首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The application of composite or consolidated tailings (CT) technology provides Alberta's oil sands industry with a means of reducing the volume of the fines fraction in extraction tailings and allows for faster reclamation and revegetation of mining sites. This study examined the effects of coagulant aids (gypsum and alum), used in the production of CT, on the ion content, growth, and survival of greenhouse-grown red-osier dogwood (Cornus sericea L. subsp. sericea). Seedlings were planted in gypsum-CT and alum-CT substrates, and compared with those planted in reclamation material (salvaged peat and till). The seedlings were bottom-watered with one of the following: (i) Hoagland mineral solution prepared in deionized water (Epstein, 1972); (ii) Hoagland solution in gypsum-based CT release water; or (iii) Hoagland solution in alum-based CT release water. Pore water of CT substrates and CT release waters had similar chemical characteristics, including salinity levels. However, plants in CT substrates had higher concentrations of ions (particularly Na and B), reduced growth, and higher mortality than plants in reclamation material and treated with CT waters. The presence of H2S indicated low-oxygen conditions in the CT substrates, while in the reclamation materials with CT release water treatments, no evidence of sulfides was observed. Low-oxygen conditions in the CT substrate treatments may have interfered with plant exclusion mechanisms for Na and B. Therefore, substrate properties may modify responses of reclamation plants to pore water chemistry due to the effects on oxygen availability to roots.  相似文献   

2.
In the processing of oil sands from Alberta's Athabasca formation, large quantities of alkaline, saline tailings and associated process-affected waters are produced. These waters may have a negative effect on plants used in reclamation of mined areas in this region of the northern boreal forest. In the present study, we examined the effects of process-affected water on the growth and elemental composition of jack pine (Pinus banksiana Lamb.) seedlings. Seedlings were grown in sand culture, and treated with tailings water to which mineral nutrients had been added. One-month-old seedlings were treated for 14 d, and all measured growth parameters were reduced. Growth and shoot elemental composition were also measured in seven-month-old seedlings that were treated for 10 wk with process-affected water. Shoots had significantly elevated levels of Na, Cl, S, P, B, and Sr, and significantly reduced levels of Fe, Mo, Ba, and K. The relationships between elemental composition and seedling growth and injury were examined using multiple regression. Growth rates, dry weights, and carotenoid content were reduced, but were not related to shoot elemental composition. Needle necrosis was positively related to tissue Na and Cl. Results indicate that reclamation planning must consider substrate Na and Cl levels when planting jack pine on tailings-affected sites.  相似文献   

3.
Organic materials including a peat-mineral mix (PM), a forest floor-mineral mix (L/S), and a combination of the two (L/PM) were used to cap mineral soil materials at surface mine reclamation sites in the Athabasca oil sands region of northeastern Alberta, Canada. The objective of this study was to test whether LFH provided an advantage over peat by stimulating microbial activity and providing more available nitrogen for plant growth. Net nitrification, ammonification, and N mineralization rates were estimated from field incubations using buried bags. In situ gross nitrification and ammonification rates were determined using the 15N isotope pool dilution technique, and microbial biomass C (MBC) and N (MBN) were measured by the chloroform fumigation-extraction method. All reclaimed sites had lower MBC and MBN, and lower net ammonification and net mineralization rates than a natural forest site (NLFH) used as a control, but the reclamation treatment using LFH material by itself had higher gross and net nitrification rates. A positive correlation between in situ moisture content, dissolved organic N, MBC, and MBN was observed, which led us to conduct a moisture manipulation experiment in the laboratory. With the exception of the MBN for the L/S treatment, none of the reclamation treatments ever reached the levels of the natural site during this experiment. However, materials from reclamation treatments that incorporated LFH showed higher respiration rates, MBC, and MBN than the PM treatment, indicating that the addition of LFH as an organic amendment may stimulate microbial activity as compared to the use of peat alone.  相似文献   

4.
Abandoned mine tailings sites in semiarid regions remain unvegetated for extended periods of time and are subject to eolian dispersion and water erosion. This study examines the potential phytostabilization of a lead-zinc mine tailings site using a native, drought-tolerant halophyte, quailbush [Atriplex lentiformis (Torr.) S. Wats.]. In a greenhouse study germination, growth, and metal uptake was evaluated in two compost-amended mine tailings samples, K4 (pH 3) and K6 (pH 6) at 75, 85, 90, 95, and 100% mine tailings, and two controls, off-site and compost. Microbial community changes were monitored by performing MPN analysis of iron- and sulfur-oxidizing bacteria as well as heterotrophic plate counts. Results demonstrate that germination is not a good indicator for phytostabilization since it was only inhibited in the unamended K4 treatment. Plant growth was significantly reduced in 95 and 100% mine tailings, while growth in 75, 85, and 90% treatments was similar to the off-site control. Quailbush accumulated elevated levels of the nutrient metals Na, K, Mn, and Zn in the shoot tissues; however, metal accumulation was generally below the domestic animal toxicity limit. Initially, autotrophic population estimates were four to six logs higher than heterotrophic counts, indicating extremely stressed conditions. However, post-harvest, heterotrophic bacterial counts increased to normal levels (approximately 10(6) CFU g-1 dry tailings) and dominated the rhizosphere. Therefore, with compost amendment, quailbush has good potential as a native species candidate for phytostabilization of mine tailings in semiarid environments.  相似文献   

5.
As the Canadian oil sands development matures, an increasingly important policy activity is reclamation. Reclamation has received limited attention compared with the broader discussion of oil sands expansion, however, and its past direction and future trajectory are unclear. Recent moves to reform the policy in Alberta have been interpreted simultaneously as a major change and a marginal adaptation to the existing framework. This article employs a historical-institutional perspective to help reconcile this debate and further understanding of changes to Alberta's oil sands reclamation policies over the past half century. It traces the factors and outlines the processes which have driven its evolution since 1963 with special attention paid to the 2011 Oil Sands Progressive Reclamation Strategy, the most recent attempt to reform oil sands reclamation policy. The article reveals a complex long-term pattern of policy development in which processes of ‘tense layering’ of new initiatives on top of old elements resulted in a constantly shifting policy landscape as existing policy instruments and settings were ‘stretched’ to cover new circumstances but failed to resolve tensions between successive policy layers. After 1993, however, a more reflective process was put into place in which policy feedback informed alterations intended to reduce or remove tensions between successive layers. Such a policy ‘patching’ process is shown to have helped resolve tensions associated with earlier stretching of the existing regime and adds to the vocabulary of more general studies of policy dynamics.  相似文献   

6.
To avoid increasing costs of landfill disposal, it has become increasingly important for U.S. foundries to identify beneficial reuses for the 8 to 12 million tons of waste foundry sand (WFS) generated annually. A major drawback to the reuse of some WFSs as a soil amendment is their high soil strength, under dry conditions, where root growth may be limited. Fifteen WFSs were analyzed for strength to rupture using lab-formed clods, exchangeable cations (Na, Mg, Ca), metal oxide concentration (Fe, Mn, Al, Si), cation exchange capacity (CEC), and % clay. Several WFS samples from gray iron foundries demonstrated high strength to rupture values (> 1.5 MPa), and could potentially restrict root growth in amended soils. The percentage of Na-bentonite exhibited a positive correlation (R(2) = 0.84) with strength to rupture values. When WFSs containing more Na-bentonite were saturated with 1 mol L(-1) Ca ions, strength values decreased by approximately 70%. Waste foundry sands containing less Na-bentonite were saturated with 1 mol L(-1) Na ions and exhibited a threefold increase in strength. Additions of gypsum (up to 9.6 g kg(-1) sand) to high strength waste foundry sands also caused decreases in strength. These results indicate that high strength WFSs have properties similar to hardsetting soils which are caused by high Na(+) clay content and can be ameliorated by the addition of Ca(2+).  相似文献   

7.
通过室内沙基培养法测定白三叶种子的发芽率、发芽势、株高、根系活力、叶绿素含量、丙二醛和可溶性糖含量,研究了不同浓度的硫酸钠对白三叶种子萌发和幼苗生长的影响。试验结果表明,白三叶在硫酸钠作用下随着浓度增高,发芽势、发芽率、株高、叶绿素含量、根系活力均表现出下降趋势,对白三叶种子萌发和幼苗生长均表现出抑制作用,而丙二醛和可溶性糖含量表现出上升趋势。  相似文献   

8.
Sesbania rostrata in pure and amended Pb/Zn tailings. About 90% of seeds of S. rostrata germinated in pure Pb/Zn tailings, which contained high concentrations of Pb, Zn, Cu, and Cd. Although seedling growth suffered from the adverse environment of Pb/Zn tailings, they became established on tailings stands, in the greenhouse, as well as on the actual tailings dam, and completed their life cycle in 4 months. Dry matter production and nitrogen accumulation was 3200 kg/ha and 69.4 kg/ha, respectively in the actual tailings dam. Applying inorganic fertilizer to Pb/Zn tailings led to no obvious improvement in growth and nodulation of S. rostrata, while tailings amended by river sediment or domestic refuse rich in organic matter improved the growth and nodulation of the species. Azorhizobium caulinodans survived and formed N-fixing stem and root nodules in S. rostrata grown in pure Pb/Zn tailings with a nodule biomass exceeding 300 mg fresh matter per plant.  相似文献   

9.
Soil and water resources can be severely degraded by salinity when total salt input exceeds output in irrigated agriculture. This study was conducted to examine partitioning of Ca2+, Na+, and Cl- between soil and soybean [Glycine max (L.) Merr.] plants under different irrigation regimes with both field and modeling assessments. In drip and sprinkler treatments, the irrigation water was salinized with NaCl and CaCl2 salts to simulate a Cl- and Na+ dominant saline drainage water. In the furrow irrigation treatment, the soil was salinized, prior to planting, with NaCl and CaCl2 salts to simulate a Cl- and Na+ dominant saline soil. A total of 756 soil and 864 plant samples were collected and analyzed for the salt ions to obtain ion partitioning and mass balance assessments. Modeling of salt ion uptake by plants and distribution in the soil profile was performed with a two-dimensional solute transport model for the three irrigation regimes. Results indicated that about 20% of the applied Ca2+ was recovered in harvested soybean biomass in all treatments. Plant uptake of either Na+ or Cl- was less than 0.5% in the drip and furrow, and about 2% in the sprinkler irrigation treatment. Significant increases in soil salinity were found in the sprinkler plot that received the highest cumulative amount of salts. Simulated ion distributions in the soil were comparable with the measurements. Compared with the total seasonal salt input, mass balances between 65 and 108% were obtained. Most salt inputs accumulate in the soil, and need to be removed periodically to prevent soil salinization.  相似文献   

10.
Municipal biosolids and agricultural limestone were incorporated into the surface of alluvial highly acidic, metal-contaminated mine tailings in Leadville, CO, in 1998. Amended sites were seeded and a plant cover was subsequently established. A range of chemical and biological parameters were measured over time to determine if treatment was sufficient to restore ecosystem function. An uncontaminated upstream control (UUC), a contaminated vegetated area (CVA), and soils collected from the tailings deposits before amendment addition were used for comparison. Standard soil extracts showed decreases in extractable Pb, Zn, and Cd in the amended soils. Increased CO2 evolution, reduced N2O, and elevated NO3- in the amended tailings indicated an active microbial community. Levels of CO2 and NO3- were elevated in comparison with the CVA and UUC. Ryegrass (Lolium perenne L.) and earthworm (Eisenia foetida) survival and metal uptake values were similar in amended tailings to a laboratory control soil. Ryegrass and worms in unamended tailings died. Field plant diversity was lower in amended areas than in CVA or UUC, with a higher percentage of the vegetative cover consisting of grasses. Small mammal analysis showed a low potential for elevated body Cd and Pb in the amended tailings. A re-entrainment study using fathead minnows (Pimephales promelas) showed no danger for resuspended amended tailings, as survival of fish was similar to the laboratory control. Data suggest that ecosystem function has been restored to the amended tailings, but that these systems are not yet in equilibrium.  相似文献   

11.
Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as “vegetation carpet”, which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas.  相似文献   

12.
沙质滩涂对石油类污染物的吸附是一种物理吸附过程,在一定的条件下,吸附于沙质滩涂中的石油类污染物又可能释放出来,对滨海环境造成新的污染。在对滨海沙滩(胶州湾)沙质滩涂-水系统石油污染调查的基础上,选择代表性的沙滩进行取样,系统测定不同沙质滩涂对可溶性油的释放动力学过程,并分析了盐度、pH、温度和含沙量对释放作用的影响。结果表明,沙质滩涂对可溶性油的释放动力学曲线符合对数型,即随着时间的延续释放速度逐渐降低,沙质滩涂对可溶性油的释放平衡时间约为10h,沙质滩涂对可溶性油的释放量随盐度和pH的增大而减少,随温度、含沙量和振荡频率的增加而增加。  相似文献   

13.
A greenhouse study was conducted to evaluate the response of herbaceous mimosa (Mimosa strigillosa) to six levels of cyclic soil moisture stresses in a 17-week period. The results showed that the cultivar continued to grow and the biomass continued to increase even when the soil moisture stress was as high as at the wilting point (1500 Kpa). Also, transpiration recovery rate was quick and values of root/shoot ratio were high when the plant was subject to the cyclic moisture stress condition. All these characteristics, along with strong rooting and spreading ability, suggest this legume as a promising drought hardiness species for reclamation purposes.  相似文献   

14.
We investigated the effect of 4 yr of aging of a noncalcareous soil contaminated with filter dust from a brass foundry (80% w/w ZnO, 15% w/w Cu0.6Zn0.4) on the chemical extractability of Zn and Cu and their uptake by barley (Hordeum vulgare L.), pea (Pisum sativum L.), and sunflower (Helianthus annus L.). Pot experiments were conducted with the freshly contaminated soil (2250 mg kg-1 Zn; 503 mg kg-1 Cu), with the contaminated soil aged for 4 yr in the field (1811 mg kg-1 Zn; 385 mg kg-1 Cu), and with the uncontaminated control soil (136 mg kg-1 Zn; 32 mg kg-1 Cu). In comparison with the uncontaminated soil, the growth of barley and pea was clearly reduced in both contaminated soils, while toxicity symptoms did not systematically vary from the freshly contaminated to the 4 yr aged soil. The sunflower did not grow in the contaminated soils. The slow oxidative dissolution of the brass platelets led to an increase in the solubility and the plant uptake of Cu from the freshly contaminated to the 4 yr aged soil. In an earlier study, we found that the fine-grained ZnO dissolved in the field soil within 9 mo and that about half of the released Zn was incorporated into a layered double hydroxide phase and about half was adsorbed to the soil matrix. These changes in Zn speciation did not lead to a reduction of the Zn contents in the shoots and roots of barley and pea grown in the aged soil as compared with the freshly contaminated soil.  相似文献   

15.
ABSTRACT: Rosgen analysis, developed for assessing channel stability in streams from the western United States, is applied to the Oswego River watershed in the New Jersey Pine Barrens. The Rosgen method requires calibration to local conditions due to the impact of peat substrates on channel morphology. In particular, the presence of peat induces low width to depth ratios and greater channel confinement, reversing typical downstream morphologic trends observed in other rivers. Therefore peat is added to those substrates already evaluated by Rosgen. A consistent sequence of Rosgen stream types develops along the Oswego River and its tributaries created by spatially overlapping processes of water table emergence, peat development, and channel formation. This sequence delineates a “natural” transition of stream channel morphology downslope through the watershed. First, as the water table reaches the surface of dry sloughs, Sphagnum growth is stimulated and peat substrates result. These substrates have lower permeability than the underlying gravelly sands. Next, surface runoff, through braided pathways over the peat, eventually erodes mainly anastomosing channels into the peat. Finally, single‐thread channels develop in underlying gravelly sands further downslope. This downslope sequence, expressed as Rosgen stream types, begins generally with DA7 streams arising from dry sloughs. These pass to E7, C7 or DA5 stream types that in turn pass to B5c, C5 and C4 stream types. Departures from the “natural” stream type sequence occur along the course of the Oswego and its tributaries due to human activities such as the construction of dams, bridges and drainage ditches, stream bank erosion at streamside camping and picnic areas and the clear‐cutting of adjacent stands of Atlantic white cedar.  相似文献   

16.
A 6-month greenhouse pot trial was performed, aimed at screening appropriate Sesbania species for remediation of Pb/Zn and Cu mine tailings. Performances of young seedlings of four Sesbania species (S. cannabina, S. grandiflora, S. rostrata, and S. sesban) were compared with and without inoculation of rhizobia. Seedlings were planted in two types of tailings amended with garden soil or garden soil mixed with river sediment. The results indicated that inoculated plants generally produced a higher biomass than samples without inoculation. Pb/Zn mine tailings containing rather high concentrations of total and water-soluble Cu, Pb, and Zn were toxic to plant growth compared with Cu mine tailings, according to the growth performance of the four species. Sesbania sesban and S. rostrata showed superior growth performance, compared to the other two species. Thus, they can serve as pioneer species to modify the barren environment, by providing organic matter and essential nutrients such as nitrogen, upon decomposition, in a relatively short period of time. This is especially true for S. rostrata, which is an annual plant that forms both stem and root nodules. However, a longer-term field trial should be conducted to investigate if superior species can beneficially modify the habitat for the growth of subsequent plant communities.  相似文献   

17.
The production of bleached Kraft pulp generates inorganic and organic residues that are usually deposited on the soil surface or land-filled. Studies conducted to address the impact of these wastes on the environment are scarce. In this work, Monterey pine (Pinus radiata D. Don), an important tree for pulping, was evaluated for germination and development under greenhouse conditions in forest soils exposed to solid residues of the cellulose industry using the Kraft process. Soils exposed to 10 to 60% ashes, 10 to 70% fly ashes, or 10 to 30% dregs allowed substantial seed germination and seedling growth. In contrast, soils exposed to low proportions of brown rejects, grits, or a mixture of all these residues were detrimental for germination, plant growth, or both. The strongest negative effect (no germination) was observed with as low as 10% grits. The changes in pH and/or water content caused by solid wastes did not correlate with detrimental effects observed in various soil-residue combinations. No significant changes in the microbial community of soils exposed to these solid residues were observed by determination of culturable counts, or by terminal-restriction fragment length polymorphism analysis of the microbial community DNA. The presence of organic residues did not affect the ability of the soil microbial community to remove typical pulp bleaching chloroaromatics. However, inorganic wastes strongly decreased the removal of such compounds.  相似文献   

18.
以草炭、椰糠为对照,研究腐熟木薯茎秆对番茄、黄瓜、丝瓜、茄子、大吊瓜及西瓜的育苗效果,为木薯茎秆作为育苗基质提供依据。育苗结果表明:(1)原木薯茎秆用于番茄育苗时,其发芽率、株高、茎粗及真叶数与草炭育的番茄效果相当;过2mm筛木薯茎秆对番茄育苗效果不如草炭,但优于椰糠;原木薯茎秆用于黄瓜育苗时,其发芽率、株高、茎粗及真叶数与草炭、椰糠育的黄瓜效果相当;原木薯茎秆对番茄、黄瓜的育苗效果优于过2mm筛木薯茎秆。(2)原木薯茎秆、过2mm筛木薯茎秆对丝瓜、大吊瓜和西瓜的育苗效果不如草炭、椰糠,但对茄子的育苗效果优于椰糠。总的看来,腐熟木薯茎秆可用于番茄、黄瓜、茄子育苗,而不宜单独用于丝瓜、大吊瓜和西瓜育苗。  相似文献   

19.
Experimental short-term desalination and drainage of salt marsh cores in greenhouse microcosms caused Spartina production to increase after one growing season, reflecting decreased salt stress and sulfide toxicity. However, production thereafter declined, likely due to pyrite oxidation and acidification in drained treatments and sulfide accumulation in waterlogged treatments. A survey of longer-term (decadal) effects of diking on peat composition of Cape Cod, Massachusetts, USA, marshes revealed acidification, Fe(II) mobilization, and decreased organic content in drained sites. Despite the aerobic decomposition of organic matter, abundant nutrients remained as sorbed NH4 and mineral-bound PO4. In diked, seasonally waterlogged sites, porewater alkalinity, sulfide, ammonium and orthophosphate were much lower, and organic solids higher, than in adjacent natural marsh. Seawater was added to cores from diked marshes to study the effects of tidal restoration. Salination of the drained peat increased porewater pH, alkalinity, ammonium, orthophosphate, Fe, and Al; copious ammonium N, and Fe(II) for sulfide precipitation favored Spartina growth. Salination of diked–waterlogged peat increased sulfate reduction and caused 6–8 cm of sediment subsidence. The resulting increase in porewater sulfides and waterlogging decreased vigor of transplanted Spartina alterniflora. Results indicate that seawater restoration should proceed cautiously to avoid nutrient loading of surface waters in drained sites or sulfide toxicity in diked–waterlogged marshes.  相似文献   

20.
Application of municipal biosolids to mine tailings can enhance revegetation success, but may cause adverse environmental impacts, such as increased leaching of NO3- and metals to ground water. Kinetic weathering cells were used to simulate geochemical weathering to determine the effects of biosolid amendment on (i) pH of leachate and tailings, (ii) leaching of NO3- and SO4(2-), (iii) leaching and bioavailability (DTPA-extractable) of selected metals, and (iv) changes in tailing mineralogy. Four Cu mine tailings from southern Arizona differing in initial pH (3.3-7.3) and degree of weathering were packed into triplicate weathering cells and were unamended and amended with two rates (equivalent to 134 and 200 Mg dry matter ha(-1)) of biosolids. Biosolid application to acid (pH 3.3) tailings resulted in pH values as high as 6.3 and leachate pH as high as 5.7, and biosolids applied to circumneutral tailings resulted in no change in tailing or leachate pH. Concentrations of NO3--N of up to 23 mg L(-1) occurred in leachates from circumneutral tailings. The low pH of the acidic tailing apparently inhibited nitrification, resulting in leachate NO3--N of <5 mg L(-1). Less SO4(2-)-S was leached in biosolid-amended versus unamended acid tailings (final rate of 0.04 compared with 0.11 g SO4(2-)-S wk(-1)). Copper concentrations in leachates from acidic tailings were reduced from 53 to 27 mg L(-1) with biosolid amendment. Copper and As concentrations increased slightly in leachates from biosolid-amended circumneutral tailings. Small increases in DTPA-extractable Cu, Ni, and Zn occurred in all tailings with increased biosolid rate. Overall, there was little evidence of potential for adverse environmental impacts resulting from biosolid application to these Cu mine tailings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号