首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comprehensive assessment of the total greenhouse gas (GHG) budget of reduced tillage agricultural systems must consider emissions of nitrous oxide (N2O) and methane (CH4), each of which have higher global warming potentials than carbon dioxide (CO2). Tillage intensity may also impact nitric oxide (NO) emissions, which can have various environmental and agronomic impacts. In 2003 and 2004, we used chambers to measure N2O, CH4, and NO fluxes from plots that had been managed under differing tillage intensity since 1991. The effect of tillage on non-CO2 GHG emissions varied, in both magnitude and direction, depending on fertilizer practices. Emissions of N2O following broadcast urea (BU) application were higher under no till (NT) and conservation tillage (CsT) compared to conventional tillage (CT). In contrast, following anhydrous ammonia (AA) injection, N2O emissions were higher under CT and CsT compared to NT. Emissions following surface urea ammonium nitrate (UAN) application did not vary with tillage. Total growing season non-CO2 GHG emissions were equivalent to CO2 emissions of 0.15 to 1.9 Mg CO2 ha(-1) yr(-1) or 0.04 to 0.53 Mg soil-C ha(-1) yr(-1). Emissions of N2O from AA-amended plots were two to four times greater than UAN- and BU-amended plots. Total NO + N2O losses in the UAN treatment were approximately 50% lower than AA and BU. This study demonstrates that N2O emissions can represent a substantial component of the total GHG budget of reduced tillage systems, and that interactions between fertilizer and tillage practices can be important in controlling non-CO2 GHG emissions.  相似文献   

2.
Emissions of carbon monoxide (CO) were observed from decomposing organic wastes and litter under laboratory, pilot composting plant, and natural conditions. Field studies included air from inside a compost heap of about 200 m3, emissions from composting of livestock wastes at a biologically operating farm, and leaf litter pile air samples. The concentration of CO was up to 120 micromol mol(-1) in the compost piles of green waste, and up to 10 micromol mol(-1) in flux chambers above livestock waste windrow composts. The mean CO flux rates were approximately 20 mg CO m(-2) h(-1) for compost heaps of green waste, and varied from 30 to 100 mg CO m(-2) h(-1) for fresh dung windrows. Laboratory studies using a temperature and ventilation-controlled substrate container were performed to elucidate the origin of CO, and included hay samples of fixed moisture content at temperatures between 5 and 65 degrees C, including nonsterilized as well as sterilized samples. The concentration of CO was up to 160 micromol mol(-1) in these experiments, and Arrhenius-type plot analyses resulted in activation energies of 65 kJ mol(-1) for thermochemically produced CO from the nonsterilized compost substrate. Sterilized samples showed dramatically reduced CO2 but virtually unchanged CO emissions, albeit at a slightly lower activation energy, likely a result of the high-temperature sterilization. Though globally and regionally these CO emissions are only a minor source, thermochemically produced CO emissions might affect local air quality in and near composting facilities.  相似文献   

3.
To establish energetically and environmentally viable paddy rice-based bioethanol production systems in northern Japan, it is important to implement appropriately selected agronomic practice options during the rice cultivation step. In this context, effects of rice variety (conventional vs. high-yielding) and rice straw management (return to vs. removal from the paddy field) on energy inputs from fuels and consumption of materials, greenhouse gas emissions (fuel and material consumption-derived CO(2) emissions as well as paddy soil CH(4) and N(2)O emissions) and ethanol yields were assessed. The estimated ethanol yield from the high-yielding rice variety, "Kita-aoba" was 2.94 kL ha(-1), a 32% increase from the conventional rice variety, "Kirara 397". Under conventional rice production in northern Japan (conventional rice variety and straw returned to the paddy), raising seedlings, mechanical field operations, transportation of harvested unhulled brown rice and consumption of materials (seeds, fertilizers, biocides and agricultural machinery) amounted to 28.5 GJ ha(-1) in energy inputs. The total energy input was increased by 14% by using the high-yielding variety and straw removal, owing to increased requirements for fuels in harvesting and transporting harvested rice as well as in collecting, loading and transporting rice straw. In terms of energy efficiency, the variation among rice variety and straw management scenarios regarding rice varieties and rice straw management was small (28.5-32.6 GJ ha(-1) or 10.1-14.0 MJ L(-1)). Meanwhile, CO(2)-equivalent greenhouse gas emissions varied considerably from scenario to scenario, as straw management had significant impacts on CH(4) emissions from paddy soils. When rice straw was incorporated into the soil, total CO(2)-equivalent greenhouse gas emissions for "Kirara 397" and "Kita-aoba" were 25.5 and 28.2 Mg CO(2) ha(-1), respectively; however, these emissions were reduced notably for the two varieties when rice straw was removed from the paddy fields in an effort to mitigate CH(4) emissions. Thus, rice straw removal avers itself a key practice with respect to lessening the impacts of greenhouse gas emissions in paddy rice-based ethanol production systems in northern Japan. More crucially, the rice straw removed is available for ethanol production and generation of heat energy with a biomass boiler, all elements required for biomass-to-ethanol transformation steps including saccharification, fermentation and distillation. This indicates opportunities for further improvement in energy efficiency and reductions in greenhouse gas emissions under whole rice plant-based bioethanol production systems.  相似文献   

4.
The potential atmospheric impact of constructed wetlands (CWs) should be examined as there is a worldwide increase in the development of these systems. Fluxes of N(2)O, CH(4), and CO(2) have been measured from CWs in Estonia, Finland, Norway, and Poland during winter and summer in horizontal and vertical subsurface flow (HSSF and VSSF), free surface water (FSW), and overland and groundwater flow (OGF) wetlands. The fluxes of N(2)O-N, CH(4)-C, and CO(2)-C ranged from -2.1 to 1000, -32 to 38 000, and -840 to 93 000 mg m(-2) d(-1), respectively. Emissions of N(2)O and CH(4) were significantly higher during summer than during winter. The VSSF wetlands had the highest fluxes of N(2)O during both summer and winter. Methane emissions were highest from the FSW wetlands during wintertime. In the HSSF wetlands, the emissions of N(2)O and CH(4) were in general highest in the inlet section. The vegetated ponds in the FSW wetlands released more N(2)O than the nonvegetated ponds. The global warming potential (GWP), summarizing the mean N(2)O and CH(4) emissions, ranged from 5700 to 26000 and 830 to 5100 mg CO(2) equivalents m(-2) d(-1) for the four CW types in summer and winter, respectively. The wintertime GWP was 8.5 to 89.5% of the corresponding summertime GWP, which highlights the importance of the cold season in the annual greenhouse gas release from north temperate and boreal CWs. However, due to their generally small area North European CWs were suggested to represent only a minor source for atmospheric N(2)O and CH(4).  相似文献   

5.
Intensive agriculture and increased N fertilizer use have contributed to elevated emissions of the greenhouse gases carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O). In this study, the exchange of CO(2), N(2)O, and CH(4) between a Quincy fine sand (mixed, mesic Xeric Torripsamments) soil and atmosphere was measured in a sweet corn (Zea mays L.)-sweet corn-potato (Solanum tuberosum L.) rotation during the 2005 and 2006 growing seasons under irrigation in eastern Washington. Gas samples were collected using static chambers installed in the second-year sweet corn and potato plots under conventional tillage or reduced tillage. Total emissions of CO(2)-C from sweet corn integrated over the season were 2071 and 1684 kg CO(2)-C ha(-1) for the 2005 and 2006 growing seasons, respectively. For the same period, CO(2) emissions from potato plots were 1571 and 1256 kg of CO(2)-C ha(-1). Cumulative CO(2) fluxes from sweet corn and potato fields were 17 and 13 times higher, respectively, than adjacent non-irrigated, native shrub steppe vegetation (NV). Nitrous oxide losses accounted for 0.5% (0.55 kg N ha(-1)) of the applied fertilizer (112 kg N ha(-1)) in corn and 0.3% (0.59 kg N ha(-1)) of the 224 kg N ha(-1) applied fertilizer. Sweet corn and potato plots, on average, absorbed 1.7 g CH(4)-C ha(-1) d(-1) and 2.3 g CH(4)-C ha(-1) d(-1), respectively. The global warming potential contributions from NV, corn, and potato fields were 459, 7843, and 6028 kg CO(2)-equivalents ha(-1), respectively, for the 2005 growing season and were 14% lower in 2006.  相似文献   

6.
Livestock slurry storages are sources of methane (CH?), nitrous oxide (NO?), and ammonia (NH?) emissions. Total solids (TS) content is an indicator of substrate availability for CH? and N?O production and NH? emissions and is related to crust formation, which can affect these gas emissions. The effect of TS on these emissions from pilot-scale slurry storages was quantified from 20 May through 16 Nov. 2010 in Nova Scotia, Canada. Emissions from six dairy slurries with TS ranging from 0.3 to 9.5% were continuously measured using flow-through steady-state chambers. Methane emissions modeled using the USEPA methodology were compared with measured data focusing on emissions when empty storages were filled, and retention times were >30 d with undegraded volatile solids (VS) remaining in the system considered available for CH? production (VS carry-over). Surface crusts formed on all the slurries. Only the slurries with TS of 3.2 and 5.8% were covered completely for ~3 mo. Nitrous oxide contributed <5% of total greenhouse gas emissions for all TS levels. Ammonia and CH? emissions increased linearly with TS despite variable crusting, suggesting substrate availability for gas production was more important than crust formation in regulating emissions over long-term storage. Modeled CH? emissions were substantially higher than measured data in the first month, and accounting for this could improve overall model performance. Carried-over VS were a CH? source in months 2 through 6. The results of this study suggest that substrate availability regulates emissions over long-term storage and that modifying the USEPA model to better describe carbon cycling is warranted.  相似文献   

7.
Methane and carbon dioxide emission from two pig finishing barns   总被引:3,自引:0,他引:3  
Agricultural activities are an important source of greenhouse gases. However, comprehensive, long-term, and high-quality measurement data of these gases are lacking. This article presents a field study of CH(4) and CO(2) emission from two 1100-head mechanically ventilated pig (Sus scrofa) finishing barns (B1 and B2) with shallow manure flushing systems and propane space heaters from August 2002 to July 2003 in northern Missouri. Barn 2 was treated with soybean oil sprinkling, misting essential oils, and misting essential oils with water to reduce air pollutant emissions. Only days with CDFB (complete-data-full-barn), defined as >80% of valid data during a day with >80% pigs in the barns, were used. The CH(4) average daily mean (ADM) emission rates were 36.2 +/- 2.0 g/d AU (ADM +/- 95% confidence interval; animal unit = 500 kg live mass) from B1 (CDFB days = 134) and 28.8 +/- 1.8 g/d AU from B2 (CDFB days = 131). The CO(2) ADM emission rates were 17.5 +/- 0.8 kg/d AU from B1 (CDFB days = 146) and 14.2 +/- 0.6 kg/d AU from B2 (CDFB days = 137). The treated barn reduced CH(4) emission by 20% (P < 0.01) and CO(2) emission by 19% (P < 0.01). The CH(4) and CO(2) released from the flushing lagoon effluent were equivalent to 9.8 and 4.1% of the CDFB CH(4) and CO(2) emissions, respectively. The emission data were compared with the literature, and the characteristics of CH(4) and CO(2) concentrations and emissions were discussed.  相似文献   

8.
Concentrations of dissolved methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) were measured in the water columns of non-oxygenated and artificially oxygenated, ice-covered eutrophied lakes in the mid-boreal zone in Finland during late winter 1997 and 1999. Sampling was conducted during winter stratification, the critical period for oxygen (O2) deficiency in seasonally ice-covered, thermally stratified lakes. Oxygen concentrations were maintained at least at a moderate level throughout the oxygenated water columns, whereas the non-oxygenated columns suffered anoxic hypolimnia. The mean concentrations of dissolved CH4 exceeding the atmospheric equilibrium were greater in the non-oxygenated water columns (20.6-154 microM) than in the oxygenated ones (0.01-1.41 microM). In contrast, the mean excess CO2 concentrations varied less between the non-oxygenated and oxygenated sites (0.28-0.47 and 0.25-0.31 mM, respectively). Oxygenated water columns had greater mean excess concentrations of N2O (0.018-0.032 microM) than the non-oxygenated ones (0.005-0.024 microM). If the accumulated greenhouse gas stores in the water columns during winter are assumed to be released to the atmosphere during the spring overturn, the global warming potentials (GWP, time horizon 100 yr) of these potential emissions at the non-oxygenated, eutrophic study sites ranged from 177 to 654 g CO2 equivalent (CO2-e) m-2 compared with 144 to 173 g CO2-e m-2 at the oxygenated sites. The increase in the accumulation of CH4 was the main reason for the higher GWP of the non-oxygenated sites. Anthropogenic eutrophication of lake ecosystems can generate increased CH4 emissions due to associated O2 depletion of their sediment and water column.  相似文献   

9.
Manipulation of the diets of pigs may alter the composition of the manure and thereby the environmental and agricultural qualities of the manure. Laboratory studies were performed to quantify the effect of manipulation of pig diets on the chemical composition of the derived manure (slurry), the potential emission of methane (CH4) and ammonia (NH3) during anaerobic storage of the manure, and the potential nitrous oxide (N2O) and carbon dioxide (CO2) emission after application of the manure to soil. The diets differed in contents of crude protein and salt (CaSO4), and the type and contents of nonstarch polysaccharides (NSP). Emissions of NH3 and CH4 during storage were smaller at a low than at a high dietary protein content. The emission of NH3 was significantly related to the contents of ammonium (NH4), total N, and pH. The emission of CH4 was significantly related to contents of dry matter, total C, and volatile fatty acids in the manure. The effect of manure composition on N2O emission markedly differed between the two tested soils, which points at interactions with soil properties such as the organic matter content. These types of interactions require soil-specific recommendations for mitigation of N2O emission from soil-applied pig manure by manipulation of the diet. From the tested diets, decreasing the protein content has the largest potential to simultaneously decrease NH3 and CH4 emissions during manure storage and N2O emission from soil. An integral assessment of the environmental and agricultural impact of handling and application of pig manure as a result of diet manipulation provides opportunities for farmers to maximize the value of manures as fertilizer and soil conditioner and to minimize N and C emissions to the environment.  相似文献   

10.
Storage of manure makes a significant contribution to global methane (CH4) emissions. Anaerobic digestion of pig and cattle manure in biogas reactors before outside storage might reduce the potential for CH4 emissions. However, manure pre-stored at 15 to 20 degrees C in buildings before anaerobic digestion may be a significant source of CH4 and could reduce the potential CH4 production in the biogas reactor. Degradation of energy-rich organic components in slurry and emissions of CH4 and carbon dioxide (CO2) from aerobic and anaerobic degradation processes during pre-storage were examined in the laboratory. Newly mixed slurry was added to vessels and stored at 15 and 20 degrees C for 100 to 220 d. During storage, CH4 and CO2 emissions were measured with a dynamic chamber technique. The ratio of decomposition in the subsurface to that at the surface indicated that the aerobic surface processes contributed significantly to CO2 emission. The measured CH4 emission was used to calculate the methane conversion factor (MCF) in relation to storage time and temperature, and the total carbon-C emission was used to calculate the decrease in potential CH4 production by anaerobic digestion following pre-storage. The results show substantial methane and carbon dioxide production from animal manure in an open fed-batch system kept at 15 to 20 degrees C, even for short storage times, but the influence of temperature was not significant at storage times of <30 d. During long-term storage (90 d), a strong influence of temperature on the MCF value, especially for pig manure, was observed.  相似文献   

11.
The aim of this study was to investigate the effect of different application techniques on greenhouse gas emission from co-fermented slurry. Ammonia (NH3), nitrous oxide (N2O), and methane (CH4) emissions were measured in two field experiments with four different application techniques on arable and grassland sites. To gather information about fermentation effects, unfermented slurry was also tested, but with trail hose application only. Co-fermented slurry was applied in April at a rate of 30 m3 ha(-1). Measurements were made every 4 h on the first day after application and were continued for 6 wk with gradually decreasing sampling frequency. Methane emissions were <150 g C ha(-1) from co-fermentation products and seemed to result from dissolved CH4. Only in the grassland experiment were emissions from unfermented slurry significantly higher, with wetter weather conditions probably promoting CH4 production. Nitrous oxide emission was significantly increased by injection on arable and grassland sites two- and threefold, respectively. Ammonia emissions were smallest after injection or trail shoe application and are discussed in the preceding paper. We evaluated the climatic relevance of the measured gas emissions from the different application techniques based on the comparison of CO2 equivalents. It was evident that NH3 emission reduction, which can be achieved by injection, is at least compensated by increased N2O emissions. Our results indicate that on arable land, trail hose application with immediate shallow incorporation, and on grassland, trail shoe application, bear the smallest risks of high greenhouse gas emissions when fertilizing with co-fermented slurry.  相似文献   

12.
Concentrated animal feeding operations emit trace gases such as ammonia (NH?), methane (CH?), carbon dioxide (CO?), and nitrous oxide (N?O). The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emission rates. The objective of this study was to determine the emission rates of NH?, CH?, CO?, and N?O from three source areas (open lots, wastewater pond, compost) on a commercial dairy located in southern Idaho. Gas concentrations and wind statistics were measured each month and used with an inverse dispersion model to calculate emission rates. Average emissions per cow per day from the open lots were 0.13 kg NH?, 0.49 kg CH?, 28.1 kg CO?, and 0.01 kg N?O. Average emissions from the wastewater pond (g m(-2) d(-1)) were 2.0 g NH?, 103 g CH?, 637 g CO?, and 0.49 g N?O. Average emissions from the compost facility (g m(-2) d(-1)) were 1.6 g NH?, 13.5 g CH?, 516 g CO?, and 0.90 g N?O. The combined emissions of NH?, CH?, CO?, and N?O from the lots, wastewater pond and compost averaged 0.15, 1.4, 30.0, and 0.02 kg cow(-1) d(-1), respectively. The open lot areas generated the greatest emissions of NH?, CO?, and N?O, contributing 78, 80, and 57%, respectively, to total farm emissions. Methane emissions were greatest from the lots in the spring (74% of total), after which the wastewater pond became the largest source of emissions (55% of total) for the remainder of the year. Data from this study can be used to develop trace gas emissions factors from open-lot dairies in southern Idaho and potentially other open-lot production systems in similar climatic regions.  相似文献   

13.
The impact of management on global warming potential (GWP), crop production, and greenhouse gas intensity (GHGI) in irrigated agriculture is not well documented. A no-till (NT) cropping systems study initiated in 1999 to evaluate soil organic carbon (SOC) sequestration potential in irrigated agriculture was used in this study to make trace gas flux measurements for 3 yr to facilitate a complete greenhouse gas accounting of GWP and GHGI. Fluxes of CO2, CH4, and N2O were measured using static, vented chambers, one to three times per week, year round, from April 2002 through October 2004 within conventional-till continuous corn (CT-CC) and NT continuous corn (NT-CC) plots and in NT corn-soybean rotation (NT-CB) plots. Nitrogen fertilizer rates ranged from 0 to 224 kg N ha(-1). Methane fluxes were small and did not differ between tillage systems. Nitrous oxide fluxes increased linearly with increasing N fertilizer rate each year, but emission rates varied with years. Carbon dioxide efflux was higher in CT compared to NT in 2002 but was not different by tillage in 2003 or 2004. Based on soil respiration and residue C inputs, NT soils were net sinks of GWP when adequate fertilizer was added to maintain crop production. The CT soils were smaller net sinks for GWP than NT soils. The determinant for the net GWP relationship was a balance between soil respiration and N2O emissions. Based on soil C sequestration, only NT soils were net sinks for GWP. Both estimates of GWP and GHGI indicate that when appropriate crop production levels are achieved, net CO2 emissions are reduced. The results suggest that economic viability and environmental conservation can be achieved by minimizing tillage and utilizing appropriate levels of fertilizer.  相似文献   

14.
The wetlands play an important role in carbon storage, especially at high latitudes, at which they store nearly one-third of global soil carbons. However, few studies have investigated the emissions of CO(2), CH(4) and N(2)O in the long-term, especially effects of freeze-thaw cycles on these gases emissions in freshwater marsh ecosystems. In this paper, we collected greenhouse gas emission data from a freshwater marsh area in China for 4 years, evaluated their release variables and speculated on their potential atmospheric impact. For this paper, we report on the CO(2), CH(4) and N(2)O emission rates recorded from June 2002 to November 2005 in the Sanjiang Plain of northeast China. We measured their interannual variations and fluctuations, as well as factors affecting their emissions, and estimated their regulation and freeze-thaw cycle impacts. Our results revealed obvious CO(2) and CH(4) emission fluctuations during the winter months, and during the freeze-thaw cycle, and a strong interannual variation during the growing season. Overall, we documented a close relationship between the CO(2) and CH(4) emissions, implicating some regulatory commonality. We determined that the marsh was a N(2)O sink during the winter, but a significant source of N(2)O during the freeze-thaw cycle as the temperature increased, especially in early summer. During the thaw-freeze period, the N(2)O levels were positively correlated with the water depth. Additionally, water depth greatly governed the interannual variation of the N(2)O emissions from the marshes during the thaw-freeze period.  相似文献   

15.
Carbon and N losses reduce the agronomic value of compost and contribute to greenhouse gas (GHG) emissions. This study investigated GHG emissions during composting of straw-bedded manure (SBM) and wood chip-bedded manure (WBM). For SBM, dry matter (DM) loss was 301 kg Mg(-1), total carbon (TC) loss was 174 kg Mg(-1), and total nitrogen (TN) loss was 8.3 kg Mg(-1). These correspond to 30.1% of initial DM, 52.8% of initial TC, and 41.6% of initial TN. For WBM, DM loss was 268 kg Mg(-1), TC loss was 154 kg Mg(-1), and TN loss was 1.40 kg Mg(-1), corresponding to 26.5, 34.5, and 11.8% of initial amounts. Most C was lost as CO2 with CH4 accounting for <6%. However, the net contribution to greenhouse gas emissions was greater for CH4 since it is 21 times more effective at trapping heat than CO2. Nitrous oxide (N2O) emissions were 0.077 kg N Mg(-1) for SBM and 0.084 kg N Mg(-1) for WBM, accounting for 1 to 6% of total N loss. Total GHG emissions as CO2-C equivalent were not significantly different between SBM (368.4 +/- 18.5 kg Mg(-1)) and WBM (349.2 +/- 24.3 kg Mg(-1)). However, emission of 368.4 kg C Mg(-1) (CO2-C equivalent) was greater than the initial TC content (330.5 kg Mg(-1)) of SBM, raising the question of the net benefits of composting on C sequestration. Further study is needed to evaluate the impact of composting on overall GHG emissions and C sequestration and to fully investigate livestock manure management options.  相似文献   

16.
根据《IPCC国家温室气体清单指南》和《省级温室气体清单编制指南》方法,建立2018年云南省16个州(市)城市生活垃圾处理温室气体排放清单,包括生活垃圾填埋和焚烧处理过程,并分析了温室气体排放的时间分布、空间分布和影响因素等。结果表明;(1)2018年云南省生活垃圾处理温室气体总排放量为536万t CO_2当量,各州(市)间排放量差异明显,滇中经济发达地区和滇东北人口密度较高地区排放量明显高于滇西北地区。(2)2005—2018年,云南省生活垃圾处理排放的温室气体量增长了191.3%,温室气体排放组成发生明显变化,CH4比重不断下降,CO_2比重不断增加。(3)城镇人口数量、生活垃圾处理量、经济发展水平与温室气体排放量显著相关,其中人口数量更为明显。  相似文献   

17.
Soil methane (CH(4)) biofilters, containing CH(4)-oxidizing bacteria (methanotrophs), are a promising technology for mitigating greenhouse gas emissions. However, little is known about long-term biofilter performance. In this study, volcanic pumice topsoils (0-10 cm) and subsoils (10-50 cm) were tested for their ability to oxidize a range of CH(4) fluxes over 1 yr. The soils were sampled from an 8-yr-old and a 2-yr-old grassed landfill cover and from a nearby undisturbed pasture away from the influence of CH(4) generated by the decomposing refuse. Methane was passed through the soils in laboratory chambers with fluxes ranging from 0.5 g to 24 g CH(4) m(-3) h(-1). All topsoils efficiently oxidized CH(4). The undisturbed pasture topsoil exhibited the highest removal efficiency (24 g CH(4) m(-3) h(-1)), indicating rapid activation of the methanotroph population to the high CH(4) fluxes. The subsoils were less efficient at oxidizing CH(4) than the topsoils, achieving a maximum rate oxidation rate of 7 g CH(4) m(-3) h(-1). The topsoils exhibited higher porosities; moisture contents; surface areas; and total C, N, and available-P concentrations than the subsoils, suggesting that these characteristics strongly influence growth and activity of the CH(4)-oxidizing bacteria. Soil pH values and available-P levels gradually declined during the trial, indicating a need to monitor chemical parameters closely so that adjustments can be made when necessary. However, other key soil physicochemical parameters (moisture, total C, total N) increased over the course of the trial. This study showed that the selected topsoils were capable of continually sustaining high CH(4) removal rates over 1 yr, which is encouraging for the development of biofilters as a low-maintenance greenhouse gas mitigation technology.  相似文献   

18.
To understand which soil chemical properties are the best predictors of CH4 production in rice paddy soils, a model was developed with empirical data from nine types of rice soils collected around Japan and anaerobically incubated at 30 degrees C for 16 wk in laboratory conditions. After 1, 2, 4, 8, and 16 wk of incubation, CO2, CH4, and Fe(II) were measured to understand soil organic matter decomposition and iron (Fe) reduction. Available N (N ava) was also measured at the end of incubation. The results showed that decomposable C and reducible Fe are two key parameters that regulate soil CH(4) production (P CH4). There was a significant relationship between decomposable C and available N (N ava) (r2 = 0.975**). Except for a sandy soil sample, a significant relationship between total Fe (Fe total) and reducible Fe was found. From this experiment, a simple model of soil CH4 production was developed: P CH4 = 1.593N(ava) - 2.460Fe total/1000 (each unit was mg kg(-1) soil). After simulated CH4 production by two soil chemical properties as above, there was a significant consistency between model simulation and actual measurement (r2 = 0.831**).  相似文献   

19.
Accurate measurements of methane (CH4) emission rates from livestock in their undisturbed natural environments are required to assess their impacts on radiative forcing (i.e., enhanced greenhouse effect) and the environment. Here we compare results from two nonintrusive techniques for the measurement of CH4 emissions from cattle. The cows were kept in an outdoor feeding strip that allowed them to follow natural behavioral patterns but contained them within a well defined space. In the first technique, nitrous oxide (N2O) was released as a tracer at the upwind edge of the feeding strip, and the downwind concentrations of N2O and CH4 were measured simultaneously using Fourier transform infrared (FTIR) spectroscopy. Average CH4 emission per cow was calculated each half-hour on three separate days from the correlation between the two gases. The second technique was the integrated horizontal flux (IHF) or 1-D mass-balance method, in which we used the measured vertical profiles of CH4 concentration and windspeed downwind of the cows to determine the total CH4 emission. Comparing the IHF results to the known release rate of N2O allowed us to test the IHF technique independently. We found agreement within 10% for all comparisons on all days. The daily CH4 emission rate averaged over all tracer and IHF measurements was 342 g CH4 head(-1) d(-1). This is within the range of previous measurements for mature lactating dairy cattle (200-430 g CH4 head(-1) d(-1)) but higher than expected for yearling cattle. The high CH4 emissions are accompanied by high CO2 emissions determined from the FTIR measurements. The bias is most likely due to the measurements being made during and after supplementary feeding of the cattle.  相似文献   

20.
Odor and greenhouse gas (GHG) emissions from stored pig (Sus scrofa) manure were monitored for response to changes in the crude protein level (168 or 139 g kg(-1), as-fed basis) and nonstarch polysaccharide (NSP) content [i.e., control, or modified with beet pulp (Beta vulgaris L.), cornstarch, or xylanase] of diets fed to pigs in a production setting. Each diet was fed to one of eight pens of pigs according to a 2 x 4, full-factorial design, replicated over three time blocks with different groups of animals and random assignment of diets. Manure from each treatment was characterized and stored in a separate, ventilated, 200-L vessel. Repeated measurements of odor, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions from the vessels were taken every two weeks for eight weeks. Manure from high-protein diets had higher sulfur concentration and pH (P < or = 0.05). High-NSP (beet pulp) diets resulted in lower manure nitrogen and ammonia concentrations and pH (P < or = 0.05). Odor level and hedonic tone of exhaust air from the storage vessel headspaces were unaffected by the dietary treatments. Mean CO2 and CH4 emissions (1400 and 42 g d(-1) m(-3) manure, respectively) increased with lower dietary protein (P < or = 0.05). The addition of xylanase to high-protein diets caused a decrease in manure CO2 emissions, but an increase when added to low-protein diets (P < or = 0.05). Nitrous oxide emissions were negligible. Contrary to other studies, these results do not support the use of dietary protein reduction to reduce emissions from stored swine manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号