from the atmosphere to the continental shelf sediments in the Koster Fjord, which is consistent with the hypothesis that the shelf sediments are important sinks for these compounds.  相似文献   

20.
In urban area, management of stormwater leads to the accumulation of polluted sediments at the water-sediment interface of various aquatic ecosystems. In many cases, these sediments are colonised by dense populations of tubificid worms. However, the influence of tubificid worms on the fate of stormwater sediments has never been tackled. The aim of this study was to measure in sediment columns the influence of tubificid worms on sediment reworking, organic matter processing (O(2) uptake and release of NH(4)(+), NO(3)(-), PO(4)(3-), and dissolved organic carbon), release of hydrocarbons and heavy metals, and microbial characteristics. Results showed that tubificid worms increased the release of NH(4)(+), PO(4)(3-), and dissolved organic carbon by 2-, 4-, and 3-fold, respectively. O(2) uptake also increased by more than 35% due to tubificid activity. The increase in the percentages of active bacteria and hydrolytic activity in the presence of worms indicated that the higher sediment respiration was caused by the stimulation of microbial communities. A reduction of the number of sulphate-reducing bacteria in the uppermost layers of the sediment was attributed to the penetration of O(2) due to worm activity. These significant effects of tubificid worms were probably linked to the dense network of burrows, which enhanced the exchange surface between the water column and the sediment. No release of heavy metals and hydrocarbons to the water phase was detected in the sediment columns. Understanding the fate and effect of organic stormwater sediments in the natural environment requires the integration of the role of bioturbation in urban pollution studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号