首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.  相似文献   

2.
Present day Mexico City was established on the banks of the now dead Lake Texcoco by Aztec Indians in a.d. 1325. Over time, increasing population growth, urbanization, vehicular traffic and the number of diverse stationary sources, coupled with its topography and the resultant frequency of prevalent stagnant air masses make Mexico City one of the most polluted areas in the world. Use of biological indicator plants since the early 1970s has shown the critical nature of phytotoxic photochemical oxidants in the region. More recent empirical studies with bean, soybean and pine species confirm these observations and raise concern regarding the geographic magnitude of the problem. Surface measurements of air quality in the region are inadequate and require much additional support. Ultimately, ambient air quality measurements must be coupled with the observations on responses of sensitive vegetation. While the results presented in this paper are primarily observational or qualitative, they hopefully serve the purpose of bringing attention to a critical air quality issue in a developing country.  相似文献   

3.
This paper investigates the impacts of building facades and ground heating on the wind flow and pollutant transport in street canyons using the computational fluid dynamic (CFD) technique. Street canyons of H/W (H representing the building height and W the street width) varied from 0.1 to 2, which covered the basic flow regimes of skimming flow (H/W=1 or 2), wake interference flow (H/W=0.5), and isolated roughness flow (H/W=0.1), were examined in a series of sensitivity tests. Heating that occurred on different surfaces, including ground surface and building façades, posed considerable effects on the street canyon wind flow and pollutant transport compared with those under isothermal conditions. The CFD results showed that the mechanically induced wind flow and pollutant transport were complicated by the buoyancy under temperature stratification. Individual street canyons of different H/W and surface-heating scenarios exhibited their unique wind flow structure and pollutant transport behaviors. Two counter-rotating vortices were calculated in the street canyons of H/W=1, in which the zone of higher pollutant concentration under isothermal conditions was switched from the leeward side to the windward side. In the street canyon of H/W=2, the recirculating wind pattern was perturbed by surface heating that led to the development of either one primary vortex or three closely coupled vortices. Because of the complicated wind structure, the zones of higher pollutant concentration located either on the leeward or windward ground level were subjected to the surface-heating scenarios. Only two vortices were developed inside the street canyon of H/W=0.5. The large primary vortex, centered inside the street canyon, extended above the roof level of the street canyon. Meanwhile, a small secondary vortex was found at the ground-level windward corner whose size results as a function of surface-heating configurations. Finally, in the street canyon of H/W=0.1, an isolated clockwise-rotating vortex was developed beside the leeward building while the wind in the windward side blew in the prevailing wind direction. As a result, air pollutant emitted at the street centerline was unlikely to be carried into the leeward vortex. Instead, it was dispersed rapidly on the windward side before being removed from the street canyon.  相似文献   

4.
A new method is proposed to classify ozone-rich layers observed in tropospheric profiles in terms of their origin using multivariate analysis. We combine principal component and discriminant analyses to quantify the respective ability of 21 measured physical parameters to describe the layers. Agglomerative hierarchical clustering shows the existence of clusters of air masses with specific physical characteristics. Quadratic discriminant analysis allows the definition of multidimensional borders between these clusters. The geophysical characteristics of the clusters are discussed and related to the origins of the layers: recently transported from the stratosphere (ST) or from the boundary layer (BL) or transported over long distances in the free troposphere.This clustering is compared to the results of a Lagrangian particle dispersion model for a 2-year period. The proportions of layers originating either from the BL or from the ST are highly consistent using both methods as well as the respective contribution of each reservoir to the total ozone mass. About 10% of the ozone measured in the tropospheric layers was exported recently from the BL and one-fifth has a recent stratospheric origin. The remaining proportion could not be attributed to any recent transport pathway. Season-dependent criteria allow very satisfactory reproduction of the seasonal variability of the layering as seen by the Lagrangian model. Analysis of the geographical origin of BL air masses suggests that the statistical clustering underestimates long-range transport, especially in fall.  相似文献   

5.

Introduction  

Two hundred twenty-five precipitation samples were collected at high- (summit, 1,534 m ASL) and low-elevation (base, 218 m ASL) sites between 2005 and 2008 in eastern China. The present work focused on the roles of long-range transport and under-cloud/boundary layer scavenging on chemical composition of precipitation collected at the two sites.  相似文献   

6.
Samuele Furfari 《Ambio》2016,45(1):63-77
The transport sector is fundamental for the economy but also for personal life. With a growing population and the globalization process, it is not surprising that the demand of transport is set to grow in the near future and certainly until 2050. This paper focuses on the huge potential of progress in the sector of technology for transport. As the principal sector for transport will remain on roads, the paper emphasizes the progress in the automotive sector. Since car manufacturers are investing massively into research and technology development to offer ever more efficient cars—not only energy efficient but also efficient in terms of safety and comfort—the car of tomorrow will be very different from the present one. The increasing role of electronics in cars will synergistically cooperate with that of so-called smart cities. The potential development of methane in the transport sector, mainly used for heavy transportation is discussed.  相似文献   

7.
Guangzhou is a metropolitan in south China with unique pollutants and geographic location. Unlike those in western countries and the rest of China, the appearance of haze in Guangzhou is often (about 278 days per year on average of 4 years). Little is known about the influence of these hazes on health. In this study, we investigated whether short-term exposures to haze and air pollution are associated with hospital admissions in Guangzhou. The relationships between haze, air pollution, and daily hospital admissions during 2008–2011 were assessed using generalized additive model. Studies were categorized by gender, age, season, lag, and disease category. In haze episodes, an increase in air pollutant emissions corresponded to 3.46 (95 % CI, 1.67, 5.27) increase in excessive risk (ER) of total hospital admissions at lag 1, 11.42 (95 % CI, 4.32, 18.99) and 11.57 (95 % CI, 4.38, 19.26) increases in ERs of cardiovascular illnesses at lags 2 and 4 days, respectively. As to total hospital admissions, an increase in NO2 was associated with a 0.73 (95 % CI, 0.11, 1.35) and a 0.28 (95 % CI, 0.11, 0.46) increases in ERs at lag 5 and lag 05, respectively. For respiratory illnesses, increases in NO2 was associated with a 1.94 (95 % CI, 0.50, 3.40) increase in ER at lag 0, especially among chronic obstructive pulmonary disease. Haze (at lag1) and air pollution (for NO2 at lag 5 and for SO2 at lag3) both presented more drastic effects on the 19 to 64 years old and in the females. Together, we demonstrated that haze pollution was associated with total and cardiovascular illnesses. NO2 was the sole pollutant with the largest risk of hospital admissions for total and respiratory diseases in both single- and multi-pollutant models.  相似文献   

8.
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers’ breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils’ hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.  相似文献   

9.
In the Mezquital Valley, Mexico, crops have been irrigated with untreated municipal wastewater for more than a century. Atrazine has been applied to maize and alfalfa grown in the area for weed control for 15 years. Our objectives were to analyse (i) how wastewater irrigation affects the filtering of atrazine, and (ii) if the length of irrigation has a significant impact. We compared atrazine sorption to Phaeozems that have been irrigated with raw wastewater for 35 (P35) and 85 (P85) years with sorption to a non-irrigated (P0) Phaeozem soil under rainfed agriculture. The use of bromide as an inert water tracer in column experiments and the subsequent analysis of the tracers' breakthrough curves allowed the calibration of the hydrodynamic parameters of a two-site non equilibrium convection-dispersion model. The quality of the irrigation water significantly altered the soils' hydrodynamic properties (hydraulic conductivity, dispersivity and the size of pores that are hydraulically active). The impacts on soil chemical properties (total organic carbon content and pH) were not significant, while the sodium adsorption ratio was significantly increased. Sorption and desorption isotherms, determined in batch and column experiments, showed enhanced atrazine sorption and reduced and slower desorption in wastewater-irrigated soils. These effects increased with the length of irrigation. The intensified sorption-desorption hysteresis in wastewater-irrigated soils indicated that the soil organic matter developed in these soils had fewer high-energy, easily accessible sorption sites available, leading to lower and slower atrazine desorption rates. This study leads to the conclusion that wastewater irrigation decreases atrazine mobility in the Mezquital valley Phaeozems by decreasing the hydraulic conductivity and increasing the soil's sorption capacity.  相似文献   

10.
Chien CC  Kao CM  Chen CW  Dong CD  Wu CY 《Chemosphere》2008,71(9):1786-1793
The Cheng-Ching Lake Water Treatment Plant (CCLWTP) is the main supplier of domestic water for the Greater Kaohsiung area, the second largest metropolis in Taiwan. Biological activated carbon (BAC) filtration is one of the major treatment processes in CCLWTP. The objectives of this study were to evaluate the effectiveness of BAC filtration on water treatment in the studied advanced water treatment plant and its capability on pollutants [e.g., AOC (assimilable organic carbon), bromide, bromate, iron] removal. In this study, water samples from each treatment process of CCLWTP were collected and analyzed periodically to assess the variations in concentrations of AOC and other water quality indicators after each treatment unit. Moreover, the efficiency of biofiltration process using granular activated carbon (GAC) and anthracite as the fillers was also evaluated through a column experiment. Results show that the removal efficiencies for AOC, bromide, bromate, and iron are 86% 100%, 17%, and 30% after the BAC filter bed, respectively. This indicates that BAC filtration plays an important role in pollutant removal. Results also show that AOC concentrations in raw water and effluent of the CCLWTP are approximately 143 and 16 microg acetate-Cl(-1), respectively. This reveals that the treatment processes applied in CCLWTP is able to remove AOC effectively. Results of column study show that the AOC removal efficiencies in the GAC and anthracite columns are 60% and 17%, respectively. Microbial colonization on GAC and anthracite were detected via the observation of scanning electron microscopic images. The observed microorganisms included bacteria (rods, cocci, and filamentous bacteria), fungi, and protozoa. Results from this study provide us insight into the mechanisms of AOC removal by advanced water treatment processes. These findings would be helpful in designing a modified water treatment system for AOC removal and water quality improvement.  相似文献   

11.
The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K+ as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.0–16.8% and 4.0–19.0% of PM2.5 concentrations in Xinken and Guangzhou downtown, respectively.  相似文献   

12.
13.
Environmental Science and Pollution Research - Measurements of trace element (As, Cu, Cd, Cr, Ni, Pb, Zn) deposition fluxes were conducted simultaneously in two contrasted environments, i.e., urban...  相似文献   

14.
研究了在厌氧条件下以葡萄糖为基质的序批操作与连续操作反应器中微生物利用基质的不同途径。结果表明,在连续操作中,反应器内的VFA及污泥中的糖原含量保持不变,葡萄糖被用于产生甲烷和微生物增殖,两者分别占进水COD的79.34%和20.62%。在序批操作中,当进水结束时,50.17%的葡萄糖被转化为糖原储存于细胞体内,反应器内的VFA、产生的甲烷及微生物增殖分别占进水COD的25.05%、11.56%和13.22%;当反应结束时,葡萄糖转化为甲烷和微生物细胞的部分分别占进水COD的78.13%和20.6%,积累的VFA及储存的糖原被微生物代谢。两种不同操作模式下葡萄糖的代谢途径不同,序批式反应器中由于糖原储存的存在,减缓了VFA的积累,为厌氧系统的高效、稳定运行提供了保证。  相似文献   

15.
为开发高效率、抗冲击能力强的有机废水沼气发酵技术,以人工配制的糖蜜废水为试材,在不同有机负荷(1.7~6.73 kg/(m3·d))的冲击方式下,对4个炭纤维膜为载体固定床厌氧反应器的启动进行了研究。通过COD去除率、p H、产气量、甲烷含量、变性梯度凝胶电泳(DGGE)、16S r DNA克隆文库技术、实时荧光定量PCR(Q-PCR)等指标和方法,分析炭纤维载体在抵御有机负荷冲击过程中的作用及对微生物定殖的贡献。结果表明,在不同有机负荷冲击下,4个炭纤维载体固定床厌氧反应器在第40天时均启动成功,其产气量稳定在21 L左右,出水p H在6.8~7.5之间,COD去除率在80%以上,甲烷含量在75%以上,其中冲击最大的R2反应器(COD每隔5 d增加5 000 mg/L)的有机负荷是固定床厌氧反应器的一个阈值。附着在炭纤维载体上的产甲烷古菌的多样性丰富,并且繁殖缓慢、容易附着的产甲烷微菌(MMB)的16S rRNA基因浓度最高,反应器中占优势的产甲烷菌是甲烷鬃毛菌(MST)和产甲烷微菌(MMB),说明炭纤维载体对微生物的定殖起到非常重要的作用,提高了污泥活性,从而提高了反应器的性能。  相似文献   

16.
Long-range transport of pollution outflow from Asian mainland has been noticed and expected to play a significant role in Pacific background. Since 1993 the Taiwanese Environmental Protection Administration (TEPA) is conducting ground-based observations of various particulate and gaseous pollutants at 74 monitoring stations in Taiwan. One of these stations, Heng-Chun at the south coast of Taiwan can be considered as a background station with only negligible amounts of local pollution, and another one, Wan-Li at the north coast, predominantly receives air that has not passed over Taiwan, so that background air can be analysed by means of sectorisation. In this work, the sectorised 13-year time series of measurements of CO, SO2, O3, NOx and PM10, from the Wan-Li station are presen and compared to data from the Heng-Chun station and another TEPA background station off the coast of mainland China, Ma-Zu. The CO and O3 measurements are also compared to data from the Yonaguni station, a Pacific island site, part of the Global Atmospheric Watch (GAW) network.The similarity of the sectorised data from the Wan-Li station with the data of the other station indicates that atmospheric measurements from the Wan-Li site can be used to make inferences about trends in western Pacific background air pollution and the effect of long-range transport of pollutants. The measurement time series from 1993 to 2006 do not indicate a significant trend in the monthly mean O3 concentrations in accordance with other research about ozone in tropical latitudes. An increasing trend in CO concentrations of 2.8% per annum is observed between 1999 and 2006 for long-range transport to northern Taiwan, and a doubling of the SO2 and NOx concentrations observed at the Wan-Li and Heng-Chun sites within the period 2001–2006. SO2 concentrations are found to quadruple at Ma-Zu within the same period. The data suggest that pollution from the Asian mainland enhances significantly the background air pollution over the Pacific.  相似文献   

17.
Environmental Science and Pollution Research - Atmospheric gases and particulate matter (PM) in contact with the material’s surface lead to chemical and physical changes, which in most cases...  相似文献   

18.
Environmental Science and Pollution Research - This study investigates the heterogeneous impact of air transport intensity, air passenger transport, and air freight transport on air...  相似文献   

19.
Miscible-displacement experiments were conducted to examine the impact of microbial lag and bacterial cell growth on the transport of salicylate, a model hydrocarbon compound. The impacts of these processes were examined separately, as well as jointly, to determine their relative effects on biodegradation dynamics. For each experiment, a column was packed with porous medium that was first inoculated with bacteria that contained the NAH plasmid encoding genes for the degradation of naphthalene and salicylate, and then subjected to a step input of salicylate solution. The transport behavior of salicylate was non-steady for all cases examined, and was clearly influenced by a delay (lag) in the onset of biodegradation. This microbial lag, which was consistent with the results of batch experiments, is attributed to the induction and synthesis of the enzymes required for biodegradation of salicylate. The effect of microbial lag on salicylate transport was eliminated by exposing the column to two successive pulses of salicylate, thereby allowing the cells to acclimate to the carbon source during the first pulse. Elimination of microbial lag effects allowed the impact of bacterial growth on salicylate transport to be quantified, which was accomplished by determining a cell mass balance. Conversely, the impact of microbial lag was further investigated by performing a similar double-pulse experiment under no-growth conditions. Significant cell elution was observed and quantified for all conditions/systems. The results of these experiments allowed us to differentiate the effects associated with microbial lag and growth, two coupled processes whose impacts on the biodegradation and transport of contaminants can be difficult to distinguish.  相似文献   

20.
The present study focuses on the exceptional Saharan dust event that affected most of France in February 2004. Activity levels of various artificial radionuclides (90Sr, 137Cs, uranium, thorium and plutonium isotopes, 241Am) were examined. Activity or isotopic ratios are discussed in the context of atmospheric nuclear weapons tests, among them French tests performed in Sahara in the 1960s. The daily evolution of 137Cs activity levels in the atmosphere was compared to daily PM10 change. A link between airborne 137Cs and PM10, is given. It is estimated that this 2-day event deposited as much 137Cs as would be deposited on average over a 10-month period. The amount of deposited 137Cs and 239+240Pu represents respectively about 0.1 and 1% of the activity already present in the soil. Such Saharan dust events correspond to an extreme type of “feeder” process of artificial radionuclides in the atmosphere. Therefore, they contribute to the long term background level of artificial radionuclides kept at trace levels in the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号