首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Many source and transport factors control P loss from agricultural landscapes; however, little information is available on how these factors are linked at a watershed scale. Thus, we investigated mechanisms controlling P release from soil and stream sediments in relation to storm and baseflow P concentrations at four flumes and in the channel of an agricultural watershed. Baseflow dissolved reactive phosphorus (DRP) concentrations were greater at the watershed outflow (Flume 1; 0.042 mg L(-1)) than uppermost flume (Flume 4; 0.028 mg L(-1)). Conversely, DRP concentrations were greater at Flume 4 (0.304 mg L(-1)) than Flume 1 (0.128 mg L(-1)) during stormflow. Similar trends in total phosphorus (TP) concentration were also observed. During stormflow, stream P concentrations are controlled by overland flow-generated erosion from areas of the watershed coincident with high soil P. In-channel decreases in P concentration during stormflow were attributed to sediment deposition, resorption of P, and dilution. The increase in baseflow P concentrations downstream was controlled by channel sediments. Phosphorus sorption maximum of Flume 4 sediment (532 mg kg(-1)) was greater than at the outlet Flume 1 (227 mg kg(-1)). Indeed, the decrease in P desorption between Flumes 1 and 4 sediment (0.046 to 0.025 mg L(-1)) was similar to the difference in baseflow DRP between Flumes 1 and 4 (0.042 to 0.028 mg L(-1)). This study shows that erosion, soil P concentration, and channel sediment P sorption properties influence streamflow DRP and TP. A better understanding of the spatial and temporal distribution of these processes and their connectivity over the landscape will aid targeting remedial practices.  相似文献   

2.
The National Phosphorus Project rainfall simulator was used to quantify overland flow and P transport from nine sites distributed throughout the watershed of a New York City Watershed Agriculture Program collaborating dairy farm. Observed concentrations of total dissolved phosphorus (TDP) were low (0.007-0.12 mg L(-1)) in flow from deciduous forest, extensively managed pasture, and hillside seeps; moderate (0.18-0.64 mg L(-1)) in flow from intensively managed pastures, a hayfield, and a cow path; and extremely high (11.6 mg L(-1)) in flow from a manured barnyard. Concentrations of TDP from sites without fresh manure were strongly correlated with soil test P (TDP [mg L(-1)] = 0.0056 + 0.0180 x Morgan's soil test phosphorus [STP, mg kg(-1)]; R2 = 84%). Observed concentrations of suspended solids were low (16-137 mg L(-1)) in flow from vegetated sites, but were higher (375-615 mg L(-1)) in flow from sites with little ground cover (barnyard, cow path, plowed field). Under dry summer conditions the time to observed overland flow was shorter (<18 min) for nonfield areas (seeps, barnyard, cow path) than for field and forest areas (27-93 min), indicating that hydrologically active nonfield areas of minor spatial extent but with high soil P (e.g., cow paths and barnyards) can play a significant role in summertime P loading. When soils started from field capacity (second-day) time to overland flow was uniformly less than 23 min, indicating that under wet watershed conditions low-P source areas can dilute overland flow from concentrated sources.  相似文献   

3.
Uptake and release of phosphorus from overland flow in a stream environment   总被引:1,自引:0,他引:1  
Phosphorus runoff from agricultural fields has been linked to fresh-water eutrophication. However, edge-of-field P losses can be modified by benthic sediments during stream flow by physiochemical processes associated with Al, Fe, and Ca, and by biological assimilation. We investigated fluvial P when exposed to stream-bed sediments (top 3 cm) collected from seven sites representing forested and agricultural areas (pasture and cultivated), in a mixed-land-use watershed. Sediment was placed in a 10-m-long, 0.2-m-wide fluvarium to a 3-cm depth and water was recirculated over the sediment at 2 L s(-1) and 5% slope. When overland flow (4 mg dissolved reactive phosphorus [DRP] and 9 mg total phosphorus [TP] L(-1)) from manured soils was first recirculated, P uptake was associated with Al and Fe hydrous oxides for sediments from forested areas (pH 5.2-5.4) and by Ca for sediments from agricultural areas (pH 6.5-7.2). A large increase (up to 200%) in readily available P NH4Cl fraction was noted. After 24 h, DRP concentration in channel flow was related to sediment solution P concentration at which no net sorption or desorption of P occurs (EPC0) (r2 = 0.77), indicating quasi-equilibrium. When fresh water (approximately 0.005 mg P L(-1) mean base flow DRP at seven sites) was recirculated over the sediments for 24 h, P release kinetics followed an exponential function. Microbial biomass P accounted for 34 to 43% of sediment P uptake from manure-rich overland flow. Although abiotic sediment processes played a dominant role in determining P uptake, biotic process are clearly important and both should be considered along with the location and management of landscape inputs for remedial strategies to be effective.  相似文献   

4.
Evaluation of phosphorus transport in surface runoff from packed soil boxes   总被引:2,自引:0,他引:2  
Evaluation of phosphorus (P) management strategies to protect water quality has largely relied on research using simulated rainfall to generate runoff from either field plots or shallow boxes packed with soil. Runoff from unmanured, grassed field plots (1 m wide x 2 m long, 3-8% slope) and bare soil boxes (0.2 m wide and 1 m long, 3% slope) was compared using rainfall simulation (75 mm h(-1)) standardized by 30-min runoff duration (rainfall averaged 55 mm for field plots and 41 mm for packed boxes). Packed boxes had lower infiltration (1.2 cm) and greater runoff (2.9 cm) and erosion (542 kg ha(-1)) than field plots (3.7 cm infiltration; 1.8 cm runoff; 149 kg ha(-1) erosion), yielding greater total phosphorus (TP) losses in runoff. Despite these differences, regressions of dissolved reactive phosphorus (DRP) in runoff and Mehlich-3 soil P were consistent between field plots and packed boxes reflecting similar buffering by soils and sediments. A second experiment compared manured boxes of 5- and 25-cm depths to determine if variable hydrology based on box depth influenced P transport. Runoff properties did not differ significantly between box depths before or after broadcasting dairy, poultry, or swine manure (100 kg TP ha(-1)). Water-extractable phosphorus (WEP) from manures dominated runoff P, and translocation of manure P into soil was consistent between box types. This study reveals the practical, but limited, comparability of field plot and soil box data, highlighting soil and sediment buffering in unamended soils and manure WEP in amended soils as dominant controls of DRP transport.  相似文献   

5.
The Olsen-P status of grazed grassland (Lolium perenne L.) swards in Northern Ireland was increased over a 5-yr period (March 2000 to February 2005) by applying different rates of P fertilizer (0, 10, 20, 40, or 80 kg P ha(-1) yr(-1)) to assess the relationship between soil P status and P losses in land drainage water and overland flow. Plots (0.2 ha) were hydrologically isolated and artificially drained to v-notch weirs, with flow proportional monitoring of drainage water and overland flow. Annually, the collectors for overland flow intercepted between 11 and 35% of the surplus rainfall. Single flow events accounted for up to 52% of the annual dissolved reactive phosphorus (DRP) load. The Olsen-P status of the soil influenced DRP and total phosphorus (TP) concentrations in land drainage water and overland flow. Annual TP loss was highly variable and ranged from 0.19 to 1.55 kg P ha(-1) yr(-1) for the plot receiving no P fertilizer and from 0.35 to 2.94 kg P ha(-1) yr(-1) for the plot receiving 80 kg P ha(-1) yr(-1). Despite the Olsen-P status in the soils ranging from 22 to 99 mg P kg(-1), after 5 yr of fertilizer P applications it was difficult to identify a clear Olsen-P concentration at which P losses increased. Any relationship was confounded by annual variability of hydrologic events and flows and by hydrologic differences between plots. Withholding P fertilizer for over 5 yr was not long enough to lower P losses or to have an adverse effect on herbage P concentrations.  相似文献   

6.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.  相似文献   

7.
Phosphorus runoff: effect of tillage and soil phosphorus levels   总被引:2,自引:0,他引:2  
Continued inputs of fertilizer and manure in excess of crop requirements have led to a build-up of soil phosphorus (P) levels and increased P runoff from agricultural soils. The objectives of this study were to determine the effects of two tillage practices (no-till and chisel plow) and a range of soil P levels on the concentration and loads of dissolved reactive phosphorus (DRP), algal-available phosphorus (AAP), and total phosphorus (TP) losses in runoff, and to evaluate the P loss immediately following tillage in the fall, and after six months, in the spring. Rain simulations were conducted on a Typic Argiudoll under a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Elapsed time after tillage (fall vs. spring) was not related to any form of P in runoff. No-till runoff averaged 0.40 mg L(-1) and 0.05 kg ha(-1) DRP and chisel-plow plots averaged 0.24 mg L(-1) and 0.02 kg ha(-1) DRP concentration and loads, respectively. The relationship between DRP and Bray P1 extraction values was approximated by a logistic function (S-shaped curve) for no-till plots and by a linear function for tilled plots. No significant differences were observed between tillage systems for TP and AAP in runoff. Bray P1 soil extraction values and sediment concentration in runoff were significantly related to the concentrations and amounts of AAP and TP in runoff. These results suggest that soil Bray P1 extraction values and runoff sediment concentration are two easily measured variables for adequate prediction of P runoff from agricultural fields.  相似文献   

8.
Riparian buffers can be effective at removing phosphorus (P) in overland flow, but their influence on subsurface P loading is not well known. Phosphorus concentrations in the soil, soil solution, and shallow ground water of 16 paired cropland-buffer plots were characterized during 2004 and 2005. The sites were located at two private dairy farms in Central New York on silt and gravelly silt loams (Aeric Endoaqualfs, Fluvaquentic Endoaquepts, Fluvaquentic Eutrudepts, Glossaquic Hapludalfs, and Glossic Hapludalfs). It was hypothesized that P availability (sodium acetate extractable-P) and soil-landscape variability would affect P release to the soil solution and shallow ground water. Results showed that P availability tended to be greater in crop fields relative to paired buffer plots. Soil P was a good indicator of soil solution dissolved (<0.45 microm) molybdate-reactive P (DRP) concentrations among plots, but was not independently effective at predicting ground water DRP concentrations. Mean ground water DRP in corn fields ranged from < or =20 to 80 microg L(-1), with lower concentrations in hay and buffer plots. More imperfectly drained crop fields and buffers tended to have greater average DRP, particulate (> or =0.45 microm) reactive P (PRP), and dissolved unreactive P (DUP) concentrations in ground water. Soil organic matter and 50-cm depth soil solution DRP in buffers jointly explained 75% of the average buffer ground water DRP variability. Results suggest that buffers were relatively effective at reducing soil solution and shallow ground water DRP concentrations, but their impact on particulate and organic P in ground water was less clear.  相似文献   

9.
Continual application of mineral fertilizer and manures to meet crop production goals has resulted in the buildup of soil P concentrations in many areas. A rainfall simulation study was conducted to evaluate the effect of the application of P sources differing in water-soluble P (WSP) concentration on P transport in runoff from two grassed and one no-till soil (2 m(2) plots). Triple superphosphate (TSP)-79% WSP, low-grade single superphosphate (LGSSP)-50% WSP, North Carolina rock phosphate (NCRP)-0.5% WSP, and swine manure (SM)-30% WSP, were broadcast (100 kg total P ha(-1)) and simulated rainfall (50 mm h(-1) for 30 min of runoff) applied 1, 7, 21, and 42 d after P source application. In the first rainfall event one d after fertilizer application, dissolved reactive P (DRP) and total P (TP) concentrations of runoff increased (P < 0.05) for all soils with an increase of source WSP; with DRP averaging 0.27, 0.50, 14.66, 41.69, and 90.47 mg L(-1); and total P averaging 0.34, 0.61, 19.05, 43.10, and 98.06 mg L(-1) for the control, NCRP, SM, LGSSP, and TSP, respectively. The loss of P in runoff decreased with time for TSP and SM, such that after 42 d, losses from TSP, SM, and LGSSP did not differ. These results support that P water solubility in P sources may be considered as an indicator of P loss potential.  相似文献   

10.
Phosphorus loss in runoff from agricultural fields has been identified as an important contributor to eutrophication. The objective of this research was to determine the relationship between phosphorus (P) in runoff from a benchmark soil (Cecil sandy loam; fine, kaolinitic, thermic Typic Kanhapludult) and Mehlich III-, deionized water-, and Fe(2)O(3)-extractable soil P, and degree of phosphorus saturation (DPS). Additionally, the value of including other soil properties in P loss prediction equations was evaluated. Simulated rainfall was applied (75 mm h(-1)) to 54 1-m(2) plots installed on six fields with different soil test phosphorus (STP) levels. Runoff was collected in its entirety for 30 min and analyzed for total P and dissolved reactive phosphorus (DRP). Soil samples were collected from 0- to 2-, 0- to 5-, and 0- to 10-cm depths. The strongest correlation for total P and DRP occurred with DPS (r(2) = 0.72). Normalizing DRP by runoff depth resulted in improved correlation with deionized water-extractable P for the 0- to 10-cm sampling depth (r(2) = 0.81). The STP levels were not different among sampling depths and analysis of the regression equations revealed that soil sampling depth had no effect on the relationship between STP and P in runoff. For all forms of P in runoff and STP measures, the relationship between STP and runoff P was much stronger when the data were split into groups based on the ratio of oxalate-extractable Fe to Al. For all forms of P in runoff and all STP methods, R(2) increased with the inclusion of oxalate-extractable Al and Fe in the regression equation. The results of this study indicate that inclusion of site-specific information about soil Al and Fe content can improve the relationship between STP and runoff P.  相似文献   

11.
Phosphorus losses in runoff from cropland can contribute to nonpoint-source pollution of surface waters. Management practices in corn (Zea mays L.) production systems may influence P losses. Field experiments with treatments including differing soil test P levels, tillage and manure application combinations, and manure and biosolids application histories were used to assess these management practice effects on P losses. Runoff from simulated rainfall (76 mm h(-1)) was collected from 0.83-m2 areas for 1 h after rainfall initiation and analyzed for dissolved reactive P (DRP), bioavailable P, total P (TP), and sediment. In no-till corn, both DRP concentration and load increased as Bray P1 soil test (STP) increased from 8 to 62 mg kg(-1). A 5-yr history of manure or biosolids application greatly increased STP and DRP concentrations in runoff. The 5-yr manure treatment had higher DRP concentration but lower DRP load than the 5-yr biosolids treatment, probably due to residue accumulation and lower runoff in the manure treatment. Studies of tillage and manure application effects on P losses showed that tillage to incorporate manure generally lowered runoff DRP concentration but increased TP concentration and loads due to increased sediment loss. Management practices have a major influence on P losses in runoff in corn production systems that may overshadow the effects of STP alone. Results from this work, showing that some practices may have opposite effects on DRP vs. TP losses, emphasize the need to design management recommendations to minimize losses of those P forms with the greatest pollution potential.  相似文献   

12.
The increasing use of concentrate feedstuffs within Northern Ireland dairy systems has resulted in significant farm gate phosphorus (P) surpluses, and these have contributed to increased soil P levels and risk of P loss to overland flow. However, the P content of feed concentrates can be lowered without compromising animal performance. This study focuses on P losses from grassland and evaluates how adjusting the P content of manure impacts on the P composition and concentration in overland flow. Dairy cows were offered diets containing 5.3 to 3.0 g P kg(-1) dry matter (DM) and produced manures with a range of P contents. Manure was applied at a rate of 50 m3 ha(-1) to 0.5-m2 grassland plots, and simulated rainfall (40 mm h(-1)) was applied repeatedly 2, 9, 28, and 49 d after during the summer, winter, and spring. Decreasing the P content in the diet, from the highest to the lowest P treatment (43%), produced a proportionately greater reduction in manure TP content (63%), but reductions were not exclusively in the water-soluble fraction. Following surface applications of manure, P concentrations in overland flow increased in all seasons (P < or = 0.001), while the greatest impact of varying the manure P content was most evident during the first simulated overland flow event. When diet P content was reduced from 5.4 to 3.0 g P kg(-1) DM, a statistically significant reduction in runoff P concentration was observed in all seasons. Elevated P concentrations in overland flow were observed for 28 d in spring and 9 d in summer and winter. The large drop in P concentrations between simulated rainfall events on Day 2 and Day 9 suggests that increasing the time interval between manure application and the generation of overland flow has a greater impact on P losses than does varying the dietary P content.  相似文献   

13.
Growing interest in corn (Zea mays L.) silage utilization on Wisconsin dairy farms may have implications for nutrient losses from agricultural lands. Increasing the silage cutting height will increase residue cover and could reduce off-site migration of sediments and associated constituents compared with conventional silage harvesting. We examined the effects of residue level and manure application timing on phosphorus (P) losses in runoff from no-till corn. Treatments included conventional corn grain (G) and silage (SL; 10- to 15-cm cutting height) and nonconventional, high-cut (60-65 cm) silage (SH) subjected to different manure application regimes: no manure (N) or surface application in fall (F) or spring (S). Simulated rainfall (76 mm h(-1); 1 h) was applied in spring and fall for two years (2002-2003), runoff from 2.0- x 1.5-m plots was collected, and subsamples were analyzed for dissolved reactive phosphorus (DRP), total phosphorus (TP), and P mass distribution in four particle size classes. Total P and DRP loads were inversely related to percent residue cover, but both TP and DRP concentrations were unaffected by residue level. Manure application increased DRP concentrations in spring runoff by two to five times but did not significantly affect DRP loads, since higher concentrations were offset by lower runoff volumes. Spring manure application reduced TP loads in spring runoff by 77 to 90% compared with plots receiving no manure, with the extent of reductions being greatest at the lower residue levels (<24%). The TP concentration in sediments increased as particle size decreased. Manure application increased the TP concentration of the 0- to 2-microm fraction by 79 to 125%, but elevated the 2- to 10- and 10- to 50-microm fractions to a lesser extent. Recent manure additions were most influential in enriching transported sediments with P. By itself, higher residue cover achieved by high-cutting silage was often insufficient to lower P losses; however, the combination of manure application and higher residue levels significantly reduced P losses from corn fields harvested for silage.  相似文献   

14.
There is interest in quantifying phosphorus (P) loss from intensively grazed dairy landscapes to identify key pathways and target remediation methods. The Bog Burn drains a dairying catchment in Southland, New Zealand, and has been monitored at fortnightly intervals over a 12-mo period at four sites for suspended sediment (SS), dissolved reactive phosphorus (DRP), and total phosphorus (TP). Time-integrated samplers, deployed at 0.6 median water depth at each site (calculated from previous year's flow data), collected sediment samples, which were analyzed for SS, bioavailable phosphorus (BAP), and TP. Mean concentrations of DRP and TP in stream flow and BAP and TP in sediment were generally highest in summer or autumn (0.043 mg DRP L(-1), 0.160 mg TP L(-1), 173 mg BAP kg(-1), 2228 mg TP kg(-1)) and lowest in winter or spring (0.012 mg DRP L(-1), 0.034 mg TP L(-1), 6 mg BAP kg(-1), 711 mg TP kg(-1)), while loads were highest in winter. Analysis of (137)Cs concentrations in trapped sediment, topsoil, subsoil, and stream bed and bank sediment indicated that trapped sediment was derived from topsoil and entered the stream either through tile drainage or, to a lesser extent, overland flow. Because concentrations of DRP and TP in stream flow are in excess of recommended limits for good water quality (>0.01 mg DRP L(-1), 0.033 mg TP L(-1)), management should focus on the topsoil and specifically on decreasing P loss via tile drainage. This is best achieved by decreasing soil Olsen P concentrations, especially because, on average, Olsen P concentrations in the catchment were above the agronomic optimum.  相似文献   

15.
Concern over eutrophication has directed attention to manure management effects on phosphorus (P) loss in runoff. This study evaluates the effects of manure application rate and type on runoff P concentrations from two, acidic agricultural soils over successive runoff events. Soils were packed into 100- x 20- x 5-cm runoff boxes and broadcast with three manures (dairy, Bos taurus, layer poultry, Gallus gallus; swine, Sus scrofa) at six rates, from 0 to 150 kg total phosphorus (TP) ha(-1). Simulated rainfall (70 mm h(-1)) was applied until 30 min of runoff was collected 3, 10, and 24 d after manure application. Application rate was related to runoff P (r2 = 0.50-0.98), due to increased concentrations of dissolved reactive phosphorus (DRP) in runoff; as application rate increased, so did the contribution of DRP to runoff TP. Varied concentrations of water-extractable phosphorus (WEP) in manures (2-8 g WEP kg(-1)) resulted in significantly lower DRP concentrations in runoff from dairy manure treatments (0.4-2.2 mg DRP L(-1)) than from poultry (0.3-32.5 mg DRP L(-1)) and swine manure treatments (0.3-22.7 mg DRP L(-1)). Differences in runoff DRP concentrations related to manure type and application rate were diminished by repeated rainfall events, probably as a result of manure P translocation into the soil and removal of applied P by runoff. Differential erosion of broadcast manure caused significant differences in runoff TP concentrations between soils. Results highlight the important, but transient, role of soluble P in manure on runoff P, and point to the interactive effects of management and soils on runoff P losses.  相似文献   

16.
Pasture systems in Hawaii are based primarily on kikuyugrass (Pennisetum clandestinum Hochst. ex Chiov.). Relationships among kikuyugrass P concentration, animal P requirements, and various soil P determinations are needed to help identify source areas for implementing pasture management strategies to limit P loss via overland flow. A total of 51 rotationally stocked kikuyugrass pastures (>20 yr old) with contrasting soil chemical properties were sampled. A satisfactory predictive relationship between modified-Truog (MT)-extractable phosphorus (P(MT)) and dissolved (<0.45-mum pore diameter), molybdate-reactive phosphorus (DRP) desorbed from soil in a water extract (DRP(WE)) was found when 0- to 4-cm-depth data for the soil orders with medium to high DRP(WE) (two Mollisols and an Inceptisol) were pooled separately from those with low DRP(WE) (five Andisols, three Ultisols, and an Oxisol). The oxalate phosphorus saturation index (PSI(ox)) procedure was the best predictor of DRP(WE) across soil orders when oxalate-extractable molybdate-reactive phosphorus (RP(ox)) was used to calculate PSI(ox) (PSI(ox)RP) rather than when total oxalate-extractable phosphorus (TP(ox)) was used (PSI(ox)TP). There was little DRP(WE) until PSI(ox)RP exceeded 6% or PSI(ox)TP exceeded 8%. A more empirical dilute-acid phosphorus saturation index (PSI(MT)) was also calculated using P(MT) and MT-extractable iron (Fe(MT)) and aluminum (Al(MT)). The PSI(MT) procedure showed some utility in predicting DRP(WE), was positively related to the PSI(ox) procedures, and can be more readily performed in agronomic soil testing laboratories than PSI(ox). The present research suggests that while Hawaiian kikuyugrass pastures tend to be sufficient to high in forage P, potential soil P release to water only appeared to be a possible environmental concern for the Mollisol and Inceptisol sites.  相似文献   

17.
Because surface-applied manures can contribute to phosphorus (P) in runoff, we examined mechanical aeration of grasslands for reducing P transport by increasing infiltration of rainfall and binding of P with soil minerals. The effects of three aeration treatments and a control (aeration with cores, continuous-furrow "no-till" disk aeration perpendicular to the slope, slit aeration with tines, and no aeration treatment) on the export of total suspended solids, total Kjeldahl P (TKP), total dissolved P (TDP), dissolved reactive P (DRP), and bioavailable P (BAP) in runoff from grasslands with three manure treatments (broiler litter, dairy slurry, and no manure) were examined before and after simulated compaction by cattle. Plots (0.75 x 2 m) were established on a Cecil soil series with mixed tall fescue (Festuca arundinacea Schreb.)-bermudagrass [Cynodon dactylon (L.) Pers.] vegetation on 8 to 12% slopes. Manures were applied at a target rate of 30 kg P ha(-1), and simulated rainfall was applied at a rate of 85 mm h(-1). Although the impact of aeration type on P export varied before and after simulated compaction, overall results indicated that core aeration has the greatest potential for reducing P losses. Export of TKP was reduced by 55%, TDP by 62%, DRP by 61%, total BAP by 54%, and dissolved BAP by 57% on core-aerated plots with applied broiler litter as compared with the control (p < 0.05). Core and no-till disk aeration also showed potential for reducing P export from applied dairy slurry (p < 0.10). Given that Cecil soil is common in pastures receiving broiler litter in the Southern Piedmont, our results indicate that pairing core aeration of these pastures with litter application could have a widespread impact on surface water quality.  相似文献   

18.
The loss of phosphorus (P) in runoff from agricultural soils may accelerate eutrophication in lakes and streams as well as degrade surface water quality. Limited soil specific data exist on the relationship between runoff P and soil P. This study investigated the relationship between runoff dissolved reactive phosphorus (DRP) and soil P for three Oklahoma benchmark soils: Richfield (fine, smectitic, mesic Aridic Argiustoll), Dennis (fine, mixed, active, thermic Aquic Argiudoll), and Kirkland (fine, mixed, superactive, thermic Udertic Paleustoll) series. These soils were selected to represent the most important agricultural soils in Oklahoma across three major land resource areas. Surface soil (0-15 cm) was collected from three designated locations, treated with diammonium phosphate (18-46-0) to establish a wide range of water-soluble phosphorus (WSP) (3.15-230 mg kg(-1)) and Mehlich-3 phosphorus (M3P) (27.8-925 mg kg(-1)). Amended soils were allowed to reach a steady state 210 d before simulated rainfall (75 mm h(-1)). Runoff was collected for 30 min from bare soil boxes (1.0 x 0.42 m and 5% slope) and analyzed for DRP and total P. Soil samples collected immediately before rainfall simulation were analyzed for the following: M3P, WSP, ammonium oxalate P saturation index (PSI(ox)), water-soluble phosphorus saturation index (PSI(WSP)), and phosphorus saturation index calculated from M3P and phosphorus sorption maxima (P(sat)). The DRP in runoff was highly related (p < 0.001) to M3P for individual soil series (r2 > 0.92). Highly significant relationships (p < 0.001) were found between runoff DRP and soil WSP for the individual soil series (r2 > 0.88). Highly significant relationships (p < 0.001) existed between DRP and different P saturation indexes. Significant differences (p < 0.05) among the slopes of the regressions for the DRP-M3P, DRP-WSP, DRP-PSI(ox), DRP-PSI(WSP), and DRP-P(sat) relationships indicate that the relationships are soil specific and phosphorus management decisions should consider soil characteristics.  相似文献   

19.
Loss of soil nutrients in runoff accelerates eutrophication of surface waters. This study evaluated P and N in surface runoff in relation to rainfall intensity and hydrology for two soils along a single hillslope. Experiments were initiated on 1- by 2-m plots at foot-slope (6%) and mid-slope (30%) positions within an alfalfa (Medicago sativa L.)-orchardgrass (Dactylis glomerata L.) field. Rain simulations (2.9 and 7.0 cm h(-1)) were conducted under wet (spring) and dry (late-summer) conditions. Elevated, antecedent soil moisture at the foot-slope during the spring resulted in less rain required to generate runoff and greater runoff volumes, compared with runoff from the well-drained mid-slope in spring and at both landscape positions in late summer. Phosphorus in runoff was primarily in dissolved reactive form (DRP averaged 71% of total P), with DRP concentrations from the two soils corresponding with soil test P levels. Nitrogen in runoff was mainly nitrate (NO3-N averaged 77% of total N). Site hydrology, not chemistry, was primarily responsible for variations in mass N and P losses with landscape position. Larger runoff volumes from the foot-slope produced higher losses of total P (0.08 kg ha(-1)) and N (1.35 kg ha(-1)) than did runoff from the mid-slope (0.05 total P kg ha(-1); 0.48 kg N ha(-1)), particularly under wet, spring-time conditions. Nutrient losses were significantly greater under the high intensity rainfall due to larger runoff volumes. Results affirm the critical source area concept for both N and P: both nutrient availability and hydrology in combination control nutrient loss.  相似文献   

20.
Further studies on the quality of runoff from tillage and cropping systems in the southeastern USA are needed to refine current risk assessment tools for nutrient contamination. Our objective was to quantify and compare effects of constant (Ic) and variable (Iv) rainfall intensity patterns on inorganic nitrogen (N) and phosphorus (P) losses from a Tifton loamy sand (Plinthic Kandiudult) cropped to cotton (Gossypium hirsutum L.) and managed under conventional (CT) or strip-till (ST) systems. We simulated rainfall at a constant intensity and a variable intensity pattern (57 mm h(-1)) and collected runoff continuously at 5-min intervals for 70 min. For cumulative runoff at 50 min, the Iv pattern lost significantly greater amounts (p < 0.05) of total Kjeldahl N (TKN) and P (TKP) (849 g N ha(-1) and 266 g P ha(-1) for Iv; 623 g N ha(-1) and 192 g P ha(-1) for Ic) than did the Ic pattern. However, at 70 min, no significant differences in total losses were evident for TKN or TKP from either rainfall intensity pattern. In contrast, total cumulative losses of dissolved reactive P (DRP) and NO3-N were greatest for ST-Ic, followed by ST-Iv, CT-Ic, and CT-Iv in diminishing order (69 g DRP ha(-1) and 361 g NO3-N ha(-1); 37 g DRP ha(-1) and 133 g NO3-N ha(-1); 3 g DRP ha(-1) and 58 g NO3-N ha(-1); 1 g DRP ha(-1) and 49 g NO3-N ha(-1)). Results indicate that constant-rate rainfall simulations may overestimate the amount of dissolved nutrients lost to the environment in overland flow from cropping systems in loamy sand soils. We also found that CT treatments lost significantly greater amounts of TKN and TKP than ST treatments and in contrast, ST treatments lost significantly greater amounts of DRP and NO3-N than CT treatments. These results indicate that ST systems may be losing more soluble fractions than CT systems, but only a fraction the total N (33%) and total P (11%) lost through overland flow from CT systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号