首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 546 毫秒
1.
淀粉基黄原酸盐处理重金属废水的条件优化研究   总被引:5,自引:0,他引:5  
采用淀粉基黄原酸盐处理含重金属的电镀废水,对淀粉基黄原酸盐的用量,pH值和反应时间等条件进行了研究。结果发现,1L含氰电镀废水(含Cr^3 15mg/L,Cu^2 3mg/L,Ni^2 9.2mg/L和Zn^2 6mg/L),加入1g淀粉基黄原酸盐,调节pH为8,搅拌1h,过滤,处理后的废水中Cr^3 ,Cu^2 ,Zn^2 和Ni^2 残余浓度分别为0.08mg/L,0.01mg/L,0.1mg/L和0.08mg/L。含有重金属盐的残渣,可用硝酸处理,以回收重金属。  相似文献   

2.
介绍了利用酸洗废液为原料制备复合亚铁型混凝剂的新方法 ,并用制得的产品应用于电镀和印染废水治理工程。工程应用及实验结果表明 ,对含Ni2 + 、Cu2 + 和Cr6+ 的电镀废水 ,能使Ni2 + 、Cu2 + 出水浓度 <0 .1mg/L ,Cr6+ 未检出 ,还能处理数种化学镀废液。对印染废水 ,COD去除率和脱色率可分别达到 84 %和 98%以上 ,值得进一步研究和推广  相似文献   

3.
BM菌是一种能够高效去除电镀废水中重金属离子的新型功能菌群,实验研究了BM二代菌对Cr6+、Ni2+的最佳去除条件,结果表明:当水温为10~30℃,pH=2,Cr6+浓度为100 mg/L,反应10 min,菌废比为1∶200时废水中Cr6+的去除率达到98%以上;当水温为10~30℃,pH=8.5,Ni2+浓度为100 mg/L,反应10 min,菌废比为1∶200时废水中Ni2+的去除率达到96%以上;在相同条件下实际电镀废水中Cr6+和Ni2+的去除率均高于99%。  相似文献   

4.
电混凝处理电镀综合废水   总被引:4,自引:0,他引:4  
采用电混凝法处理酸性电镀综合废水,首先研究了不同电流密度对总氰化物、重金属和化学需氧量(COD)去除率的影响。实验结果表明,电混凝可有效去除酸性电镀综合废水中的氰化物与重金属。随着电流密度的增大,总氰化物与重金属的去除率逐渐提高。当电流密度为10mA/cm2时,废水中残留的总氰化物、Cu2+、Ni2+、Cr6+和Zn2+ 的浓度分别为23.0、25.0、4.5、0.2和0.2mg/L。为了进一步提高去除率,在电化学体系中添加H2O2,随着H2O2投量的增大,总氰化物、重金属、COD去除率不断提高。当H2O2投量为3mL/L时,处理过废水中残留总氰化物、Cu2+、Ni2+、Cr6+、Zn2+和COD的浓度分别为0.2、2.0、3.0、1.5、0.1和220mg/L。  相似文献   

5.
不溶性淀粉黄原酸盐聚丙烯酰胺接枝共聚物除铜降浊研究   总被引:1,自引:0,他引:1  
分别以含Cu2 模拟废水和电镀废水为对象,研究了不溶性淀粉黄原酸盐聚丙烯酰胺接枝共聚物(ISXA)去除Cu2 和降低浊度的能力.论述了该药剂去除Cu2 和降低浊度的优点和机理,探讨了去除Cu 2 的影响因素,如投药量、pH和反应时间.试验表明:(1)对于电镀废水,在5.5倍理论投药量、pH为5.0、反应10 min的条件下,Cu2 去除率为98.89%;当pH≥7时,含Cu2 残渣稳定;在2 mol/L的盐酸和硝酸溶液中浸泡6 h含Cu2 残渣,Cu2 回收率为93.08%;(2)对于含Cu2 模拟废水,在4.5倍理论投药量、pH为5.0、反应10 min的条件下,Cu2 去除率可达99.14%,除Cu2 和降浊存在协同作用.  相似文献   

6.
采用微电解生物法组合工艺处理含铬电镀废水,在实验过程中,电镀废水中的重金属离子通过微电解法预处理可去除90%以上,剩余部分被后续工艺的微生物功能菌去除。实验结果表明对Cr6+含量为50mg/L,Cu2+含量为15mg/L,Ni2+含量为10mg/L的废水,经处理后,重金属离子的净化率达999%,且无二次污染。  相似文献   

7.
重金属污染土壤的草酸和EDTA混合淋洗研究   总被引:13,自引:0,他引:13  
黄川  李柳  黄珊  宋雪 《环境工程学报》2014,8(8):3480-3486
采用不同浓度的草酸(oxalic acid,OX)和乙二胺四乙酸(EDTA)混合的淋洗方法研究重金属污染土壤的最佳混合淋洗方式,探讨了液固比、淋洗时间及pH对淋洗效果的影响,并分析了0.2 mol/L OX+0.2 mol/L EDTA处理前后土壤中重金属形态的变化。结果表明,采用0.2 mol/L OX+0.2 mol/L EDTA混合的淋洗法可同时去除多种重金属,且对Cu、Zn、Ni和Cr的去除率明显高于单用OX和EDTA,去除率分别为Cu 41.29%、Zn 84.73%、Ni 54.2%和Cr 66.01%。0.2mol/L OX+0.2 mol/L EDTA在液固比为5∶1、淋洗时间为4 h、pH为6时可分别达到最佳淋洗效果,且分别为Cu 62.59%、Zn 93.48%、Ni 55.95%和Cr 71.57%;Cu 50.47%、Zn 86.67%、Ni 61.53%和Cr 72.68%;Cu 44.40%、Zn 81.82%、Ni68.76%和Cr 74.93%。形态分析结果表明,0.2 mol/L OX+0.2 mol/L EDTA能较好地改变土壤中重金属形态的分布。  相似文献   

8.
采用非表面活性剂水热法制备了铁酸锰(MnFe2O4)纳米材料吸附剂,研究了吸附时间、溶液pH和温度对MnFe2O4纳米材料吸附模拟含Ni 2+电镀废水和实际含Ni 2+电镀废水中重金属Ni 2+的吸附性能,并探讨了该材料的再生利用性能。结果表明,MnFe2O4纳米材料可有效吸附电镀废水中的Ni 2+,吸附平衡时间为600min。对20mg/L的模拟含Ni 2+电镀废水,投加4.5mg的的MnFe2O4纳米材料进行吸附处理,Ni 2+的吸附去除率高达98%左右;实际工程应用中,应保持电镀废水偏碱性、温度25℃;MnFe2O4纳米材料具有理想的再生利用性能,重复吸附5次后,吸附去除率仍可达82.24%,在实际废水处理中具有广阔的应用前景。  相似文献   

9.
离子浮选法处理电镀废水实验研究   总被引:1,自引:0,他引:1  
进行离子浮选法处理电镀废水的研究,对影响因素pH、CA∶CMe(摩尔比)、离子强度、浮选时间和通气量等进行了实验研究。实验结果表明:离子分离选择性递减顺序为:Cd2+Zn2+Fe2+Cu2+Ni2+。当CA∶CMe为2.5~3∶1,pH为8.5~9,离子强度不高于0.0001 mol/L时,离子浮选对镉、锌、铜、镍等金属离子均有很高的去除率,Cd2+、Zn2+、Fe2+、Ni2+、Cu2+残余浓度最低分别可达0.05、0.20、0.22、0.28和0.33 mg/L,处理后的电镀废水各污染物浓度均达到排放标准。泡沫产品中镉、锌、铜、镍品位分别达到3.2%、9.3%、18.1%和13.2%,具有极高的资源回收价值。  相似文献   

10.
以丙烯酸,四乙烯五胺,二硫化碳和氢氧化钠为原料合成了一种二硫代氨基甲酸盐类高分子重金属螯合剂,PATD,采用红外光谱对其结构进行了表征。研究了PATD的投加量、体系pH对Cu2+和Ni2+模拟废水的处理效果的影响。结果表明,PATD高分子重金属螯合剂处理浓度为50 mg/L的Cu2+和Ni2+模拟重金属废水时,当PATD/重金属离子质量比分别大于6(Cu2+)和12(Ni2+)时,处理后废水中残留的重金属离子浓度均低于国家污水综合排放一级标准。PATD在较宽p H范围内均可有效去除重金属Cu2+和Ni2+离子;对Cu2+的去除效果要好于Ni2+。对低浓度(1.0 mg/L)的Cu2+和Ni2+废水的处理同样具有很好的效果。  相似文献   

11.
化学-混凝沉淀处理含氟含重金属废水研究   总被引:3,自引:1,他引:2  
为解决某铝材电镀工业园含氟含重金属废水达标排放的问题,研究了化学混凝沉淀法同时处理该废水中氟与金属的效果及影响因素,采用正交和单因素实验确定了最佳工艺条件。结果表明,当CaCl2投加量与废水中氟离子摩尔比为5∶1(即CaCl质量4 782 mg/L),聚氯化铝(PAC)用量为500 mg/L,pH为9.5,聚丙烯酰胺(PAM)用量2 mg/L时,出水中残留F离子浓度可降至8 mg/L,Cu2+、Ni2+、Cr6+和Zn2+出水浓度分别降至0.05、0.07、0.3和0.1 mg/L,出水能达到《水污染物排放限值》(DB44/26-2001)第二时段一级标准,且最为经济。  相似文献   

12.
利用芦竹修复重金属污染湿地的研究   总被引:1,自引:0,他引:1  
研究了芦竹(Arundodonaxlinn)对Cu2+、Ni2+、Cr6+重金属污染湿地的响应和对该污染湿地的影响。实验结果表明,芦竹对这3种重金属离子有一定的耐受性,并有不同程度的吸收,Cu2+、Ni2+和Cr6+去除率分别为63.8%,42.3%和34.4%。芦竹在100mg/kg浓度的Cu2+、Ni2+污染湿地中生长正常,在低浓度(55mg/kg)Cr6+污染中能存活,但生长速度较慢。在100mg/kg浓度Cr6+污染湿地中,出现急性中毒现象,半月后致死。在重金属污染环境中,芦竹普遍出现失绿现象,但除高浓度Cr6+(100mg/kg)以外,都能正常存活,表现出较强的适应性。  相似文献   

13.
采用农业废弃物麦秆为原料制备黄原酸酯,通过傅立叶变换红外光谱FT-IR、扫描电子显微镜SEM等技术对麦秆黄原酸酯物理化学性质进行表征,并对水中Cu2+进行吸附特性研究,考察了不同条件对Cu2+吸附效果的影响,并将其应用于跌水式吸附法对含重金属沼液进行处理,为麦秆黄原酸酯应用于实际污水处理提供理论参考。结果表明,麦秆黄原酸酯对Cu2+的吸附行为符合伪二级动力学吸附模型与Langmuir等温吸附方程,298 K时,Cu2+的饱和吸附量为28.33 mg/g,溶出率为4.97%,对Cu2+的固持能力较强;黄原酸酯跌水吸附法对于含量为50 mg/L以下的Cu2+废水去除率达到80%以上,对实际沼液中Pb、Zn、Cd、Cu的去除率为44.42%~90.16%,去除顺序为Cd>Pb>Cu>Zn。  相似文献   

14.
Xiang L  Chan LC  Wong JW 《Chemosphere》2000,41(1-2):283-287
The removal of heavy metals (Cr, Cu, Zn, Ni and Pb) from anaerobically digested sludge from the Yuen Long wastewater treatment plant, Hong Kong, has been studied in a batch system using isolated indigenous iron-oxidizing bacteria. The inoculation of indigenous iron-oxidizing bacteria and the addition of FeSO4 accelerated the solubilization of Cr, Cu, Zn, Ni and Pb from the sludge. pH of the sludge decreased with an increase in Fe2+ concentrations and reached a low pH of 2-2.5 for treatments receiving both bacterial inoculation and FeSO4. After 16 days of bioleaching, the following heavy metal removal efficiencies were obtained: Cr 55.3%, Cu 91.5%, Zn 83.3%, Ni 54.4%, and Pb 16.2%. In contrast, only 2.6% of Cr, 42.9% of Cu, 72.1% of Zn, 22.8% of Ni and 0.56% of Pb were extracted from the control without the bacterial inoculation and addition of FeSO4. The residual heavy metal content in the leached sludge was acceptable for unrestricted use for agriculture. The experimental results confirmed the effectiveness of using the isolated iron-oxidizing bacteria for the removal of heavy metals from sewage sludge.  相似文献   

15.
The removal of Cu2+, Ni2+, and Zn2+ ions from their multi-component aqueous mixture by sorption on activated carbon prepared from date stones was investigated. In the batch tests, experimental parameters were studied, including solution pH, contact time, initial metal ions concentration, and temperature. Adsorption efficiency of the heavy metals was pH-dependent and the maximum adsorption was found to occur at around 5.5 for Cu, Zn, and Ni. The maximum sorption capacities calculated by applying the Langmuir isotherm were 18.68 mg/g for Cu, 16.12 mg/g for Ni, and 12.19 mg/g for Zn. The competitive adsorption studies showed that the adsorption affinity order of the three heavy metals was Cu2+?>?Ni2+?>?Zn2+. The test results using real wastewater indicated that the prepared activated carbon could be used as a cheap adsorbent for the removal of heavy metals in aqueous solutions.  相似文献   

16.
BACKGROUND, AIMS AND SCOPE: Hexavalent chromium [Cr(VI)] cannot react with either carbonate or hydroxide to form chromium precipitates. However, by using a precipitation technology to treat plating wastewater containing Cr(VI), Cu(II), Ni(II) and Zn(II), approximately 78% of Cr(VI) (initial 60 mg/L) was co-removed with the precipitation of Cu(II), Ni(II) and Zn(II) (each 150 mg/L) by dosing with Na2CO3 (Sun 2003). Direct precipitation by forming Cu(II)-Cr(VI) precipitates followed by adsorption of Cr(VI) onto freshly formed Cu-precipitates was subsequently found to be the main mechanism(s) involved in Cr(VI) co-removal with Cu(II) precipitation by dosing Na2CO3 stepwise to various pH values (Sun et al. 2003). This study was. carried out to further characterize the formation of primary precipitates during the early stages of copper precipitation and simultaneous removal of Cr(VI) with Cu(II). METHODS: Test metal-solutions were prepared with industrial grade chemicals: CuCl2 x 2H2O, Na2SO4 and K2Cr2207. NaCO3 was added drop-wise to synthetic metal-solution to progressively increase pH. For each pH increment, removal of soluble metals was detected by atomic absorption spectrophotometer (AAS) and surface morphology of precipitates was analyzed by scanning electron microscope (SEM). To further characterize the formation of primary precipitates, a series of MINEQL+ thermodynamic calculations/analyses and equilibrium calculations/ analyses were conducted. RESULTS AND DISCUSSION: MINEQL+ thermodynamic calculation indicated that, for a system containing 150 mg/L Cu(II) and 60 mg/L Cr(VI) with gradual Na2CO3 dosing, if any precipitates can be formed at pH 5.0 or lower, it should be in the form of CuCrO4. Comparison tests using systems containing the same equivalent of Cu(II) plus Cr(VI) and Cu(II) plus SO4(2-) showed that the precipitation occurred at a pH of around 5.0 in the Cu(II)-Cr(VI) system and around 6.0 in the Cu(II)-SO4(2-) system. The discrepancy of the precipitation was indeed caused by the formation of Cu-Cr precipitates. The initiation of copper removal at pH around 5.0 for the Cu-Cr co-removal test was not attributable to the formation of Cu-CO3 precipitates, instead, it was most likely through the formation of insoluble Cu-Cr precipitates, such as CuCrO4 and CuCrO4 x 2Cu(OH)2. Experimental tests, equilibrium calculations, MINEQL+ thermodynamic calculations and surface morphologies for systems using higher concentrations of Cu(II) and Cr(VI) further verified the most probable composition of primary precipitates is copper-chromate. CONCLUSION: In the Cu-Cr co-removal test with Na2O3 dosing to increase pH and induce metal precipitation, copper-chromate precipitates are the primary precipitates produced and contribute to the initial simultaneous removal of copper and chromium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号