首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
Aerobic granular sludge was cultivated in sequencing batch airlift reactors(SBAR) at 25,30,and 35°C,respectively.The effect of temperature on the granules characteristics was analyzed and the microbial community structures of the granules were probed using scanning electron microscope(SEM) and polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE).The results showed that 30°C is optimum for matured granule cultivation,where the granules had a more compact structure,better settling abili...  相似文献   

2.
Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor.The influence of seed sludge on physical and chemical properties of granular sludge was studied;the microbial community structure was probed by using scanning electron microscope and polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE).The results showed that seed sludge played an important role on the formation of aerobic granules.Seed sludge taken from beer wastewater treatment plant(inoculum A) was more suitable for cultivating aerobic granules than that of sludge from municipal wastewater treatment plant(inoculum B).Cultivated with inoculum A, large amount of mature granules formed after 35 days operation, its SVI reached 32.75 mL/g, and SOUR of granular sludge was beyond 1.10 mg/(g·min).By contrast, it needed 56 days obtaining mature granules using inoculum B.DGGE profiles indicated that the dominant microbial species in mature granules were 18 and 11 OTU when inoculum A and B were respectively employed as seed sludge.The sequencing results suggested that dominant species in mature granules cultivated by inoculum A were Paracoccus sp., Devosia hwasunensi, Pseudoxanthomonas sp., while the dominant species were Lactococcus raffinolactis and Pseudomonas sp.in granules developed from inoculum B.  相似文献   

3.
Two types of inoculated sludges, granular sludge that had been stored at-20°C and activated sludge, were investigated for the domestication of aerobic granular sludges(AGSs in sequencing batch reactors(SBRs). The results showed that using the stored granular sludge as inoculation sludge could effectively shorten the domestication time of AGS and yielded mature granular sludge after 22 days of operation. The AGS domesticated by stored granular sludge had better biomass and sedimentation properties; its MLSS and SVI reached8.55 g/L and 35.27 mL/g, respectively. The removal efficiencies for chemical oxygen demand(COD), ammonium nitrogen(NH_4~+-N) and total phosphorus(TP) reached 90.76%, 97.39% and 96.40%, respectively. By contrast, 54 days were needed to obtain mature granules using activated sludge. The microbial community structure was probed by using scanning electron microscopy(SEM) and high-throughput sequencing. The results showed that the diversity of the microbial community in mature granules was reduced when stored granular sludge rather than activated sludge was employed as inoculation sludge, and the dominant microbes were changed. The dominant species in mature granules domesticated using stored granular sludge were Zoogloea, Acidovorax and Tolumonas at the genus classification level, while the dominant species were Zoogloea and TM7-genera in granules developed from activated sludge.  相似文献   

4.
The effects of silver nanoparticles(AgNPs) on reactor performance, extracellular polymeric substances composition and microbial community structure and function in integrated fixed-film activated sludge–sequencing batch reactors(IFAS–SBRs) were investigated.Results showed that the addition of AgNPs from 0.1 to 10 mg/L exhibited no significant effects on nutrient removal. The average overall removal of COD, NH4+–N and PO43-–P was96.6%, 99.9% and 98.8%, respectively. The introduction of AgNPs caused an increase in extracellular polymeric substances content for the sludge and biofilm of IFAS–SBRs. The release of Ag+from Ag NPs and lactate dehydrogenase test implied the low toxicity of AgNPs to IFAS–SBRs. High-throughput sequencing revealed that microbial community structure showed significant shifts at phylum and genus levels after long-term exposure to AgNPs,but core functional groups responsible for nutrient removal remained at high abundance.Bacterial function prediction indicated that the metabolic categories showed no significant shifts under AgNPs stress, therefore good process performance could still be achieved.  相似文献   

5.
Sludge granulation is considered to be the most critical parameter governing successful operation of an upflow anaerobic sludge blanket and expanded granular sludge bed(EGSB)reactors.Pre-granulated seeding sludge could greatly reduce the required start- up time.Two lab-scale and a pilot-scale EGSB reactors were operated to treat Shaoxing Wastewater Treatment Plant(SWWTP) containing wastewater from real engineering printing and dyeing with high pH and sulfate concentration.The microbiological structure and the particle size distribution in aerobic excess sludge,sanitary landfill sludge digested for one year,and the granular sludge of EGSB reactor after 400 d of operation were analyzed through scanning electron microscopy (SEM) and sieves.The lab-scale EGSB reactor seeded with anaerobic sludge after digestion for one year in landfill showed obviously better total chemical oxygen demand (TCOD)removal efficiency than one seeded with aerobic excess sludge after cation polyacrylamide flocculation-concentration and dehydration.The TCOD removed was 470.8 mg/L in pilot scale EGSB reactor at short hydraulic retention time of 15 h.SEM of sludge granules showed that the microbiological structure of the sludge from different sources showed some differences.SEM demonstrated that Methanobacterium sp.was present in the granules of pilot-scale EGSB and the granular sludge produced by landfill contained a mixture of anaerobic/anoxic organisms in abundance.The particle size distribution in EGSB demonstrated that using anaerobic granular sludge produced by sanitary landfill as the seeding granular sludge was feasible.  相似文献   

6.
Aerobic heterotrophic granular sludge was cultivated in a sequencing batch shaking reactor(SBSR) in which a synthetic wastewater containing glucose as carbon source was fed. The characteristics of the aerobic granules were investigated. Compared with the conventional activated sludge flocs, the aerobic granules exhibit excellent physical characteristics in terms of settleability, size, shape, biomass density, and physical strength.Scanning electron micrographs revealed that in mature granules little filamentous bacteria could be found, rod-shaded and coccoid bacteria were the dominant microorqanisms.  相似文献   

7.
In this study, a lab-scale biological anaerobic/anaerobic/anoxic/membrane bioreactor(A_-~3MBR) was designed to treat wastewater from the ethanol fermentation of food waste,a promising way for the disposal of food waste and reclamation of resources. The 454 pyrosequencing technique was used to investigate the composition of the microbial community in the treatment system. The system yielded a stable effluent concentration of chemical oxygen demand(202 ± 23 mg/L), total nitrogen(62.1 ± 7.1 mg/L), ammonia(0.3 ±0.13 mg/L) and total phosphorus(8.3 ± 0.9 mg/L), and the reactors played different roles in specific pollutant removal. The exploration of the microbial community in the system revealed that:(1) the microbial diversity of anaerobic reactors A_1 and A_2, in which organic pollutants were massively degraded, was much higher than that in anoxic A_3 and aerobic MBR;(2) although the community composition in each reactor was quite different, bacteria assigned to the classes Clostridia, Bacteroidia, and Synergistia were important and common microorganisms for organic pollutant degradation in the anaerobic units, and bacteria from Alphaproteobacteria and Betaproteobacteria were the dominant microbial population in A_3 and MBR;(3) the taxon identification indicated that Arcobacter in the anaerobic reactors and Thauera in the anoxic reactor were two representative genera in the biological process. Our results proved that the biological A_-~3MBR process is an alternative technique for treating wastewater from food waste.  相似文献   

8.
The growing interest in the anaerobic ammonium oxidizing (AMX) process in treating high nitrogen containing wastewaters and a comprehensive study into the granulation mechanism of these bacteria under diverse environmental conditions over the years have been unequal. To this effect, the distinctive differences in saline adapted AMX (S_AMX) and non-saline adapted AMX (NS_AMX) granules are presented in this study. It was observed that substrate utilisation profiles, granule formation mechanism, and pace towards granulation differed marginally for the two adaptation conditions. The different microbial dominant aggregation types aided in splitting the 471 days operated lab-scale SBRs into three distinct phases. In both reactors, phase III (granules dominant phase) showed the highest average nitrogen removal efficiency of 87.9% ± 4.8% and 85.6% ± 3.6% for the S_AMX and NS_AMX processes, respectively. The extracellular polymeric substances (EPS) quantity and major composition determined its role either as a binding agent in granulation or a survival mechanism in saline adaptation. It was also observed that granules of the S_AMX reactor were mostly loosely and less condensed aggregates of smaller sub-units and flocs while those of the NS_AMX reactor were compact agglomerates. The ionic gradient in saline enrichment led to an increased activity of the Na+/K+ – ATPase, hence enriched granules produced higher cellular adenosine triphosphate molecules which finally improved the granules active biomass ratio by 32.96%. Microbial community showed that about three to four major known AMX species made up the granules consortia in both reactors. Proteins and expression of functional genes differed for these different species.  相似文献   

9.
Sweet potato shochu is a traditional Japanese spirit produced mainly in the South Kyushu area in Japan. The amount of stillage reaches approximately 8 × 105tons per year. Wastewater mainly containing stillage from the production of sweet potato-shochu was treated thermophilically in a fullscale treatment plant using fixed-bed reactors(8 reactors × 283 m3). Following the addition of Ni2+ and Co2+, the reactors have been stably operated for six years at a high chemical oxygen demand(COD) loading rate of 14 kg/(m3·day). Analysis of coenzyme content and microbial communities indicated that similar microbial communities were present in the liquid phase and on the fiber carriers installed in reactors. Bacteria in the phyla Firmicutes as well as Bacteroidetes were dominant bacteria, and Methanosarcina thermophila as well as Methanothermobacter crinale were dominant methanogens in the reactors. This study reveals that stillage from sweet potato-shochu production can be treated effectively in a full-scale fixed-bed reactor under thermophilic conditions with the help of Ni2+and Co2+. The high diversity of bacterial community and the coexistence of both aceticlastic and hydrogenotrophic methanogens contributed to the excellent fermentation performance.  相似文献   

10.
The effects of different substrates on the aerobic granulation process were studied using laboratory-scale sequencing batch reactors (SBRs). Four parallel granules sequencing batch reactors (GSBR): R1, R2, R3, and R4 were fed with acetate, glucose, peptone and fecula, respectively. Stable aerobic granules were successfully cultivated in R1, R2, R4, and smaller granules less than 500 μm were formed in R3. Morphology and the physic-chemical characteristics of aerobic granules fed with different carbon substrates were investigated by the four reactors operated under the same pressure. The aerobic granules in the four reactors were observed and found that peptone was the most stable one due to its good settleability even after a sludge age as short as 10 d. A strong correlation was testified between the characteristics of aerobic granules and the properties of carbon substrates. The stability of aerobic granules was affected by extracellular polymer substances (EPS) derived from microorganism growth during feast time fed with different carbon substrates, and the influence of the property of storage substance was greater than that of its quantity. Optimal carbon substrates, which are helpful in the cultivation and retention of well-settling granules and in the enhancement of the overall ability of the aerobic granules reactors, were found.  相似文献   

11.
The effect of COD/N ratio on the granulation process and microbial population succession was investigated. Four identical sequencing batch reactors, R1, R2, R3 and R4, were operated with various initial COD/N ratios ranging from 0/200 to 800/200 (m/m). Ethanol was fed as the source of COD. Aerobic granules were successfully cultivated in R2 and R3, operating with the COD/N ratio of 200/200 and 400/200, respectively. Scanning electron microscope observations indicated that short rod-shaped and spherical bacteria were dominant in R2, while granules produced in R3 were surrounded with a large amount of filamentous bacteria. The average specific nitritation rate in R2 and R3 were 0.019 and 0.008 mg N/(mg MLVSS.hr), respectively. Fluorescence in situ hybridization results demonstrated that nitrifying bacteria population was enriched remarkably in R2. It indicated that nitrification ability and nitrifying bacteria population were enriched remarkably at low COD/N ratio. However, no granules were formed in R1 and R4 which might attribute to either limited or excessive extracellular polymeric substances production. This study contributed to a better understanding of the role of COD/N ratio in nitrifying sludge granulation.  相似文献   

12.
利用好氧硝化颗粒污泥SBR处理分离尿液的研究   总被引:2,自引:1,他引:1  
邹雪  孙飞云  杨成永  李久义 《环境科学》2007,28(9):1987-1992
在不同接种污泥条件下的序批式活性污泥系统(sequencing batch reactor, SBR)中,研究了分离尿液(source-separated urine, SSU)的处理情况和污泥特性.在硝化污泥接种的SBR中,对SSU中的可生化降解有机物具有较高的去除效率,而对其中氨氮的硝化效率很低,系统中没有出现生物体聚集状态的污泥.在用实验室内培养的好氧颗粒污泥接种的SBR系统中,对SSU不仅有较高的有机物去除效率,同时还可以有效实现氨氮的硝化过程,经过约70 d的运行之后,系统中出现了稳定状态的生物聚集体——好氧硝化颗粒污泥,氨氮容积负荷以氮计算为0.5 kg/(m3·d).好氧硝化颗粒污泥具有良好的沉降效果和活性,颗粒表面聚集着硝化杆菌和球菌.好氧硝化颗粒污泥的粒径比接种的好氧颗粒污泥的粒径有较明显的减少,沉降速率却比相同粒径的好氧颗粒污泥有较大的改善.好氧硝化颗粒污泥对SSU中有机物和氨氮的转化效率都在90%以上,有效地保证了反应器中较小生长速率的硝化细菌的数量并实现系统的稳定运行.  相似文献   

13.
Aerobic granules seeded with activated sludge flocs and pellets (obtained from activated sludge flocs) were cultivated in two sequencing batch reactors and their characteristics were compared. Compared with granules seeded with activated sludge flocs, those seeded with pellets had shorter start-up time, larger diameter, better chemical oxygen demand removal e ciency, and higher hydrophobicity, suspended solid concentration, and Mg2+ content. The di erent inocula led the granule surface with di erent microbial morphologies, but did not result in di erent distribution patterns of extracellular polymeric substances and cells. The anaerobic bacterium Anoxybacillus sp. was detected in the granules seeded with pellets. These results highlighted the advantage of pellet over activated sludge floc as the seed for aerobic granulation and wastewater treatment.  相似文献   

14.
选择压法培育好氧颗粒污泥的试验   总被引:58,自引:13,他引:45  
王强  陈坚  堵国成 《环境科学》2003,24(4):99-104
以普通絮状活性污泥为接种污泥,葡萄糖为碳源,在序批式反应器中培育出好氧颗粒污泥增加COD负荷的同时,减少沉降时间以造成选择压,强化好氧颗粒污泥的形成根据污泥的形态变化,颗粒污泥的形成可分为3个阶段.反应器启动67d出现颗粒污泥COD负荷4.8kg/(m3·d)、表面气体流速0.0175m/s时,反应器中活性污泥完全颗粒化颗粒污泥粒径大多6~9mm,MLSS 7800mg/L,最小沉降速率32.7m/h.好氧颗粒污泥具有在高负荷下良好的COD去除率.对好氧颗粒污泥的基本性质及其形成的影响因素进行了初步分析.  相似文献   

15.
通过考察好氧颗粒污泥特征、比耗氧速率(SOUR)、处理效果和菌群的变化,探索常温储存实际低碳源废水培养出的好氧颗粒污泥的可行性.试验结果表明,常温清水储存60d后颗粒结构未出现明显解体;污泥浓度由4960mg/L小幅降低至4740mg/L,但沉降性能保持良好(SVI为24.2mL/g);SOUR整体下降较小(16%),尤其是硝化菌的SOUR;污泥菌群在门和属水平上的相对丰度均发生了变化.在恢复运行后,颗粒形态恢复快且良好,粒径在长期运行后明显增大(200~250μm);污泥沉降性能始终保持良好(SVI<20mL/g),SOUR在运行20d后既能恢复;运行11d后COD处理效果完全恢复(平均出水COD为53mg/L),运行5d后NH4+-N处理效果完全恢复(平均出水NH4+-N为0.7mg/L).常温清水储存好氧颗粒污泥不仅操作方便,而且反应器能快速恢复稳定运行,具有显著的实际应用价值.  相似文献   

16.
王超  郑晓英 《环境科学》2008,29(8):2235-2241
对不同剪切应力(0.189、0.267、0.327和0.377 N/m2)下4个序批式反应器(SBR)中好氧颗粒污泥的形态结构、比耗氧速率(SOUR)以及胞外聚合物进行了对比分析.结果表明,好氧颗粒污泥具有稳定的基本形态特征,其微生物主要由杆菌、球菌和丝状菌组成;其中杆菌能承受高剪切作用.是剪切应力为0.377 N/m2时的优势菌群.4个反应器中污泥粒径分布范围分别为0.2-0.5、0.5-1.5、0.5-1.5和0.3-0.5 mm;SOUR分别为34.54、40.08、46.26和46.42 mg/(g·h),胞外多聚糖分别为59.71、66-81、80.88和109.99 mg/g,胞外蛋白质分别为9.29、9.80、12.35和17.02 mg/g.好氧颗粒污泥比耗氧速率SOUR和胞外聚合物与剪切应力有很好的正相关性.确定了好氧颗粒污泥微生物活性与剪切应力的响应关系.  相似文献   

17.
高浓度Vc生产废水培养好氧颗粒污泥的试验研究   总被引:3,自引:2,他引:1  
汪善全  张胜  李晓娜  竺建荣 《环境科学》2007,28(10):2243-2248
采用高浓度难降解的Vc生产废水可以在SBR反应器中培养出好氧颗粒污泥.转化母液反应器中污泥实现完全颗粒化,得到的好氧颗粒污泥粒径为0.2~1 mm,平均沉降速度为31.2 m·h-1;精制或提取母液反应器中污泥部分颗粒化,得到的颗粒粒径为0.5~2.5 mm,平均沉降速度为26.3 m·h-1.由于形成好氧颗粒污泥,反应器系统表现出良好的运行性能,在进水COD 1 000~1 500 mg·L-1时去除率达到80%左右.如果反应器进水中补充加入一定浓度的易降解有机物,处理系统的去除效率还可进一步提高并能缩短启动时间.通过观察和比较不同进水反应器中的生物相发现,好氧颗粒污泥中出现的原后生动物种类及生物相丰富程度不仅与反应器运行状态有关,更重要的是取决于反应器中的进水水质.实验中好氧颗粒污泥的形成过程经历了污泥复活、污泥驯化和污泥颗粒化3个阶段.在运行控制过程中通过将沉降时间作为培养好氧颗粒污泥的一个关键控制参数,它既可以去除反应器中沉降性差的污泥还可以在短时间内调节反应器中的运行负荷,从而促进反应器中好氧污泥快速实现颗粒化.  相似文献   

18.
基于反硝化聚磷菌的颗粒污泥的培养   总被引:3,自引:0,他引:3       下载免费PDF全文
采用SBR反应器,利用絮状污泥为接种污泥,培养反硝化聚磷菌颗粒污泥,在提高污泥氮磷去除率的同时,实现污泥的颗粒化.结果表明,经过三个阶段45d的培养,体系达到稳定状态,利用其处理模拟生活废水时,磷的去除率在90%左右,氨氮、COD的去除率在95%左右,单位硝态氮反硝化吸磷量达到0.876mg/mg,反硝化聚磷菌占聚磷菌的比例为74.36%.污泥的平均粒径在1.0~2.0mm之间,平均沉降速度为44~72m/h.由此可以看出,通过调节溶解氧,使污泥处于厌氧、缺氧及好氧状态,可以实现基于反硝化聚磷菌的污泥颗粒化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号