首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Municipal sewage sludge (MSS) used for land farming typically contains heavy metals that might impact crop quality and human health. A completely randomized experimental design with three treatments (six replicates each) was used to monitor the impact of mixing native soil with MSS or yard waste (YW) mixed with MSS (YW +MSS) on: i) sweet potato yield and quality; ii) concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in sweet potato plant parts (edible roots, leaves, stem, and feeder roots); and iii) concentrations of ascorbic acid, total phenols, free sugars, and β-carotene in sweet potato edible roots at harvest. Soil samples were collected and analyzed for total and extractable metals using two extraction procedures, concentrated nitric acid (to extract total metals from soil) as well as CaCl? solution (to extract soluble metals in soil that are available to plants), respectively. Elemental analyses were performed using inductively coupled plasma mass spectrometry (ICP-MS). Overall, plant available metals were greater in soils amended with MSS compared to control plots. Concentration of Pb was greater in YW than MSS amendments. Total concentrations of Pb, Ni, and Cr were greater in plants grown in MSS+YW treatments compared to control plants. MSS+YW treatments increased sweet potato yield, ascorbic acid, soluble sugars, and phenols in edible roots by 53, 28, 27, and 48%, respectively compared to plants grown in native soil. B-carotene concentration (157.5 μg g?1 fresh weight) was greater in the roots of plants grown in MSS compared to roots of plants grown in MSS+YW treatments (99.9 μg g?1 fresh weight). Concentration of heavy metals in MSS-amended soil and in sweet potato roots were below their respective permissible limits.  相似文献   

2.
Municipal sewage sludge (MSS) used for land farming typically contains heavy metals that might impact crop quality and human health. A completely randomized experimental design with three treatments (six replicates each) was used to monitor the impact of mixing native soil with MSS or yard waste (YW) mixed with MSS (YW +MSS) on: i) sweet potato yield and quality; ii) concentration of seven heavy metals (Cd, Cr, Mo, Cu, Zn, Pb, and Ni) in sweet potato plant parts (edible roots, leaves, stem, and feeder roots); and iii) concentrations of ascorbic acid, total phenols, free sugars, and β-carotene in sweet potato edible roots at harvest. Soil samples were collected and analyzed for total and extractable metals using two extraction procedures, concentrated nitric acid (to extract total metals from soil) as well as CaCl2 solution (to extract soluble metals in soil that are available to plants), respectively. Elemental analyses were performed using inductively coupled plasma mass spectrometry (ICP-MS). Overall, plant available metals were greater in soils amended with MSS compared to control plots. Concentration of Pb was greater in YW than MSS amendments. Total concentrations of Pb, Ni, and Cr were greater in plants grown in MSS+YW treatments compared to control plants. MSS+YW treatments increased sweet potato yield, ascorbic acid, soluble sugars, and phenols in edible roots by 53, 28, 27, and 48%, respectively compared to plants grown in native soil. B-carotene concentration (157.5 μg g?1 fresh weight) was greater in the roots of plants grown in MSS compared to roots of plants grown in MSS+YW treatments (99.9 μg g?1 fresh weight). Concentration of heavy metals in MSS-amended soil and in sweet potato roots were below their respective permissible limits.  相似文献   

3.
The relationship among sugar concentrations, microbial community and physical variables (precipitation and soil temperature) was investigated in a ryegrass soil from January 2004 to January 2005. Mono- and disaccharide sugars were extracted using a mixture of dichloromethane and methanol and analyzed as their TMS derivatives by GC-MS. Changes in microbial community were assessed using phospholipid and neutral lipid fatty acids (PLFA and NLFA, respectively) analysis. The results of a one-year study showed that the seasonal variability of sugar contents found in the soil samples is mainly related to biomass or nutritional status of the fungal community. The increase in sucrose and fructose exudation by plant roots in the beginning of the growing season (early spring) may be responsible for the highest fungal biomass amount (PLFAs) observed in this study. Fungal storage lipid abundances (NLFAs) peaked in summer, during the same period that the highest concentrations of mannitol and trehalose were detected. This is consistent with these two sugars being stress-induced fungal metabolites, produced due to the low soil moisture observed during this season. In contrast, bacterial community growth seems to be more dependent on plant substrate than on physical variables, since the strongest decrease in bacterial biomass amounts (PLFAs) was found after cutting of the ryegrass field in early July.  相似文献   

4.
Peppers, a significant component of the human diet in many regions of the world, provide vitamins A (β-carotene) and C, and are also a source of many other antioxidants such as capsaicin, dihydrocapsaicin, and phenols. Enhancing the concentration of antioxidants in plants grown in soil amended with recycled waste has not been completely investigated. Changes in pepper antioxidant content in relation to soil amendments and fruit development were investigated. The main objectives of this investigation were to: (i) quantify concentrations of capsaicin, dihydrocapsaicin, β-carotene, ascorbic acid, phenols, and soluble sugars in the fruits of Capsicum annuum L. (cv. Xcatic) grown under four soil management practices: yard waste (YW), sewage sludge (SS), chicken manure (CM), and no-much (NM) bare soil and (ii) monitor antioxidant concentrations in fruits of plants grown under these practices and during fruit ripening from green into red mature fruits. Total marketable pepper yield was increased by 34% and 15% in SS and CM treatments, respectively, compared to NM bare soil; whereas, the number of culls (fruits that fail to meet the requirements of foregoing grades) was lower in YW compared to SS and CM treatments. Regardless of fruit color, pepper fruits from YW amended soil contained the greatest concentrations of capsaicin and dihydrocapsaicin. When different colored pepper fruits (green, yellow, orange, and red) were analyzed, orange and red contained the greatest β-carotene and sugar contents; whereas, green fruits contained the greatest concentrations of total phenols and ascorbic acid.  相似文献   

5.
Riis V  Brandt M  Miethe D  Babel W 《Chemosphere》2000,41(7):1001-1006
Various surfactants belonging to the group of fatty acid-acylated amino acids were tested for their ability to accelerate the microbial degradation of mineral oil. Of the lauric acid-acylated amino acids, aliphatic acids and histidine were found to be the most suitable. By the aid of these compounds additional 20-60% of a residual oil fraction could be degraded. The longer the chain of the fatty acid moiety, the more effective the surfactants are. Natural L-amino acids were more effective than their D-configuration. Since the special surfactants are easily biologically degradable, multiple replenishment is required in long-term experiments. The faster, more complete degradation of mineral oil is caused solely by interfacial activity; the growth of biomass due to the function of surfactants as substrate had no effect.  相似文献   

6.
Bioremediation has become an attractive alternative to physicochemical methods of remediation of polluted sites. White rot fungi (WRF) are increasingly being investigated and used in bioremediation, because of their ability to degrade an extremely diverse range of very persistent or toxic environmental pollutants. The white rot fungus, Pleurotus tuberregium, was examined for its ability to ameliorate crude oil polluted soil. This was inferred from the ability of the polluted soil to support seed germination and seedling growth in Vigna unguiculata, at 0, 7 and 14 days post treatment. Results obtained from the present study showed that bioremediation of soil contaminated with crude oil was possible, especially when the fungus had been allowed to establish and fully colonize the substrate mixed with the soil. There were significant improvements in % germination, plant height and root elongation values of test plants, when seeds were planted 14 days post soil treatment. At 1 to 5% crude oil pollution, % germination values were comparable with the values in control plants in the 14 days treatment, and significantly higher than values obtained in the day 0 treatment. Also, at the highest level of crude oil pollution (15%), there was about 25% improvement in % germination value over the 0 day treatment. This trend of improvement in values was also observed for plant height, root elongation and biomass accumulation as well as decreased total hydrocarbon content.  相似文献   

7.
Seedlings of Vicia faba L., Phaseolus multiflorus L. and Pisum sativum L. were raised during exposure to simulated acid rainfall treatments of pHs 5.6, 4.5, 3.5 and 2.5 at a rate of 30 mm per week. All three species were found to be adversely affected by the more acid pH 3.5 and pH 2.5 treatments after 7-8 weeks of exposure. There were total plant dry weight reductions of 40% for V. faba, 31% for P. sativum and 28% for P. multiflorus exposed to the pH 2.5 treatment, as compared to those grown in the control (pH 5.6 treatment). In addition, V. faba was found to be sensitive to the pH 4.5 treatment with an 18% reduction in total plant weights (compared to plants grown in the pH 5.6 treatment). In P. multiflorus, reduction in the dry weights of shoots in response to increasing acidity of rain was not accompanied by reduction in root weights, indicating an interference in the partitioning of assimilates. It is concluded that these three species, and V. faba in particular, may be growing below their potential in much of the UK.  相似文献   

8.
Chlorophyll plays a pivotal role in the plant physiology and its productivity. Cultivation of plants in crude oil contaminated soil has a great impact on the synthesis of chlorophyll pigment. Morpho-anatomy of the experimental plant also shows structural deformation in higher concentrations. Keeping this in mind, a laboratory investigation has been carried out to study the effect of crude oil on chlorophyll content and morpho-anatomy of Cyperus brevifolius plant. Fifteen-day-old seedling of the plant was planted in different concentrations of the crude oil mixed soil (i.e., 10,000, 20,000, 30,000, 40,000, and 50,000 ppm). A control setup was also maintained without adding crude oil. Results were recorded after 6 months of plantation. Investigation revealed that there is a great impact of crude oil contamination on chlorophyll content of the leaves of the experimental plant. It also showed that chlorophyll a, chlorophyll b, and total chlorophyll content of leaves grown in different concentrations of crude oil were found to be lower than those of the control plant. Further, results also demonstrated that chlorophyll content was lowest in the treatment that received maximum dose of crude oil. It also showed that chlorophyll content was decreased with increased concentration of crude oil. Results also demonstrated that there was a reduction in plant shoot and root biomass with the increase of crude oil concentration. Results also revealed that the shoot biomass is higher than root biomass. Morphology and anatomy of the experimental plant also show structural deformation in higher concentrations. Accumulation of crude oil on the cuticle of the transverse section of the leaves and shoot forms a thick dark layer. Estimation of the level of pollution in an environment due to oil spill is possible by the in-depth study of the harmful effects of oil on the morphology and anatomy and chlorophyll content of the plants grown in that particular environment.  相似文献   

9.
Phytoremediation is a promising technique for cleaning petroleum contaminated soils. In this study, the effects of two grass species (Festuca arundinacea Schreb. and Festuca pratensis Huds.), infected (E(+)) and non-infected (E(-)) by endophytic fungi (Neotyphodium coenophialum and Neotyphodium uncinatum, respectively) on the degradation of petroleum hydrocarbons in an aged petroleum contaminated soil was investigated. Plants were grown in the soil for 7 months and unplanted soil considered as control. At the end of the experiment, total and oil-degrading bacteria, dehydrogenase activity, water-soluble phenols, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) contents were measured in the soil. The results demonstrated that E(+) plants contained more root and shoot biomass than E(-) plants and created higher levels of water-soluble phenols and dehydrogenase activity in the soil, while there was no significant difference in bacterial counts of planted soils. Planting stimulated total and oil-degrading bacterial numbers, dehydrogenase activity and the soil content of water-soluble phenols. Regardless of endophyte infection, PAH and TPH removal in the rhizosphere of plants were 80-84 and 64-72% respectively, whereas the removals in controls were 56 and 31%, respectively. It was revealed that TPHs in retention time range of n-alkanes with C(10)-C(25) chain lengths and TPH were more degraded in the rhizosphere of E(+) plants compared to E(-) ones. Thus, grasses infected with endophytic fungi could be more efficient for removal of TPH from oil-contaminated soils.  相似文献   

10.
Mutagenicity of surface water in Lake Taihu was monitored by genotoxicological methods. The goal is to determine the situation concerning the contamination by mutagens, their distribution in the lake, and the potential effect on public health. In this study, the micronucleus test of Vicia faba root tip, a standard monitoring technique now in China, was carried out to make a preliminary screening of environmental mutagens in 39 representative sites of the lake. Highly significant differences in MCN permillage (average number of micronuclei per 1000 cells) and PI (pollution index) values were found among these sites. From the results, a rough distribution of the contamination could be obtained: mainly concentrated in the north-west area of the lake from several tributaries flowing into the lake. In order to provide further evidence, organic extracts from four entrances and one outlet of the five major tributaries were examined by the micronucleus test of human peripheral lymphocytes. The results were in accord with those of the micronucleus tests using Vicia faba. The tests also revealed that the intensity and mechanism of the pollutants were diverse in the different sources.  相似文献   

11.
This study investigates the effects of residue incorporation coupled with plant growth and soil moisture level on wheat biomasses, soil nutrients, labile organic carbon (LOC), microbial metabolic profiles, and community composition. Four management practices were used in a 180-day pot experiment: (1) control (CON), (2) maize (Zea mays L.) residue incorporation without plants (MR), (3) wheat (Triticum aestivum L.) plants without maize residue (WP), and (4) maize residue incorporation with wheat plants (MRWPs). Each management practice included soil moisture at both 40 and 80% of field capacity. At wheat harvest, soil nutrient contents in the WP and MRWP treatments were significantly lower than in the CON and MR treatments. In comparison with the CON treatment, MR, WP, and MRWP treatments resulted in 35, 23, and 67% increases in dissolved organic carbon content; 17, 12, and 34% increases in hot-water extractable organic carbon content; and 78, 50, and 150% increases in microbial biomass carbon content. Furthermore, microbial utilizations of carboxylic acids and polymer carbon sources in the MR, WP, and MRWP treatments were 261 and 88%, 239 and 105%, and 300 and 126% higher than in the CON treatment. The MR and CON treatments had similar phospholipid fatty acid (PLFA) content but the WP and MRWP treatments had significantly increased gram-negative content and changes to community composition compared with the CON and MR treatments. The wheat biomass, LOC, and PLFA contents significantly increased with greater soil moisture. Overall, these results suggest an additive effect of residue incorporation and plant growth on LOC contents, primarily due to the changes in microbial utilization of carbon sources and community composition.  相似文献   

12.
Al Nasir F  Batarseh MI 《Chemosphere》2008,72(8):1203-1214
The residues of polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorinated benzenes (CBs) and phenols were investigated for soil, wastewater, groundwater and plants. The uptake concentration of these compounds was comparatively determined using various plant types: Zea mays L., Helianthus annus L., Capsicum annum L., Abelmoschus esculentus L., Solanum melongena L. and Lycopersicon esculentum L. which were grown in a pilot site established at Mutah University wastewater treatment plant, Jordan. Soil, wastewater, groundwater and various plant parts (roots, leaves and fruits) samples were extracted in duplicate, cleaned up by open-column chromatography and analyzed by a multi-residue analytical methods using gas chromatography equipped with either mass selective detector (GC/MS), electron capture detector (GC/ECD), or flame ionization detector (FID). Environmentally relevant concentrations of targeted compounds were detected for wastewater much higher than for groundwater. The overall distribution profiles of PAHs and PCBs appeared similar for groundwater and wastewater indicating common potential pollution sources. The concentrations of PAHs, PCBs and phenols for different soils ranged from 169.34 to 673.20 microg kg(-1), 0.04 to 73.86 microg kg(-1) and 73.83 to 8724.42 microg kg(-1), respectively. However, much lower concentrations were detected for reference soil. CBs were detected in very low concentrations. Furthermore, it was found that different plants have different uptake and translocation behavior. As a consequence, there are some difficulties in evaluating the translocation of PAHs, CBs, PCBs and phenols from soil-roots-plant system. The uptake concentrations of various compounds from soil, in which plants grown, were dependent on plant variety and plant part, and they showed different uptake concentrations. Among the different plant parts, roots were found to be the most contaminated and fruits the least contaminated.  相似文献   

13.
《Chemosphere》1987,16(7):1557-1564
Higher levels of soil salinity due to potassium and sodium replacement of soil cations were detected in an alkaline soil after pollution with waste waters from olive oil extraction plants. The pH was practically unchanged and soil C/N ratio was increased. A reversible decrease in the count of sporulated bacteria was noted.  相似文献   

14.
The short-term effect of three broad spectrum fungicides on microbial activity, microbial biomass, soil ergosterol content, and phospholipid fatty acid (PLFA) profiles was studied. A silty clay loam soil was treated separately with captan, chlorothalonil and carbendazim at three different dosages of each fungicide. Chlorothalonil and carbendazim significantly altered soil microbial activity. However, changes in soil microbial biomass were only observed in soil treated with higher dosages of these fungicides. All dosages of fungicides significantly decreased fungal biomass as estimated by soil ergosterol content. PLFA analysis indicated that there was a shift in PLFA pattern. Higher dosages of all three fungicides decreased a straight-chain PLFA 22:0. In addition, soil treated with carbendazim increased cyclopropyl fatty acids. Compared to untreated soil, higher dosages of both captan and chlorothalonil affected PLFA 10Me 16:0, indicating that these fungicides can reduce actinomycetes population. Finally, our results suggest that application of both captan and chlorothalonil decreased Gram-positive to Gram-negative ratio.  相似文献   

15.
The effects of gamma-irradiated sludge on the growth and yield of rice (Oryza sativa L. var. GR-3) in pot cultures have been studied. Compared to plants grown only in soil, shoot length, root length, fresh weight, dry weight, total proteins, total soluble sugars, starch and chlorophyll content of plants grown in soil supplemented with unirradiated or gamma-irradiated sludge were found to be significantly increased. Irradiation of sludge significantly stimulated the linear growth of shoot and root systems as well as fresh and dry weights of plants, compared to those grown in soil containing unirradiated sludge. There was also an improvement in the grain yield (weight of seed) when plants were grown in soil supplemented with irradiated sludge. The results obtained suggest that the gamma-irradiated sewage sludge can be beneficially recycled for agricultural uses.  相似文献   

16.
Biomass, as a renewable energy source, is an excellent alternative for the partial replacement of fossil fuels in thermal and electric energy production. A new fuel type as biomass for energy utilisation includes ligneous plants with considerable heavy metal content. The combustion process must be controlled during the firing of significant quantities of contaminated biomass grown on brownfield lands. By implementing these measures, air pollution and further soil contamination caused by the disposal of the solid burning residue, the ash, can be prevented. For the test samples from ligneous plants grown on heavy metal-contaminated fields, an ore mine (already closed for 25 years) was chosen. With our focus on the determination of the heavy metal content, we have examined the composition of the soil, the biomass and the combustion by-products (ash, fly ash). Our results confirm that ash resulting from the combustion must be treated as toxic waste and its deposition must take place on hazardous waste disposal sites. Biomass of these characteristics can be burnt in special combustion facility that was equipped with means for the disposal of solid burning residues as well as air pollutants.  相似文献   

17.
Stomatal conductance and net photosynthesis of common milkweed (Asclepias syriaca L.) plants in two different soil moisture regimes were directly quantified and subsequently modeled over an entire growing season. Direct measurements captured the dynamic response of stomatal conductance to changing environmental conditions throughout the day, as well as declining gas exchange and carbon assimilation throughout the growth period beyond an early summer maximum. This phenomenon was observed in plants grown both with and without supplemental soil moisture, the latter of which should theoretically mitigate against harmful physiological effects caused by exposure to ozone. Seasonally declining rates of stomatal conductance were found to be substantial and incorporated into models, making them less susceptible to the overestimations of effective exposure that are an inherent source of error in ozone exposure indices. The species-specific evidence presented here supports the integration of dynamic physiological processes into flux-based modeling approaches for the prediction of ozone injury in vegetation.  相似文献   

18.
The effects of gamma-irradiated sludge on the growth and yield of chickpea (Cicer arietinum) in pot cultures have been studied. Compared to plants grown only in soil, root length, fresh weight and dry weight of plants grown in soil supplemented with unirradiated sludge were found to be significantly reduced. This inhibition in growth was found to be nullified when plants were grown in soil supplemented with gamma-irradiated sludge, suggesting that gamma radiation induced inactivation of toxic substance(s) in sludge. The protein content of plants grown in soil supplemented with irradiated sludge was also found to be significantly increased compared to those grown with unirradiated or no sludge, after 45 days. There was no significant effect of gamma irradiated sludge on shoot length, total soluble sugars, starch content and yield of chickpea plants. The results obtained suggest that the sludge tested, and obtained from the digester of a conventional domestic sewage treatment plant, is inhibitory to several growth parameters. Gamma irradiation of sewage resulted in removal of this inhibition. This suggests a possibility of beneficial and safe recycling of gamma-irradiated sludge for agricultural uses.  相似文献   

19.
Singh RP  Agrawal M 《Chemosphere》2007,67(11):2229-2240
Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for palak (Beta vulgaris var. Allgreen H-1), a leafy vegetable and consequent heavy metal contamination, a pot experiment was conducted by mixing sewage sludge at 20% and 40% (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductance, organic carbon, total N, available P and exchangeable Na, K and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Cr, Cd, Cu, Zn and Ni concentrations of soil. Cd concentration in soil was found above the Indian permissible limit in soil at both the amendment ratios.

The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in heavy metal uptake and shoot and root concentrations of Ni, Cd, Cu, Cr, Pb and Zn in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Concentrations of Cd, Ni and Zn were more than the permissible limits of Indian standard in the edible portion of palak grown on different sewage sludge amendments ratios. Sewage sludge amendment in soil decreased root length, leaf area and root biomass of palak at both the amendment ratios, whereas shoot biomass and yield decreased significantly at 40% sludge amendment. Rate of photosynthesis, stomatal conductance and chlorophyll content decreased whereas lipid peroxidation, peroxidase activity and protein and proline contents, increased in plants grown in sewage sludge-amended soil as compared to those grown in unamended soil.

The study clearly shows that increase in heavy metal concentration in foliage of plants grown in sewage sludge-amended soil caused unfavorable changes in physiological and biochemical characteristics of plants leading to reductions in morphological characteristics, biomass accumulation and yield. The study concludes that sewage sludge amendment in soil for growing palak may not be a good option due to risk of contamination of Cd, Ni and Zn and also due to lowering of yield at higher mixing ratio.  相似文献   


20.
重金属污染土壤接种丛枝菌根真菌对蚕豆毒性的影响   总被引:6,自引:1,他引:5  
采用盆栽实验的方法,研究了重金属(包括Cu、Zn、Pb和Cd)复合污染和接种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)Glomus mosseae对蚕豆(Vicia faba)生长及DNA损伤的影响.结果表明,虽然接种菌根真菌对蚕豆生物量的影响并不显著,但是却显著影响植物对重金属的吸收,接种菌根真菌对蚕豆吸收4种重金属元素的作用有差异.采用单细胞凝胶电泳(single cell gel electrophoresis,SCGE)法研究接种菌根真菌对蚕豆叶片的DNA损伤的影响,与重金属吸收的结果相吻合.结果表明,接种处理可显著增加蚕豆叶片的DNA损伤程度,这与接种处理可提高植物的重金属吸收相一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号