首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resilience of Southwestern Amazon Forests to Anthropogenic Edge Effects   总被引:2,自引:0,他引:2  
Abstract:  Anthropogenic edge effects can compromise the conservation value of mature tropical forests. To date most edge-effect research in Amazonia has concentrated on forests in relatively seasonal locations or with poor soils in the east of the basin. We present the first evaluation from the relatively richer soils of far western Amazonia on the extent to which mature forest biomass, diversity, and composition are affected by edges. In a southwestern Amazonian landscape we surveyed woody plant diversity, species composition, and biomass in 88 × 0.1 ha samples of unflooded forest that spanned a wide range in soil properties and included samples as close as 50 m and as distant as >10 km from anthropogenic edges. We applied Mantel tests, multiple regression on distance matrices, and other multivariate techniques to identify anthropogenic effects before and after accounting for soil factors and spatial autocorrelation. The distance to the nearest edge, access point, and the geographical center of the nearest community ("anthropogenic-distance effects") all had no detectable effect on tree biomass or species diversity. Anthropogenic-distance effects on tree species composition were also below the limits of detection and were negligible in comparison with natural environmental and spatial factors. Analysis of the data set's capacity to detect anthropogenic effects confirmed that the forests were not severely affected by edges, although because our study had few plots within 100 m of forest edges, our confidence in patterns in the immediate vicinity of edges is limited. It therefore appears that the conservation value of most "edge" forests in this region has not yet been compromised substantially. We caution that because this is one case study it should not be overinterpreted, but one explanation for our findings may be that western Amazonian tree species are naturally faster growing and more disturbance adapted than those farther east.  相似文献   

2.
3.
Invasibility of Species-Rich Communities in Riparian Zones   总被引:27,自引:0,他引:27  
Invasibility of riparian plant communities was estimated by the percentage of alien species found along the Adour River (Southwest France) and along Lockout Creek, McKenzie River, and Willamette River (Central Cascades, Oregon, U.S.A.). At the patch scale, the invasibilities of riparian plant communities were compared between one exceptionally rich site of the Adour River and patches selected in the Hoh and Dungeness watersheds (Olympic Peninsula, Washington, U.S.A.). Alien species represented 24% of 1396 species for the Adour and 30% of 851 species for the McKenzie. They represented 24% of 148 species for the Hoh drainage and 28% of 200 species for the Dungeness drainage. Similar trends were found along the Adour River and along the McKenzie River for changes in total number of species per site and in percentages of alien species per site. These trends may be related to the intermediate disturbance regimes and to the physical structure of the riparian corridors. Climatic and human factors are also involved in these longitudinal changes. Positive linear relationships were found between the total number of species and the percentage of aliens observed in each site. At the patch scale, most of the sampled communities contained alien species. Although mature vegetative patches appeared to be invasible, young communities contained more alien species than older ones. For entire corridors, a positive linear relationship was found between total species richness and percentage of alien species in each patch type for the richest site of the Adour River. This may be partially explained by landscape features considered in a successional context. We suggest the use of empirical rules, and stress the importance of riparian systems for monitoring the conservation of local and regional species pools are suggested.  相似文献   

4.
5.
Forests Too Deer: Edge Effects in Northern Wisconsin   总被引:12,自引:0,他引:12  
Abstract: Browsing by white-tailed deer (Odocoileus virginianus) can profoundly affect the abundance and population structure of several woody and herbaceous plant species. Enclosure studies and population surveys reveal that past and current deer densities as low as 4 deer/km2 may prevent regeneration of the once common woody species, Canada yew (Taxus canadensis), eastern hemlock (Tsuja canadensis), and white cedar Puja occidentalis), as well as several herbaceous species. Prior to European settlement, forests in northern Wisconsin contained relatively sparse deer populations (<4/km2), but extensive timber cutting in the late nineteenth century boosted deer populations. Continued habitat fragmentation resulting from scattered timber harvests and the creation of "wildlife openings" to improve deer forage maintain these high densities throughout much of the Northeast.
Because deer wander widely, the effects of high deer densities penetrate deeply into remaining stands of old and mature forest, greatly modifying their composition Thus, abundant early successional and "edge" habitat, and the high deer densities they engender, represent significant external threats to these plant communities. We hypothesize that establishing large (200–400 km2) continuous areas of maturing forest, especially in conjunction with increased hunting, could reduce local deer densities and so provide a simple and inexpensive method for retaining species sensitive to the deleterious effects of browsing.  相似文献   

6.
Edge Effects on an Epiphytic Lichen in Fragmented Forests   总被引:11,自引:0,他引:11  
  相似文献   

7.
Abstract:  As part of the Missouri Ozark Forest Ecosystem Project (MOFEP), we experimentally evaluated the impacts of forest management on the relative abundance of amphibians and reptiles in Missouri's Ozark forests (U.S.A.). Using large study sites (average size of 400 ha) as the experimental unit, we tested the effects of uneven-aged and even-aged forest management treatments compared with no-harvest management (i.e., control) on the relative abundance of 13 focal amphibian and reptile species. Within even-aged management sites, we also focused on the local-scale effects of clearcutting on these species by comparing relative abundance among plots located within clearcut stands, 50 m away from clearcut stands, and 200 m away from clearcut stands. Pretreatment sampling of species abundance occurred from 1992 through 1995, and post-treatment sampling occurred from 1997 through 2000. At the landscape scale, treatment significantly affected the abundance of Bufo americanus . This species declined less on even-aged management sites than on control sites, but the general decline on all sites suggests that other factors may have contributed to this result. Within even-aged management sites, most amphibian species declined and some reptile species increased relative to pretreatment abundances within clearcut stands. We found significant effects of distance from clearcut for two amphibian species, Ambystoma maculatum and Rana clamitans, and two reptile species, Scincella lateralis and Sceloporus undulatus . In general, we conclude that clearcuts within even-aged management sites locally affected amphibian and reptile species but, at a larger spatial scale, we did not detect significant effects of even-aged and uneven-aged forest management. These findings represent relatively short-term data but suggest that forest management and maintenance of biodiversity may be compatible when relatively small amounts of the landscape are disturbed.  相似文献   

8.
Tropical forest ecosystems are threatened by habitat conversion and other anthropogenic actions. Timber production forests can augment the conservation value of primary forest reserves, but studies of logging effects often yield contradictory findings and thus inhibit efforts to develop clear conservation strategies. We hypothesized that much of this variability reflects a common methodological flaw, simple pseudoreplication, that confounds logging effects with preexisting spatial variation. We reviewed recent studies of the effects of logging on biodiversity in tropical forests (n = 77) and found that 68% were definitively pseudoreplicated while only 7% were definitively free of pseudoreplication. The remaining proportion could not be clearly categorized. In addition, we collected compositional data on 7 taxa in 24 primary forest research plots and systematically analyzed subsets of these plots to calculate the probability that a pseudoreplicated comparison would incorrectly identify a treatment effect. Rates of false inference (i.e., the spurious detection of a treatment effect) were >0.5 for 2 taxa, 0.3–0.5 for 2 taxa, and <0.3 for 3 taxa. Our findings demonstrate that tropical conservation strategies are being informed by a body of literature that is rife with unwarranted inferences. Addressing pseudoreplication is essential for accurately assessing biodiversity in logged forests, identifying the relative merits of specific management practices and landscape configurations, and effectively balancing conservation with timber production in tropical forests. Pseudoreplicación en Bosques Tropicales y Efectos Resultantes Sobre la Conservación de Biodiversidad  相似文献   

9.
Following habitat alteration or fragmentation, competition, parasitism, and predation from species that live in the new habitats may reduce the survival and reproductive success of species living in the original habitats. Negative influences from species that live outside the remnant patches are expected to be greater in small rather than in large remnant patches because more "external" species are expected to move through the centers of small remnant patches. We surveyed birds within remnant patches of old-growth montane forests on Vancouver Island, Canada, (1) to evaluate whether the richness and abundance of non-old-growth bird species were larger at the center of small rather than large patches and (2) to evaluate whether the opposite was true of old-growth bird species. More non-old-growth bird species were present at the center of small remnant patches of old growth than in large old-growth patches. We found no relationship, however, between patch size and richness or abundance of old-growth bird species at the center of remnant patches of old growth. This was true for old-growth species with open, cup-shaped nests and cavity nests. Old-growth birds may have been affected less in our study area than in other areas because they evolved within heterogeneous montane forests and interacted with non-old-growth species throughout their evolutionary histories or because the contrast between old-growth forests and logged areas was less than that between the forests and agricultural/urban areas that were surveyed in other studies.  相似文献   

10.
Changing land use in the tropics has resulted in vast areas of damaged and degraded lands where biodiversity has been reduced. The majority of research on biodiversity has been focused on population and community dynamics and has rarely considered the ecosystem processes that are intimately related. We present a framework for examining the effects of changes in biodiversity on ecosystem function in natural, managed, and damaged tropical forests. Using a whole-ecosystem approach, the framework identifies key nutrient and energy cycling processes and critical junctures or pathways, termed interfaces, where resources are concentrated and transferred between the biotic and abiotic components of the ecosystem. Processes occurring at these interfaces, and the organisms or attributes participating in these processes, exert a strong influence on ecosystem structure. We use examples from Puerto Rico, Southern China, Dominica, and Nicaragua to illustrate how the functional diversity framework can be applied to critically examine the effects of changes in biodiversity on ecosystem function, and the relative success or failure of rehabilitation strategies. The few available data suggest that functional diversity, and not just species richness, is important in maintaining the integrity of nutrient and energy fluxes. High species richness, however, may increase ecosystem resiliency following disturbance by increasing the number of alternative pathways for the flow of resources. We suggest ways in which the framework of functional diversity can be used to design research to examine the effects of changes in biodiversity on ecosystem processes and in the design and evaluation of ecosystem management and land rehabilitation projects in the tropics.  相似文献   

11.
12.
Abstract:  We investigated the short-term effects of forest clearcutting on land snails (terrestrial gastropods) in 15 forest stands along small streams in Sweden. Two different silvicultural treatments were applied at each site: clearcutting across the stream channel and buffer strips 10 m wide on each side of the stream. Additionally, we studied 10 reference sites in unlogged riparian forests along similar-sized streams. All sites were studied before logging and then 2.5 years after logging. After clearcutting the number of individuals in a 0.5-m2 sample from each site decreased on average from 107 to 87, and the mean number of species per sample decreased from 9.9 to 7.7. Most species were negatively affected, but there were also clear differences in sensitivity. There were correlations between species survival and ground moisture. At the wettest clearcut sites with an almost intact bryophyte cover, the land snails were unaffected by clearcutting. This result suggests that wet or moist forest floors can serve as refugia even at very small spatial scales (e.g., shallow hollows, crevices). If this is an important mechanism, the spatial distribution of small habitats could be important for the long-term survival of the snail fauna or other small, dispersal-limited organisms at clearcut sites. In the buffer strips, the number of individuals decreased but not the number of species, indicating that buffer-strip retention is a good practice for protecting land snails in riparian forests. The varying effectiveness of the buffer strip could partly be explained by the proportion of the remaining basal area, emphasizing that buffer strips could be even more effective if efforts are made to avoid heavy damage by windthrows.  相似文献   

13.
Abstract: Subsistence hunting affects vast tracts of tropical wilderness that otherwise remain structurally unaltered, yet distinguishing hunted from nonhunted tropical forests presents a difficult problem because this diffuse form of resource extraction leaves few visible signs of its occurrence. I used a standardized series of line-transect censuses conducted over a 10-year period to examine the effects of subsistence game harvest on the structure of vertebrate communities in 25 Amazonian forest sites subjected to varying levels of hunting pressure. Crude vertebrate biomass, which was highly correlated with hunting pressure, gradually declined from nearly 1200 kg km−2 at nonhunted sites to less than 200 kg km−2 at heavily hunted sites. Hunting had a negative effect on the total biomass and relative abundance of vertebrate species in different size classes at these forest sites, but it did not affect their overall density. In particular, persistent hunting markedly reduced the density of large-bodied game species (>5 kg), which contributed a large proportion of the overall community biomass at nonhunted sites (65–78%) and lightly hunted sites (55–71%). Nutrient-rich floodplain forests contained a consistently greater game biomass than nutrient-poor unflooded forests, once I controlled for the effects of hunting pressure. Conservative estimates of game yields indicate that as many as 23.5 million game vertebrates, equivalent to 89,224 tons of bushmeat with a market value of US$190.7 million, are consumed each year by the rural population of Brazilian Amazonia, which illustrates the enormous socioeconomic value of game resources in the region. My cross-site comparison documents the staggering effect of subsistence hunters on tropical forest vertebrate communities and highlights the importance of considering forest types and forest productivity in game management programs.  相似文献   

14.
Abstract: Despite growing concern, no consensus has emerged over the effects of habitat modification on species diversity in tropical forests. Even for comparatively well-studied taxa such as Lepidoptera, disturbance has been reported to increase and decrease diversity with approximately equal frequency. Species diversity within landscapes depends on the spatial scale at which communities are sampled, and the effects of disturbance in tropical forests have been studied at a wide range of spatial scales. Yet the question of how disturbance affects diversity at different spatial scales has not been addressed. We reanalyzed data from previous studies to examine the relationship between spatial scale and effects of disturbance on tropical-forest Lepidoptera. Disturbance had opposite effects on diversity at large and small scales: as scale decreased, the probability of a positive effect of disturbance on diversity increased. We also explicitly examined the relationship between spatial scale and the diversity of butterflies in selectively logged and unlogged forest in Maluku Province, Indonesia. Species richness increased with spatial scale in both logged and unlogged forest, but at a significantly faster rate in unlogged forest, whereas species evenness increased with scale in unlogged forest but did not increase with scale in logged forest. These data indicate that the effects of habitat modification on species diversity are heavily scale-dependent. As a result, recorded effects of disturbance were strongly influenced by the spatial scale at which species assemblages were sampled. Future studies need to account for this by explicitly examining the effects of disturbance at a number of different spatial scales. A further problem arises because the relationship between scale and diversity is likely to differ among taxa in relation to mobility. This may explain to some extent why the measured effects of disturbance have differed between relatively mobile and immobile taxa.  相似文献   

15.
Successful control of tsetse (Glossina spp.)-transmitted trypanosomiasis in the Ghibe Valley, Ethiopia, appears to have accelerated conversion of wooded grassland into cropland. Land conversion, in turn, may have fragmented wildlife habitat. Our objective was to assess the influence of the expansion of agricultural land-use, brought about by tsetse control, on ecological properties by using bird species richness and composition as indicators of environmental impacts. We sampled bird species richness and composition (using Timed-Species counts) and habitat structure (using field sampling and remote sensing) in four land cover/land-use types in areas subjected to tsetse fly control and adjacent areas without control. At the height of the growing season bird species numbers and vegetative complexity were greater in the small-holder, oxen-plowed fields and riparian woodlands than in wooded grasslands or in large-holder, tractor-plowed fields. Species composition was highly dissimilar (40–70% dissimilarity) comparing among land-use types, with many species found only in a single type. This implies that trypanosomiasis control that results in land conversion from wooded grasslands to small-holder farming in this region may have no adverse impacts on bird species numbers but will alter composition. These results also suggest that moderate land-use by humans (e.g., small-holder field mosaics) increases habitat heterogeneity and bird species richness relative to high levels of use (e.g., tractor-plowed fields). Tsetse control may be indirectly maintaining species richness in the valley by encouraging the differential spread of these small-scale, heterogeneous farms in place of large-scale, homogeneous farms. Nevertheless, if the extent of small-holder farms significantly exceeds that of present levels, negative impacts on bird species richness and large shifts in species composition may occur.  相似文献   

16.
Abstract:  The invasion of non-native earthworms ( Lumbricus spp.) into a small number of intensively studied stands of northern hardwood forest has been linked to declines in plant diversity and the local extirpation of one threatened species. It is unknown, however, whether these changes have occurred across larger regions of hardwood forests, which plant species are most vulnerable, or with which earthworm species such changes are associated most closely. To address these issues we conducted a regional survey in the Chippewa and Chequamegon national forests in Minnesota and Wisconsin (U.S.A.), respectively. We sampled earthworms, soils, and vegetation, examined deer browse in 20 mature, sugar-maple-dominated forest stands in each national forest, and analyzed the relationship between invasive earthworms and vascular plant species richness and composition. Invasion by Lumbricus was a strong indicator of reduced plant richness in both national forests. The mass of Lumbricus juveniles was significantly and negatively related to plant-species richness in both forests. In addition, Lumbricus was a significant factor affecting plant richness in a full model that included multiple variables. In the Chequamegon National Forest earthworm mass was associated with higher sedge cover and lower cover of sugar maple seedlings and several forb species. The trends were similar but not as pronounced in Chippewa, perhaps due to lower deer densities and different earthworm species composition. Our results provide regional evidence that invasion by Lumbricus species may be an important mechanism in reduced plant-species richness and changes in plant communities in mature forests dominated by sugar maples.  相似文献   

17.
Abstract:  Several studies have reported climate-associated changes in phenotypically plastic traits of amphibians, yet it remains unknown whether amphibians can manifest an evolutionary response to global climate change at the rate and magnitude that it is occurring. To assess this issue, we examined temporal change in the morphology of the red-backed salamander ( Plethodon cinereus ), a small, abundant woodland salamander distributed widely in eastern North America with two distinct morphotypes: striped individuals associated with cooler microclimates and unstriped individuals associated with warmer microclimates. We compiled morph frequencies for 50,960 individual salamanders from 558 sites as recorded in the published literature and in unpublished field notes of herpetologists between 1908 and 2004. We observed that striping probability increased with increasing latitude, longitude, and elevation and decreased (from 80% to 74% range wide) with time. The combined forces of regional climate warming and, particularly, forest disturbance have evidently been sufficient to cause morphological evolution in this amphibian over the last century.  相似文献   

18.
Many ponderosa pine and mixed-conifer forests of the western, interior United States have undergone substantial structural and compositional changes since settlement of the West by Euro-Americans. Historically, these forests consisted of widely spaced, fire-tolerant trees underlain by dense grass swards. Over the last 100 years they have developed into dense stands consisting of more fire-sensitive and disease-susceptible species. These changes, sometimes referred to as a decline in "forest health," have been attributed primarily to two factors: active suppression of low-intensity fires (which formerly reduced tree recruitment, especially of fire-sensitive, shade-tolerant species), and selective logging of larger, more fire-tolerant trees. A third factor, livestock grazing, is seldom discussed, although it may be as important as the other two factors. Livestock alter forest dynamics by (1) reducing the biomass and density of understory grasses and sedges, which otherwise outcompete conifer seedlings and prevent dense tree recruitment, and (2) reducing the abundance of fine fuels, which formerly carried low-intensity fires through forests. Grazing by domestic livestock has thereby contributed to increasingly dense western forests and to changes in tree species composition. In addition, exclosure studies have shown that livestock alter ecosystem processes by reducing the cover of herbaceous plants and litter, disturbing and compacting soils, reducing water infiltration rates, and increasing soil erosion.  相似文献   

19.
20.
Abstract: Interfaces between terrestrial and stream ecosystems often enhance species diversity and population abundance of ecological communities beyond levels that would be expected separately from both the ecosystems. Nevertheless, no study has examined how stream configuration within a watershed influences the population of terrestrial predators at the drainage‐basin scale. We examined the habitat and abundance relationships of forest insectivorous birds in eight drainage basins in a cool temperate forest of Japan during spring and summer. Each basin has different drainagebasin geomorphology, such as the density and frequency of stream channels. In spring, when terrestrial arthropod prey biomass is limited, insectivorous birds aggregated in habitats closer to streams, where emerging aquatic prey was abundant. Nevertheless, birds ceased to aggregate around streams in summer because terrestrial prey became plentiful. Watershed‐scale analyses showed that drainage basins with longer stream channels per unit area sustained higher densities of insectivorous birds. Moreover, such effects of streams on birds continued from spring through summer, even though birds dispersed out of riparian areas in the summer. Although our data are from only a single year, our findings imply that physical modifications of stream channels may reduce populations of forest birds; thus, they emphasize the importance of landscape‐based management approaches that consider both stream and forest ecosystems for watershed biodiversity conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号