首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
This paper is the second part of a research programme concerning the modelling capabilities of accidental releases of heavier-than-air toxic gases. The existing theory, which includes the strength of the source and the subsequent development of the released cloud under representative environmental conditions, is described. Comparison of the ZZB-2 system predictions with field data from the Desert Tortoise and Lyme Bay V, ammonia and chlorine releases, shows excellent agreement at distances between ≈ 200 m and a few kilometres from the source. The correlation between observed and predicted cloud concentrations, was in all cases significant at a confidence level better than 95%.  相似文献   

2.
Results of experiments and data analysis on turbulent flame propagation in obstructed channels are presented. The data cover a wide range of mixtures: H2/air, H2/air/steam (from lean to rich) at normal and elevated initial temperatures (from 298 to 650 K) and pressures (from 1 to 3 bar); and stoichiometric H2/O2 mixtures diluted with N2, Ar, He and CO2 at normal initial conditions. The dataset chosen also covers a wide range of scales exceeding two orders of magnitude. It is shown that basic flame parameters, such as mixture expansion ratio σ, Zeldovich number β and Lewis number Le, can be used to estimate a priori a potential for effective flame acceleration for a given mixture. Critical conditions for effective flame acceleration are suggested in the form of correlations of critical expansion ratio σ* versus dimensionless effective activation energy. On this basis, limits for effective flame acceleration for hydrogen combustibles can be estimated. Uncertainties in determination of critical σ* values are discussed.  相似文献   

3.
An experimental investigation of the influence of inhibitors of various chemical natures on flammability limits in mixtures H2+oxidizer (O2+N2)–suppressant (C2HF5; CHF3; C4F10; inhibitor AKM, which is a mixture of olefins) was carried out. Compositions of N2 and O2 with elevated (25 vol%) and reduced (15 vol%) oxygen concentrations and air were used as oxidizing atmospheres. Experiments were done at room temperature and atmospheric pressure. Flammability limits were determined in a closed vessel of volume of 4.2 dm3 (internal diameter 20 cm). Mixtures were prepared immediately in the preliminary evacuated reaction vessel by partial pressures. The mixtures were ignited by an electrical spark of energy near 1 J in the center of the reaction vessel. A flame propagation was detected by a pressure transducer. Twelve flammability curves were measured, which allowed to compare effectiveness of the inhibitors at various oxygen contents in the atmosphere. A qualitative analysis of the obtained results was done, which showed an important role of an inhibitor regeneration.  相似文献   

4.
The paper describes the analysis of the potential effects of releases from compressed gaseous hydrogen systems on commercial vehicles in urban and tunnel environments using computational fluid dynamics (CFD). Comparative releases from compressed natural gas systems are also included in the analysis.

This study is restricted to typical non-articulated single deck city buses. Hydrogen releases are considered from storage systems with nominal working pressures of 20, 35 and 70 MPa, and a comparative natural gas release (20 MPa). The cases investigated are based on the assumptions that either fire causes a release via a thermally activated pressure relief device(s) (PRD) and that the released gas vents without immediately igniting, or that a PRD fails. Various release strategies were taken into account. For each configuration some worst-case scenarios are considered.

By far the most critical case investigated in the urban environment, is a rapid release of the entire hydrogen or natural gas storage system such as the simultaneous opening of all PRDs. If ignition occurs, the effects could be expected to be similar to the 1983 Stockholm hydrogen accident [Venetsanos, A. G., Huld, T., Adams, P., & Bartzis, J. G. (2003). Source, dispersion and combustion modelling of an accidental release of hydrogen in an urban environment. Journal of Hazardous Materials, A105, 1–25]. In the cases where the hydrogen release is restricted, for example, by venting through a single PRD, the effects are relatively minor and localised close to the area of the flammable cloud. With increasing hydrogen storage pressure, the maximum energy available in a flammable cloud after a release increases, as do the predicted overpressures resulting from combustion. Even in the relatively confined environment considered, the effects on the combustion regime are closer to what would be expected in a more open environment, i.e. a slow deflagration should be expected.

Among the cases studied the most severe one was a rapid release of the entire hydrogen (40 kg) or natural gas (168 kg) storage system within the confines of a tunnel. In this case there was minimal difference between a release from a 20 MPa natural gas system or a 20 MPa hydrogen system, however, a similar release from a 35 MPa hydrogen system was significantly more severe and particularly in terms of predicted overpressures. The present study has also highlighted that the ignition point significantly affects the combustion regime in confined environments. The results have indicated that critical cases in tunnels may tend towards a fast deflagration, or where there are turbulence generating features, e.g. multiple obstacles, there is the possibility that the combustion regime could progress to a detonation.

When comparing the urban and tunnel environments, a similar release of hydrogen is significantly more severe in a tunnel, and the energy available in the flammable cloud is greater and remains for a longer period in tunnels. When comparing hydrogen and natural gas releases, for the cases and environments investigated and within the limits of the assumptions, it appears that hydrogen requires different mitigation measures in order that the potential effects are similar to those of natural gas in case of an accident. With respect to a PRD opening strategy, hydrogen storage systems should be designed to avoid simultaneous opening of all PRD, and that for the consequences of the released energy to be mitigated, either the number of PRDs opening should be limited or their vents to atmosphere should be restricted (the latter point would require validation by a comprehensive risk assessment).  相似文献   


5.
Dilution has long been considered a solution to many problems of toxic/flammable material releases. It implies diluting to a concentration that is below physiologically dangerous levels for a toxic substance (generally below TLV), or to a level below LFL for a flammable material release, ensuring that the process adopted for dilution does not itself enhance the risks.

In this paper, we discuss the dilution of a gaseous release by deliberate and cautious mixing with air to reduce its concentration to a harmless level. The idea bears its origin to the Bhopal Gas Tragedy where some families saved themselves by turning the ceiling fans on when MIC reached their bedrooms at the dead of very cold night on December 2–3, 1984. The air pushed in by the fans diluted the MIC to below the harm level.

Some of the advantages of using air dilution are: no cost of air, no air storage needed, no need to treat the air after use as in case of water curtains; required equipment, its maintenance and staff training in its use are very likely to cost less than in other ways of handling a release.

Air dilution may not be feasible in all cases, such as gaseous release within a congested equipment layout, release that forms a liquid pool, etc. The method needs to be evaluated for each case.  相似文献   


6.
为提高H2S泄漏应急处置效率,分析H2S洗消效率影响因素,采用ASPEN模拟与实验相结合的方法获取填料层-文丘里耦合设备关键设计参数,研究进气量、入口浓度、液气比等参数对H2S洗消效率的影响规律,并搭建填料层-文丘里耦合H2S洗消设备。结果表明:填料层-文丘里耦合洗消设备最大洗消效率达91%,可以高效处置H2S泄漏危机。  相似文献   

7.
To evaluate the hazard of combined hydrogen/dust explosions under severe accident conditions in International Thermonuclear Experimental Reactor (ITER), standard method of 20-L-sphere was used to measure the explosion indices of 4-μm fine graphite dust in lean hydrogen/air mixtures. The mixtures were ignited by a weak electric spark. The tested fuel concentrations were 8–18 vol% H2 and 25–250 g/m3 dust. If the hydrogen content is higher than 10 vol%, the dust constituent can be induced to explode by the hydrogen explosion initiated by a weak electric spark. Depending on the fuel component concentrations, the explosions proceed in either one or two stages. In two-stage explosions occurring at low hydrogen and dust concentrations, the mixture ignition initiates first a fast hydrogen explosion followed by a slower phase of the dust explosion. With increasing dust concentration, the dust explodes faster and can overlap the hydrogen-explosion stage. At higher hydrogen concentrations, the hybrid mixtures explode in one stage, with hydrogen and dust reacting at the same time scale. Maximum overpressures of hybrid explosions are higher than those observed with hydrogen alone; maximum rates of pressure rise are lower in two-phase explosions and, generally, higher in one-stage explosions, than those characteristic of the corresponding H2/air mixtures.  相似文献   

8.
Risk assessment of a chemical process plant requires the application of a variety of consequence models in order to estimate the potential physical effects of accidental releases. The types of models required vary depending upon the substance under consideration and the circumstances of a release. The objective of this study was the development and application of a system based upon ‘fuzzy logic’, for the selection of a computer model to be used in consequence analysis in specific situations where only certain types of consequence models can be used. The collection of data for modelling purposes from different kinds of computer model and application of fuzzy methods were also important aims of the study.  相似文献   

9.
Heavy gas dispersion by water spray curtains: A research methodology   总被引:1,自引:0,他引:1  
The mitigation of the consequences of accidental releases of dangerous toxic and/or flammable cloud is a serious concern in the petro-chemical and gas industries. Nowadays, the water-curtain is recognized as a useful technique to mitigate a heavy gas cloud. The paper presents a research methodology, which has been established and undertaken to quantify the forced dispersion factor provided by a water-curtain with respect to its configuration.

The method involves medium-scale field tests, Wind-Gallery tests and numerical simulations. These different approaches are discussed and exemplified by typical results emphasizing the observed concentration reduction due to the water-curtain.  相似文献   


10.
Rescue operations during mine fires or methane explosions are highly dangerous for rescue workers. The knowledge of the composition of the coal mine atmosphere and the calculations of its explosibility may help to increase the safety of the rescuers. In the Czech Republic, a system called “Mine Gas Laboratory” (DPL) has been used for these purposes. The DPL allows measurement of the composition of the mine atmosphere and transmits the data necessary for evaluation to the surface. Up to now the explosibility evaluation of the coal mine atmosphere has depended either on the rescuers’ experience or on software code calculation. The code called “Vybuchovy trojuhelnik” (explosion triangle) is a graphical computing system intended for fast assessment of explosibility of fuel–air mixture. This article introduces the code and describes two simple methods of explosibility evaluation. The first method is “explosion triangle analysis”—a graphical method based on empirical graphs transformed into equations. The second method uses thermodynamic calculation based on chemical balance dynamics and Gibbs and Helmholtz energy. According to the requirements of the Czech Bureau of Mining (CBU) and Central Mine Rescue Service (HBZS), the code solves the problems of explosion triangle for both standard and non-standard coal mine atmosphere compositions. Unfortunately, the atmosphere composition must be introduced manually due to the unknown format of the data transmitted from the old DPL model. On 1 September 2005, a project started to develop a new system for on-line monitoring and atmosphere explosibility evaluation. The system should be able to measure CO2, O2, CH4, H2 and CO concentrations as well as the wind speed, temperature and humidity. The “Vybuchovy trojuhelnik” code will be used as a basis for explosibility evaluation, and an on-line connection with the new model of DPL will be established.  相似文献   

11.
12.
The significance of accidental releases has increased during the past few years. The reason for this is that the level of continuous process emission has gone down, partly due to more stringent environmental regulations and partly due to technical improvements. The aim of the study was to minimize accidental releases from a sulphate pulp mill. Some well-known methods of risk analysis were used as a tool. This article presents the application of risk analysis to reduce accidental releases of concentrated malodorous gases from a sulphate pulp mill. This particular objective was chosen not only because of the inconvenience caused by the smell but also the possible health hazards which have been of growing concern recently. In this study, risk analysis has proved to be a recommendable tool in environmental protection of sulphate pulp mills. However, only thorough advance planning before analysis begins can guarantee the most efficient and beneficial results of risk analysis. The aim of the examination and the resources available have an effect on the selection of the method and also on the level of examination.  相似文献   

13.
The article reports the results of different methods of modelling releases and dispersion of dangerous gases or vapours in cases of major accidents from road and rail transportation in urban zones. Transport accidents of dangerous substances are increasingly frequent and can cause serious injuries in densely inhabited areas or pollution of the environment. For quantitative risk assessment and mitigation planning, consequence modelling is necessary.

The modelling of dangerous substance dispersion by standard methods does not fully represent the behaviour of toxic or flammable clouds in obstructed areas such as street canyons. Therefore the predictions from common software packages as ALOHA, EFFECTS, TerEx should be augmented with computational fluid dynamics (CFD) models or physical modelling in aerodynamic tunnels, and further studies are planned to do this.

The goal of this article is to present the results of the first approach of modelling using these standard methods and to demonstrate the importance of the next development stage in the area of transport accident modelling of releases and dispersions of dangerous substances in urban zones in cases of major accident or terrorist attacks.  相似文献   


14.
15.
Scaling parameters for vented gas and dust explosions   总被引:3,自引:0,他引:3  
Results of experiments or calculations for vented explosions are usually presented by expressing a term containing the peak (reduced) pressure as a function of a vent parameter. In gas explosions, the reactivity of the system has been typically characterized through an effective burning velocity, uf. In the case of dust explosions, a normalized peak rate of pressure rise, K(=V1/3(dp/dt)max), has been used instead. Depending on the chosen approach, comparisons between systems with the same “reactivity” take different meanings. In fact, correlation formulas resulting from these two approaches imply different scaling between important system parameters. In the case of a constant-uf system, and for sufficiently large vent areas, the reduced pressure, Δpr, is approximately proportional to the square of the peak unvented pressure, Δpm. On the other hand, correlations developed for constant-K systems imply proportionality of Δpr with Δpm raised to a power between −5/3 and −1, with the exact value depending on the assumptions made on the shape of the pressure profile. While the ultimate resolution of the details of the scaling may require recourse to experiments, this theoretical analysis offers a tool for the planning of such experiments and for the interpretation of their results. The paper provides a discussion of these scaling issues with the help of predictions from an isothermal model of vented explosions.  相似文献   

16.
Human urge of exploiting earth resources has resulted into unprecedented industrial development in the last century resulting into production of large quantities of hazardous chemicals. Chemical, petrochemical, nuclear, biomedical and pharmaceutical industrial accidents release large quantities of hazardous chemicals into the atmosphere. The accidental discharge during production or storage or transportation have subjected the population to be exposed to exceptionally high concentration levels of hazardous chemicals, taking them by surprise, unprepared with fatal consequences. An emergency planning organization has to be trained to combat this situation in the shortest possible time to minimize the number of causalities. The present paper focuses on computation of dispersion model, using emission source, accident location and online metrological data near to the sources, to provide necessary and accurate results swiftly. The predicted ground level concentrations with the hazardous nature of the chemical, speed and direction of plume, the emergency team will be supplied with all the information in graphical easy to grasp form, superimposed over a GIS map or the latest satellite image of the area.

The emergency team has to be trained for all past scenarios and their preparedness, response and actions must be practiced regularly to be able to abate chemical releases accidentally or intentionally.

Accidental releases of chlorine and ammonia gases in residential and industrial areas are simulated. The predicted ground level concentrations in the effected areas are shown after different time intervals. For low vapor pressure chemical, the dispersion time is large and concentration levels are low but persist for prolonged time while for volatile chemical, the concentrations are high in short time and recovering to safe environment is quick.  相似文献   


17.
使用空气-水系统,试验研究文丘里洗涤器操作参数(液气比、喉管气速)及喉管长度对其压力损失的影响.结果表明,喉管气速对压力损失的影响比液气比的大,压力损失随液气比增加呈线性增加,而随喉管气速的变化基本为平方关系.在此基础上,探讨了在文丘里洗涤器设计时如何根据捕集效率优化设计文丘里喉管长度.  相似文献   

18.
为了解决吸附速率拟合公式缺乏而解吸经验公式众多的问题,通过替换解吸参数、定性和对比分析各经验公式对煤吸附CO2,N2,CH4吸附速率的适用性,选取4种不同煤质的煤样在0.5,1.0和2.0 MPa下进行定温吸附实验,分析压力和煤质对吸附速率的影响规律。研究结果表明:时间函数式对3种气体在不同压力和煤质下的吸附速率拟合效果最佳;压力和煤质对3种气体吸附速率的影响既存在共性又具有差异性,气体吸附速率与压力符合指数函数关系,与挥发分呈现出二次函数关系,并且压力升高会导致最低吸附速率趋向于较高变质程度煤样;CH4和N2的吸附速率随压力升高而升高,而CO2的吸附速率因煤样而不同,且在同压下,不同气体的最高和最低吸附速率煤样的变质程度也不同。  相似文献   

19.
This paper presents model predictions obtained with the CFD tool FLACS for hydrogen releases and vented deflagrations in containers and larger enclosures. The paper consists of two parts. The first part compares experimental results and model predictions for two test cases: experiments performed by Gexcon in 20-foot ISO containers (volume 33 m3) as part of the HySEA project and experiments conducted by SRI International and Sandia National Laboratories in a scaled warehouse geometry (volume 45.4 m3). The second part explores the use of the model system validated in the first part to accidental releases of hydrogen from forklift trucks inside a full-scale warehouse geometry (32 400 m3). The results demonstrate the importance of using realistic and reasonably accurate geometry models of the systems under consideration when performing CFD-based risk assessment studies. The discussion highlights the significant inherent uncertainty associated with quantitative risk assessments for vented hydrogen deflagrations in complex geometries. The suggestions for further work include a pragmatic approach for developing empirical correlations for pressure loads from vented hydrogen deflagrations in industrial warehouses with hydrogen-powered forklift trucks.  相似文献   

20.
采用化学沉积法制备了二氧化锰/羟基氧化铁(MnO2/FeOOH)复合材料,并将其用于吸附去除水中的放射性重金属铀。通过静态吸附试验,考察了Fe/Mn物质的量比、pH值、吸附时间和干扰离子等因素对MnO2/FeOOH吸附U(Ⅵ)效果的影响,利用扫描电镜-能谱分析(SEM-EDS)、X射线衍射(XRD)、拉曼光谱(Raman)、红外光谱(FT-IR)和X射线光电子能谱(XPS)对材料结构和形貌进行表征,并分析其吸附机理。结果表明,在投加量为150 mg/L、温度为30℃、U(Ⅵ)初始质量浓度为10 mg/L、pH值为5、Fe/Mn物质的量比为1/2及吸附时间为120 min的条件下,MnO2/FeOOH对U(Ⅵ)的去除率最大可达97.7%,且pH值对铀去除效果的影响最为明显。MnO2/FeOOH对U(Ⅵ)吸附动力学符合准二级动力学模型,吸附等温线均能符合Langmuir和Freundlich模型,且最大吸附容量达260.34 mg/g。干扰离子试验表明,SO42-、CO32-和Fe3+对MnO2/FeOOH吸附U (VI)几乎没有影响,而Ca2+和Cu2+具有明显的抑制作用,且抑制随浓度的增大而增强。FTIR和XPS分析表明MnO2/FeOOH对U(Ⅵ)的主要作用机制为表面羟基、Mn-O与铀的配位作用。因此,MnO2/FeOOH可作为一种潜在的铀吸附材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号