首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The performance of a new dry deposition module, developedfor the European-scale mapping and modelling of ozone flux to vegetation, was tested against micrometeorological ozone and water vapour flux measurements. The measurement data are for twoconiferous (Scots pine in Finland, Norway spruce in Denmark) and one deciduous forest (mountain birch in Finland). On average, themodel performs well for the Scots pine forest, if local inputdata are used. The daytime deposition rates are somewhat over-predicted at the Danish site, especially in the afternoon. The mountain birch data indicate that the generic parameterisationof stomatal responses is not very representative of this northernspecies. The module was also tested by using modelled meteorological data that constitute the input for a photochemical transport model.  相似文献   

2.
The dry deposition of ozone to aconiferous forest in northeastern Bavaria(southern Germany) was quantified during 1999with both the eddy correlation method and a bigleaf model. The model included parameterizationsof the atmospheric transfer resistances fromdirect measurements, stomatal resistance from aplant ecological model, and an estimation of thecuticle resistance as function of leaf wetness.Early in the season, the measured and themodelled deposition fluxes were in goodagreement, although the modelled fluxes tended tounderestimate the measured ones. Thisunderestimation was more pronounced in the latesummer, when high nocturnal fluxes werefrequently measured. The model parameterizationof the cuticle and the stomatal resistances didnot allow for such high fluxes. In these cases,the 24 hour average of the measured fluxes wereup to 4.5 times higher than the modelled ones.The reasons for these large discrepancies remainunknown. However, assigning the unaccounted partof the deposition to a nonstomatal surfacedeposition pathway, a new parameterization of therespective resistance yielded an average value of300 s m-1. It exhibited a decreasing trendthrough the vegetation period.  相似文献   

3.
Estimates of ozone concentration and deposition flux to coniferous and deciduous forest in the Czech Republic on a 1 × 1 km grid during growing season (April–September) of the year 2001 are presented. Ozone deposition flux was derived from ozone concentrations in the atmosphere and from its deposition velocities. To quantify the spatial pattern in surface concentrations at 1 km resolution incorporating topography, empirical methods are used. The procedure maps ozone concentrations from the period of the day when measurements are representative for the forest areas of countryside. The effects of boundary layer stability are quantified using the observed relationship between the diurnal variability of surface ozone concentration and altitude. Ozone deposition velocities were calculated according to a multiple resistance model incorporating aerodynamic resistance (R a ), laminar layer resistance (R b ) and surface resistance (R c ). Surface resistance (R c ) comprises stomatal resistance (R sto ). R sto was calculated with respect to global radiation, surface air temperature and land cover. Modelled total and stomatal ozone fluxes are compared with the maps describing equivalent values of AOT40 (accumulated exposure over threshold of 40 ppb). For forests, the critical level (9,000 ppbh May–July daylight hours) is exceeded over 50% of forested territory. This indicates the potential for effects on large areas of forest. There is significiant correspondence between the exposure index AOT40 and the total ozone flux, but the relation between the total ozone flux and AOT40 exposure index is not clear in all parts of the forest territory.  相似文献   

4.
The parameterized subgrid-scale surface flux (PASS) modelprovides a simplified means of using remote sensing data from satellites and limited surface meteorological information to estimate the influence of soil moisture on bulk canopy stomatalresistances to the uptake of gases over extended areas.PASS-generated estimates of bulk canopy stomatal resistance were usedin a dry deposition module to compute gas deposition velocitieswith a horizontal resolution of 200 m for approximately 5000 km2 of agricultural crops and rangeland. Results were compared with measurements of O3 flux and concentrations made during April and May 1997 at two surface stations and from an aircraft. The trend in simulated O3 deposition velocityduring soil moisture drydown over a period of a few days matchedthe trend observed at the two surface stations. For areas underthe aircraft flight paths, the variability in simulated O3 deposition velocity was substantially smaller than the observedvariability, while the averages over tens of kilometers were usually in agreement within 0.1 cm s-1. Model results indicated that soil moisture can have a major role in depositionof O3 and other substances strongly affected by canopy stomatal resistance.  相似文献   

5.
Air-sea exchange rates for ozone were measured by the eddy correlation technique at a site on the north Norfolk coast in the UK. The average surface resistance to ozone uptake was found to be, rs(O3) = 1,000 ± 100 s m-1. Micrometeorological measurements of trace gas fluxes to ocean surfaces are rare but a review of available measurements suggests that we can constrain sea water surface resistance for ozone to between 1,000 (Regener (1974), and this work) and 1,890 s m-1 (Lenschow et al., 1982), yielding surface deposition velocities between 0.53 and 1.0 mm s-1. These values are more than an order of magnitude greater than can be explained by laboratory determined mass accommodation coefficients for ozone to water. The importance of dry deposition with respect to process air-sea exchange models is highlighted. A trend in surface deposition velocity with wind speed was also observed supporting a surface chemical enhancement mechanism of ozone uptake which in turn is enhanced by near surface mixing processes.  相似文献   

6.
We used laboratory experiments to investigate surface resistance (R c) to dry deposition of ozone (O3) on different types of soil samples collected from the arid deserts and the Loess Plateau of northern China. Furthermore, we measured the factors that affected R c, which depends on the physical and chemical interaction between trace constituents and the deposition surface, and evaluated deposition velocity (V d). There was little influence of geometric surface area, soil weight, or O3 concentration on V d of O3. The effect of relative humidity (RH) (i.e. moisture content of the soil) on O3 uptake was in agreement with results reported in the literature: a distinct RH dependence of V d and little uptake under water-saturated conditions were observed. R c values for all the soil samples examined were in the range 0.21–3.3 s mm−1 and were exponentially related to the surface area of the particles and the organic carbon content of each soil sample at RH of both <10 and 60%.  相似文献   

7.
We have developed a coupled land-surface and drydeposition model for realistic treatment of surface fluxes ofheat, moisture, and chemical dry deposition within acomprehensive air quality modelling system. A new land-surfacemodel (LSM) with explicit treatment of soil moisture andevapotranspiration and an indirect soil moisture nudging schemehas been added to a mesoscale meteorology model. The new drydeposition model uses the same aerodynamic and bulk stomatalresistances computed for evapotranspiration in the LSM. Thisprovides consistent land-surface and boundary layer propertiesacross the meteorological and chemical components of the system. The coupled dry deposition model also has the advantage of beingable to respond to changing soil moisture and vegetationconditions. Modelled surface fluxes of sensible and latent heatas well as ozone dry deposition velocities were compared to twofield experiments: a soybean field in Kentucky during summer 1995and a mixed forest in the Adirondacks of New York in July 1998.(on assignment to the National Exposure Research Laboratory, U.S. Environmental Protection Agency) (author for correspondence, e-mail(on assignment to the National Exposure Research Laboratory, U.S. Environmental Protection Agency)  相似文献   

8.
The results of field studies that measured the flux anddeposition velocity of SO2 and O3 are reported. Three of the studies were over agricultural crops (pasture, corn, and soybean), and two were over forest (a deciduous forest and a mixed coniferous–deciduous forest). In all cases the deposition velocity for SO2 was higher than that for O3. Diurnal cycles of SO2 deposition velocity were similar in shape, but not magnitude for all surfaces; however those for O3 showed some difference between forest sites where the peak was in the morning, and the agricultural sites where the peak occurred at mid-day. Seasonal cycles of SO2 were affected by deposition to surfaces when leaves were not active, yet surface conductance is significant, but not for O3 where stomatal uptake is the primary pathway for deposition.(On assignment to the National Exposure Research Lab., US EPA) (e-mail:  相似文献   

9.
Two years of continuous measurements of SO2deposition fluxes to moorland vegetation are reported. The mean flux of 2.8 ng SO2 m-2 s-1 is regulated predominantly by surface resistance (r c) which, even for wet surfaces, was seldom smaller than 100 s m-1. The control of surface resistance is shown to be regulated by the ratio of NH3SO2 concentrations with an excess of NH3 generating the small surface resistances for SO2. A dynamic surface chemistry model is used to simulate the effects of NH3 on SO2 deposition flux and is able to capture responses to short-term changes in ambient concentrations of SO2, NH3 and meteorological conditions. The coupling between surface resistance and NH3/SO2 concentration ratios shows that the deposition velocity for SO2 is regulated by the regional pollution climate. Recent long-term SO2 flux measurements in a transect over Europe demonstrate the close link between NH3/SO2 concentrations and rc (SO2). The deposition velocity for SO2 is predicted to have increased with time since the 1970s and imply a 40% increase in v d at a site at which the annual mean ambient SO2 concentrations declined from 47 to 3 g m-3 between 1973 and 1998.  相似文献   

10.
11.
High spatial resolution maps of deposition loads in Germanyare produced as an input for abatement strategy research andfor critical loads exceedance calculations on a nationalscale. In this paper methods ofmapping total deposition loads in Germany and preliminarymaps of nitrogen and sulphur deposition loads for the year1993 are presented. A comparison of these mapping resultswith EMEP deposition mapping results has been carried out.The differences in the results of the German national and theEuropean EMEP mapping, due to different databases anddifferent methods, are quantified and discussed. Highresolution maps of deposition loads are compared to Europeanlow resolution maps on the same temporal and spatial scale,assuming that on average both should lead to similar results.However, the average differencescalculated for 23 EMEP 150 × 150 km2 grid cells over Germanywere found to be 33% higher for sulphur (S) total depositionby the German method 65% higher for S dry deposition and1% lower for S wet deposition. The German results fornitrogen (N) total deposition are 2% higher than the EMEPresult 22% higher for N dry deposition and 10% lower for Nwet deposition.  相似文献   

12.
Gas-phase atmospheric deposition wasevaluated in a screening level model of themultimedia environmental distribution of toxics(MEND-TOX). Algorithmic additions to MEND-TOXfor the estimation of gas-phase depositionvelocity over vegetated surfaces were analyzedusing recently published dry deposition fluxmeasurements for nitric acid. Model outputs arecompared to similar estimates from the NOAAmultilayer dry deposition model. Results of theevaluation indicate that MEND-TOX performs wellas a screening level model for the estimation ofgas-phase dry deposition velocity of nitric acidover soybeans. The present study expandsprevious laboratory results for organic speciesto include an inorganic species and open fieldand dry leaf, conditions.(On assignment to the National Exposure Research Laboratory, U.S. Environmental Protection Agency); (author for correspondence, e-mail  相似文献   

13.
The covariance between hourly concentration (C) and depositionvelocity (V) for various atmospheric species may act to bias the dry deposition (D) computed from the product of the weeklyaverage C and V. This is a potential problem for the CASTNet filter pack (FP) species, nitric acid (HNO3). Using ozone (O3) behavior as a surrogate for HNO3, correctionfactors (CF) are developed to estimate this bias. Weekly CF for O3 depend on both site and season, and seasonal average weekly CF for O3 at a given site may be as high as 1.25.The seasonal magnitude of this CF is generally largest in summerand is ordered: summer fall spring > winter. The CF is drivento a large extent by the diurnal correlation between C andV (i.e., both are generally higher during the day and lower at night). However, since the diurnal C profile at elevated sites is relatively constant, the resulting correlation between C and V is small, and the CF at montane sites is generally negligiblysmall. The sampling protocol using daytime integrated sampling for a week and nighttime integrated sampling for a week capturesthe diurnal correlation between C and V adequately and may be used to aggregate relatively unbiased weekly D estimates. Day-night CF for O3 are close to unity, and limited results suggest similar behavior for HNO3. Using these limited FP results, the site- and seasonally-specific weekly CF forO3are refined to estimate the corresponding CF for HNO3. Worst-case adjustments for HNO3 as high as 30% are indicated for summer periods at a given site.  相似文献   

14.
The atmospheric deposition of reactive nitrogen on turf grassland in Tsukuba, central Japan, was investigated from July 2003 to December 2004. The target components were ammonium, nitrate, and nitrite ions for wet deposition and gaseous ammonia, nitric and nitrous acids, and particulate ammonium, nitrate, and nitrite for dry deposition. Organic nitrogen was also evaluated by subtracting the amount of inorganic nitrogen from total nitrogen. A wet-only sampler and filter holders were used to collect precipitation and the atmospheric components, respectively. An inferential method was applied to calculate the dry deposition velocity of gases and particles, which involved the effects of surface wetness and ammonia volatilization through stomata on the dry deposition velocity. The mean fraction of the monthly wet to total deposition was different among chemical species; 37, 77, and 1% for ammoniacal, nitrate-, and nitrite-nitrogen, respectively. The annual deposition of inorganic nitrogen in 2004 was 47 and 48 mmol m−2 yr−1 for wet and dry deposition, respectively; 51% of atmospheric deposition was contributed by dry deposition. The annual wet deposition in 2004 was 20, 27, and 0.07 mmol m−2 yr−1, and the annual dry deposition in 2004 was 35, 7.4, and 5.4 mmol m−2 yr−1 for ammoniacal, nitrate-, and nitrite-nitrogen, respectively. Ammoniacal nitrogen was the most important reactive nitrogen because of its remarkable contribution to both wet and dry deposition. The median ratio of the organic nitrogen concentration to total nitrogen was 9.8, 17, and 15% for precipitation, gases, and particles, respectively.  相似文献   

15.
Measurements of dry deposition ofparticles 0.1 to 1.0 m diameter to forest bythroughfall and eddy correlation methods giveresults of 1.0 cm s-1 or more, whilemechanistic models do not explain values greaterthan about 1 mm s-1. Results of othermethods involving radioactive tracers arerecalled. These data indicate values of about 5 mm s-1. The possibility of additionalmechanisms, omitted from the models, is difficultto exclude, but much of the remaining discrepancymay be due to the wide size distribution of theadventitious radioactive tracers in the atmosphere.  相似文献   

16.
Numerous assumptions have been made over the past 17 years when calculating critical loads for soils, both for acidity (based upon base cation steady state mass balances (SMB)) and for N (eutrophication, based upon N mass balances), often without all the assumptions being explicitly stated. The tacit assumptions that the author believes to be implicit in the SMB approach are critically reviewed, with particular reference to upland regions where slope processes are highly significant. It is concluded that many of them cannot be justified, especially those that involve ignoring many key processes known to be important to biogeochemical cycling and soil evolution in upland catchments. The evidence presented suggests that critical loads of acidity and of N for soils should be based upon effective pollutant and, for acidity, also effective base cation deposition concentrations, rather than upon pollutant deposition fluxes. This is because of the dominant role of cation exchange equilibria, rather than weathering rate, in regulation of the pH and base status of the more acidification-sensitive soils, and because of the importance of transport down slope of base cations, alkalinity and N species.  相似文献   

17.
A model is described for predicting wet deposition ofsulphur in Britain from rainfall and site measurementsof ion concentration in precipitation. This modelincludes orographic enhancement of both rainfall andion concentration. The model output is comparedagainst available measurement data. Sensitivity anduncertainty analyses are used to predict the outputuncertainty. If the stated assumptions can be shown tobe correct, the wet deposition for Britain at the 5 kmscale is accurate to ±35% across the country. Theanalyses show a larger uncertainty in central Englandand a possible bias towards underestimation of wetdeposition, the latter being of importance incalculating critical load exceedances in remote areas.  相似文献   

18.
The National Oceanic and Atmospheric Administration's Multi-Layer Model (NOAA-MLM) is used by several operational dry deposition networks for estimating the deposition velocity of O3, SO2, HNO3, and particles. The NOAA-MLM requires hourly values of meteorological variables. Since collection of on-site meteorology can be expensive, a study was performed to compare NOAA-MLM predicted deposition velocitiesusing modeled meteorological data in lieu of on-site meteorological data. NOAA-MLM was run for three sites in the Clean Air Status and Trends Network using on-site data as well as the output of two mesoscale meteorological models, Eta and MM5. The differences between the deposition velocities predictedusing the mesoscale models and those predicted using the on-sitemeteorological measurements ranged from –0.001 to 0.106 cm s-1 and were within the model error determined in NOAA-MLM evaluation studies. This research shows that the NOAA-MLM is particularly sensitive to differences in atmospheric turbulence,soil moisture budget, and canopy wetness.(On assignment to the National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina.) (author for correspondence, e-mail  相似文献   

19.
Erisman  J. W.  Hensen  A.  Fowler  D.  Flechard  C. R.  Grüner  A.  Spindler  G.  Duyzer  J. H.  Weststrate  H.  Römer  F.  Vonk  A. W.  Jaarsveld  H. v. 《Water, Air, & Soil Pollution: Focus》2001,1(5-6):17-27
Between 1993 and 1999 two EU funded projects wereexecuted aimed at (i) the development of drydeposition monitoring methods for core sites andlarge scale application, (ii) the installation andrunning of three core sites in Europe and (iii) the improvement and validation of models used forregional application. This article provides anoverview of the development of depositionmonitoring stations and the main results of thethree core sites, which were operated between1995 and 1998. Furthermore, the results of thedevelopment of a low cost monitoring system arepresented. Continuous measurements were made ofboth wet and dry deposition of sulphur andnitrogen components and base cations. The 4 yearsof data show a decrease in sulphur loads and notrend for the other components. It is shown thatthe surface affinities for sulphur depositionalso changed during the years, underpinning theneed for dry deposition monitoring. A conditionaltime average gradient system was successfullydeveloped and tested and provides a good meansfor low cost monitoring of dry deposition fluxes.The costs can be reduced by a factor of 3–4 without losing the accuracy of the annual average gas fluxes.  相似文献   

20.
A Chronology of Nitrogen Deposition in the UK Between 1900 and 2000   总被引:2,自引:0,他引:2  
Measurements of the concentrations of nitrogen compounds in air and precipitation in the UK have been made since the mid-19th century, but no networks operating to common protocols and having traceable analytical procedures were established until the 1950s. From 1986 onwards, a high-quality network of sampling stations for precipitation chemistry was established across the UK. In the following decade, monitoring networks provided measurement of NO2, NH3, HNO3 and a satisfactory understanding of the dry deposition process for these gases allowed dry deposition to be quantified. Maps of N deposition for oxidized and reduced compounds at a spatial scale of 5 km × 5 km are available from 1986 to 2000. Between 1950 and 1985, the more limited measurements, beginning with those of the European Air Chemistry Network (EACN) provide a reasonable basis to estimate wet deposition of NO 3 –N and NH 4 + –N. For the first half of the century, estimates of deposition were scaled with emissions assuming a constant relationship between emission and deposition for each of the components of the wet and dry deposition budget at the country scale. Emissions of oxidized N, which dominated total nitrogen emissions throughout the century, increased from 312 kt N annually in 1900 to a peak of 787 kt for the decade 1980–1990 and then declined to 460 kt in 2000. Emissions of reduced N, largely from coal combustion were about 168 kt N in 1900, increasing to a peak of 263 kt N in 2000 and by now dominated by agricultural sources. Reduced N dominated the deposition budget at the country scale, increasing from 163 kt N in 1900 to 211 kt N in 2000, while deposition of oxidized N was 66 kt N in 1900 and 191 kt N in 2000. Over the century, 68 Mt (Tg) of fixed N was emitted within the UK, 78% as NO x , while 29 Mt of nitrogen was deposited (43% of emissions), equivalent to 1.2 t N ha–1, on average, with 60% in the reduced form. Deposition to semi-natural ecosystems is approximately 15 Tg N, equivalent to between 1 and 5 t N ha–1, over the century and appears to be accumulating in soil. The N deposition over the century is similar in magnitude to the total soil N inventory in surface horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号