共查询到20条相似文献,搜索用时 93 毫秒
1.
Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil 总被引:1,自引:0,他引:1
Gjettermann B Styczen M Hansen S Borggaard OK Hansen HC 《Journal of environmental quality》2007,36(3):753-763
Mobility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from soils to surface waters. To study the sorption and mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agricultural Humic Hapludult was investigated and a kinetic model applicable in field-scale models tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrations (0-4.7 mmol L(-1)). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L(-1), the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium." The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics. 相似文献
2.
Naturally occurring dissolved organic matter (DOM) and biosolids-derived DOM have been implicated in the mobility of metals in soils and aquifer materials. To investigate the effect of DOM on copper mobility in aquifer material, DOM derived from sewage biosolids was separated into two apparent molecular-weight (MW) fractions, 500 to 3500 Da (LMW) and > 14 000 Da (HMW). In each MW fraction, the DOM was further fractionated into hydrophilic, hydrophobic acid, and hydrophobic neutral compounds by an XAD-8 chromatography technique. The mobility of these DOM components and their influences on copper transport in a sesquioxide-coated, sandy aquifer material were examined with column transport experiments. The LMW DOM was found to be highly mobile, whereas the HMW DOM had a greater tendency to be retained by the aquifer material. Within the same MW fraction, the mobility of DOM followed the order of hydrophilic DOM > hydrophobic acid DOM > hydrophobic neutral DOM. Copper breakthrough curves in the presence of various DOM components showed that, except for the HMW hydrophilic fraction, DOM components enhanced Cu transport through the aquifer columns at early stages of transport (the first 75 pore volumes). In the later stages, however, all the DOM components substantially inhibited Cu mobility. We hypothesize that several mechanisms could account for retardation of Cu movement in the presence of the DOM fractions, including the formation of ternary complexes between the aquifer material, Cu, and DOM; changes in the electrostatic potential at the solid-phase surface; and pH buffering by DOM. 相似文献
3.
In many catchments, anthropogenic input of contaminants, and in particular phosphorus (P), into surface water is a mixture of agricultural and sewage runoff. Knowledge about the relative contribution from each of these sources is vital for mitigation of major environmental problems such as eutrophication. In this study, we investigated whether the distribution of trace elements in surface waters can be used to trace the contamination source. Water from three groups of streams was investigated: streams influenced only by agricultural runoff, streams influenced mainly by sewage runoff, and reference streams. Samples were collected at different flow regimes and times of year and analyzed for 62 elements using ICP-MS. Our results show that there are significant differences between the anthropogenic sources affecting the streams in terms of total element composition and individual elements, indicating that the method has the potential to trace anthropogenic impact on surface waters. The elements that show significant differences between sources are strontium (p < 0.001), calcium (p < 0.004), potassium (p < 0.001), magnesium (p < 0.001), boron (p < 0.001), rhodium (p = 0.001), and barium (p < 0.001). According to this study, barium shows the greatest potential as a tracer for an individual source of anthropogenic input to surface waters. We observed a strong relationship between barium and total P in the investigated samples (R(2) = 0.78), which could potentially be used to apportion anthropogenic sources of P and thereby facilitate targeting of mitigation practices. 相似文献
4.
Antibiotic losses in leaching and surface runoff from manure-amended agricultural land 总被引:1,自引:0,他引:1
A 3-yr field study quantified leaching and runoff losses of antibiotics from land application of liquid hog (chlortetracycline and tylosin) and solid beef (chlortetracycline, monensin, and tylosin) manures under chisel plowing and no-tillage systems. The study was conducted in southwestern Wisconsin, a karst area with steep, shallow, macroporous soils. Relative mass losses of chlortetracycline, monensin, and tylosin were <5% of the total amount applied with manure. Chlortetracycline was only detected in runoff, whereas monensin and tylosin were detected in leachate and runoff. Highest concentrations of monensin and tylosin in the leachate were 40.9 and 1.2 microg L(-1), respectively. Highest chlortetracycline, monensin, and tylosin concentrations in runoff were 0.5, 57.5, and 6.0 microg L(-1), respectively. For all three antibiotics, >90% of detections and 99% of losses occurred during the non-growing season due to fall manure application and slow degradation of antibiotics at cold temperatures. During years of high snowmelt, runoff accounted for nearly 100% of antibiotic losses, whereas during years of minimal snowmelt, runoff accounted for approximately 40% of antibiotic losses. Antibiotic losses were generally higher from the no-tillage compared with chisel plow treatment due to greater water percolation as a result of macroporosity and greater runoff due to lack of surface roughness in the no-tillage plots during the non-growing season. The results from this study suggest that small quantities of dissolved antibiotics could potentially reach surface and ground waters in the Upper Midwestern USA from manure-amended shallow macroporous soils underlain with fractured bedrock. 相似文献
5.
Grassed waterways (GWWs) drain surface runoff from fields without gullying along the drainageway. Secondary functions include reducing runoff volume and velocity and retaining sediments and harmful substances from adjacent fields. Grass cover (sward)-damaging sedimentation in the GWW is commonly reduced by frequent mowing, but in doing so the effectiveness of the waterway relative to the secondary functions is reduced. Our objectives were to (i) evaluate whether the maintenance of a GWW can be reduced if on-site erosion control is effective, (ii) measure the effectiveness of such a GWW, and (iii) analyze the underlying mechanisms. A long-term (1994-2000) landscape experiment was performed in four watersheds, where two had GWWs for which maintenance was largely neglected. An intensive soil conservation system was established on all fields. Runoff and sediment delivery were continuously measured in the two watersheds with GWWs and in their paired watersheds that were similar, but without GWWs. Runoff was reduced by 90 and 10% for the two sets of paired watersheds, respectively. The different efficiencies of the GWWs resulted from different layouts (doubled width and flat-bottomed vs. v-shaped drainageway). The GWWs reduced sediment delivery by 97 and 77%, respectively, but the sward was not damaged by sedimentation. Grain sizes > 50 microm were settled due to gravity in both GWWs. Smaller grain sizes were primarily settled due to infiltration, which increased with a more effective runoff reduction. In general, the results indicated a high potential of GWWs for reducing runoff volume and velocity, sediments, and agrochemicals coming from agricultural watersheds. 相似文献
6.
Few studies have measured removal of pollutants by restored wetlands that receive highly variable inflows. We used automated flow-proportional sampling to monitor the removal of nutrients and suspended solids by a 1.3-ha restored wetland receiving unregulated inflows from a 14-ha agricultural watershed in Maryland, USA. Water entered the wetland mainly in brief pulses of runoff, which sometimes exceeded the 2500-m3 water holding capacity of the wetland. Half of the total water inflow occurred in only 24 days scattered throughout the two-year study. Measured annual water gains were within 5% of balancing water losses. Annual removal of nutrients differed greatly between the two years of the study. The most removal occurred in the first year, which included a three-month period of decreasing water level in the wetland. In that year, the wetland removed 59% of the total P, 38% of the total N, and 41% of the total organic C it received. However, in the second year, which lacked a drying period, there was no significant (p > 0.05) net removal of total N or P, although 30% of the total organic C input was removed. For the entire two-year period, the wetland removed 25% of the ammonium, 52% of the nitrate, and 34% of the organic C it received, but there was no significant net removal of total suspended solids (TSS) or other forms of N and P. Although the variability of inflow may have decreased the capacity of the wetland to remove materials, the wetland still reduced nonpoint-source pollution. 相似文献
7.
Quilbé R Pieri I Wicherek S Dugas N Tasteyre A Thomas Y Oudinet JP 《Journal of environmental quality》2004,33(1):149-153
As part of a project studying the interactions between farming practices, soil erosion processes, and fate of agricultural pollutants into runoff waters, we conducted a pilot study to investigate the relationship between metal contents and metallothionein-2A (MT-2A) as a bioindicator of metal exposure. Runoff water samples were collected between May and November 1999 at the point of outlet of an elementary watershed located in the Paris basin. Selected metals (Al, As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn) were analyzed using conventional techniques. In parallel, human T cells were exposed to water samples for 6 and 18 h and then cell viability and MT-2A gene expression were measured. Results show that among the 10 water samples tested, Al and Zn predominate (highest values = 4.9 and 2.6 microM, respectively), while other metals were below the microM level. Five out of 10 samples induced MT-2A gene expression (30-80% increase at 18 h) as compared with the control. When comparing MT-2A induction profile with metals contents, no obvious correlation was found, suggesting that additional components or parameters are involved. Finally, there was an apparent inverse relationship between Ca concentration and MT-2A gene induction. Although still preliminary, in the absence of longer monitoring, this study shows that MT-2A gene expression is a useful tool to complement chemical analysis in assessing metal elements in water. These combinatory approaches will be pursued and integrated in an ongoing watershed field research project. 相似文献
8.
Phosphorus loss and runoff characteristics in three adjacent agricultural watersheds with claypan soils 总被引:2,自引:0,他引:2
Effects of precipitation, runoff, and management on total phosphorus (TP) loss from three adjacent, row-cropped watersheds in the claypan region of northeastern Missouri were examined from 1991 to 1997 to understand factors affecting P loss in watersheds dominated by claypan soils. Runoff samples from each individual runoff event were analyzed for TP and sediment concentration. The annual TP loss ranged from 0.29 to 3.59 kg ha(-1) with a mean of 1.36 kg ha(-1) across all the watersheds during the study period. Significantly higher loss of TP from the watersheds was observed during the fallow period. Multiple small runoff events or several large runoff events contributed to loss of TP from the watersheds. Total P loss in 1993, a year with above-normal precipitation, accounted for 30% of the total TP loss observed over seven years. The five largest runoff events out of a total of 66 events observed over seven years accounted for 27% of the TP loss. The five largest sediment losses were responsible for 24% of the TP loss over seven years. Runoff volume and sediment loss explained 64 to 73% and 47 to 58% of the variation in TP loss on watersheds during the study. Flow duration and maximum flow accounted for 49 and 66% of TP loss, respectively. The results of this study suggest that management practices that reduce runoff volume, flow duration, maximum flow, and sediment loss, and that maintain a suitable vegetative cover throughout the year could lower P loss in claypan soils. 相似文献
9.
Transport of particulate matter fractions in urban source area pavement surface runoff 总被引:1,自引:0,他引:1
This study used manual full cross-sectional flow discrete sampling and suspended sediment concentration (SSC) methods to gravimetrically characterize noncolloidal hetero-disperse particulate matter (PM). This PM was examined as suspended, settleable, and sediment fractions to assess the distinct transport behavior of each PM fraction throughout each runoff event. Eight runoff events loading an urban paved source area watershed were examined to characterize transport of PM (as SSC) and fractions thereof. An event-based PM mass balance demonstrated recoveries exceeding 90%. With respect to PM transport, two phases were differentiated using a first flush index (m = DeltaM/DeltaV) developed in this study. The m >/= 1 and m < 1 transport phases of the coarser settleable/sediment PM accounted for a higher mass fraction of PM transported during higher flow rates, whereas delivery of the finer suspended fraction became more significant at lower flows. A positive relationship between PM concentration and particle size distribution was found for all events. Event mean concentrations (EMCs) of PM (as SSC) were compared with literature EMCs, sampling methods, and PM analysis method (as total suspended solids [TSS]). Particulate matter study results (as SSC) were higher than many published EMCs (as TSS) (p < 0.05). Differences are attributed to full cross-sectional flow sampling and the use of the the SSC method in contrast to automated sampling combined with TSS methods. Representative characterization of hetero-disperse source area PM is important for water chemistry monitoring, regulatory decisions, best management practice performance and maintenance, and PM inventories in urban systems. 相似文献
10.
Place-based resource management, such as watershed or ecosystem management, is being promoted to replace the media-focused approach for achieving water quality protection. We monitored the agricultural area of a 740-ha watershed to determine the nature and scale of farm material transfers, N and P balances, and farmer decisions that influenced them. Using field data and farmer interviews we found that 3 of 15 farms, emphasizing hog, dairy, or cash crops with poultry production, accounted for more than 80% of the inputs and outputs of N and P for the 362-ha agricultural area (332 ha of managed cropland and animal facilities). Feed for hogs (38% each of total N and P) and manure applied to fields as part of the cash crop and poultry operation (28 and 38% of total N and P, respectively) were the dominant inputs. No crops grown in the watershed were fed to animals in the watershed and more manure nutrients were applied from animals outside than from those in the watershed. A strategic decision by the hog farmer to begin marketing finished hogs changed the material transfers and nutrient balances more than tactical decisions by other farmers in allocating manure to cropland. Since the components of agricultural production were not all interconnected, the fundamental assumption of place-based management programs is not well-suited to this situation. Alternative approaches to managing the effect of agriculture on water quality should consider the organization of agricultural production and the role of strategic decisions in controlling farm nutrient balances. 相似文献
11.
Phosphorus (P) is one of the most important mineral nutrients in agricultural systems, and along with nitrogen (N), is generally the most limiting nutrient for plant production. Farming systems have intensified greatly over time, and in recent years it has become apparent that the concomitant increase in losses of N and P from agricultural land is having a serious detrimental effect on water quality and the environment. The last two decades have seen a marked increase in research into the issues surrounding diffuse losses of P to surface and ground water. This paper reviews this research, examining the issue of P forms in runoff, and highlighting the exceptions to some generally held assumptions about land use and P transport. In particular the review focuses on P losses associated with recent P fertilizer application, as opposed to organic manures, both on the amounts and the forms of P in runoff water. The effects of the physicochemical characteristics of different forms of P fertilizer are explored, particularly in relation to water solubility. Various means of mitigating the risk of loss of P are discussed. It is argued that the influence of recent fertilizer applications is an under-researched area, yet may offer the most readily applicable opportunity to mitigate P losses by land users. This review highlights and discusses some options that have recently become available that may make a significant contribution to the task of sustainable management of nutrient losses from agriculture. 相似文献
12.
Organic dairy production has exhibited potential for growth in the United States dairy sector. However, little information is available on whether there is any difference in manure composition and quality between organic (OD) and conventional (CD) dairy manure even though the composition and quality are important parameters with respect to availability, utilization, and cycling of manure nutrients and environmental impact evaluation. We comparatively characterized whole and water-extracted materials of 15 OD and seven CD dairy manure samples by Fourier transform infrared (FT-IR) and fluorescence spectroscopies. Fourier transform infrared features of manure organic matter varied mainly in the 1650 to 1550 cm range, reflecting the presence of different N compounds in these manure samples. Fluorescence data revealed five fluorophore components present in the water-extracted organic matter from the manures. We found no clearly distinct value ranges in whole and water-extractable organic matter between the two types of dairy manure with respect to C and N contents and FT-IR and fluorescence spectral features. However, based on the average values, we observed general pattern differences on the effect of organic farming on the manure composition: OD contained less soluble C and N compounds on dry weight basis but more hydrophobic aliphatic groups in whole manure. The soluble organic matter in OD samples contained more stable humic- and lignin-related components and less amino/protein N-related components based on their spectroscopic features. These differences might be attributed to more forage feedstuffs in organic dairy farming management and more protein additives in conventional dairy feedstuffs. Information from this work may be useful in aiding organic dairy farmers in making manure management decisions. 相似文献
13.
14.
This work focuses on an experimental investigation of the thermodynamic properties of natural organic matter (NOM), and whether fractions of NOM possess the same thermodynamic characteristics as the whole NOM from which they are derived. Advanced thermal characterization techniques were employed to quantify thermal expansion coefficients (alpha), constant-pressure specific heat capacities (C(p)), and thermal transition temperatures (T(t)) of several aquatic- and terrestrial-derived NOM. For the first time, glass transition behavior is reported for a series of NOM fractions derived from the same whole aquatic or terrestrial source, including humic acid-, fulvic acid-, and carbohydrate-based NOM, and a terrestrial humin. Thermal mechanical analysis (TMA), standard differential scanning calorimetry (DSC), and temperature-modulated differential scanning calorimetry (TMDSC) measurements revealed T(t) ranging from -87 degrees C for a terrestrial carbohydrate fraction to 62 degrees C for the humin fraction. The NOM generally followed a trend of increasing T(t) from carbohydrate to fulvic acid to humic acid to humin, and greater T(t) associated with terrestrial fractions relative to aquatic fractions, similar to that expected for macromolecules possessing greater rigidity and larger molecular weight. Many of the NOM samples also possessed evidence of multiple transitions, similar to beta and alpha transitions of synthetic macromolecules. The presence of multiple transitions in fractionated NOM, however, is not necessarily reflected in whole NOM, suggesting other potential influences in the thermal behavior of the whole NOM relative to fractionated NOM. Temperature-scanning X-ray diffraction studies of each NOM fraction confirmed the amorphous character of each sample through T(t). 相似文献
15.
Pedological processes such as gleization and organic matter accumulation may affect the vertical distribution of P within agricultural drainage ditch soils. The objective of this study was to assess the vertical distribution of P as a function of horizonation in ditch soils at the University of Maryland Eastern Shore Research Farm in Princess Anne, Maryland. Twenty-one profiles were sampled from 10 agricultural ditches ranging in length from 225 to 550 m. Horizon samples were analyzed for total P; water-extractable P; Mehlich-3 P; acid ammonium oxalate-extractable P, Fe, and Al (P ox, Fe ox, Al ox); pH; and organic C (n = 126). Total P ranged from 27 to 4882 mg kg(-1), P ox from 4 to 4631 mg kg(-1), Mehlich-3 P from 2 to 401 mg kg(-1), and water-extractable P from 0 to 17 mg kg(-1). Soil-forming processes that result in differences between horizons had a strong relationship with various P fractions and P sorption capacity. Fibric organic horizons at the ditch soil surface had the greatest mean P ox, Fe ox, and Al ox concentrations of any horizon class. Gleyed A horizons had a mean Fe ox concentrations 2.6 times lower than dark A horizons and were significantly lower in total P and P ox. Variation in P due to organic matter accumulation and gleization provide critical insight into short- and long-term dynamics of P in ditch soils and should be accounted for when applying ditch management practices. 相似文献
16.
Soil organic matter (SOM) is essential for sustaining food production and maintaining ecosystem services and is a vital resource base for storing C and N. The impact of long-term use of synthetic fertilizer N on SOM, however, has been questioned recently. Here we tested the hypothesis that long-term application of N results in a decrease in SOM. We used data from 135 studies of 114 long-term experiments located at 100 sites throughout the world over time scales of decades under a range of land-management and climate regimes to quantify changes in soil organic carbon (SOC) and soil organic nitrogen (SON). Published data of a total of 917 and 580 observations for SOC and SON, respectively, from control (unfertilized or zero N) and N-fertilized treatments (synthetic, organic, and combination) were analyzed using the SAS mixed model and by meta-analysis. Results demonstrate declines of 7 to 16% in SOC and 7 to 11% in SON with no N amendments. In soils receiving synthetic fertilizer N, the rate of SOM loss decreased. The time-fertilizer response ratio, which is based on changes in the paired comparisons, showed average increases of 8 and 12% for SOC and SON, respectively, following the application of synthetic fertilizer N. Addition of organic matter (i.e., manure) increased SOM, on average, by 37%. When cropping systems fluctuated between flooding and drying, SOM decreased more than in continuous dryland or flooded systems. Flooded rice ( L.) soils show net accumulations of SOC and SON. This work shows a general decline in SOM for all long-term sites, with and without synthetic fertilizer N. However, our analysis also demonstrates that in addition to its role in improving crop productivity, synthetic fertilizer N significantly reduces the rate at which SOM is declining in agricultural soils, worldwide. 相似文献
17.
Pharmaceutical compounds (PCs) and dissolved organic matter (DOM) are co-introduced into soils by irrigation with reclaimed wastewater. We targeted carbamazepine (CBZ) as a model compound to study the tertiary interactions between relatively polar PCs, DOM, and soil. Sorption-desorption behavior of CBZ was studied with bulk clay soil and the corresponding clay size fraction in the following systems: (i) without DOM, (ii) co-introduced with DOM, and (iii) pre-adsorption of DOM before CBZ introduction. Sorption of the DOM to both sorbents was irreversible and exhibited pronounced sorption-desorption hysteresis. Carbamazepine exhibited higher sorption affinity and nonlinearity, and a higher degree of desorption hysteresis with the bulk soil than the corresponding clay size fraction. This was probably due to specific interactions with polar soil organic matter fractions that are more common in the bulk soil. Co-introduction of CBZ and DOM to the soil did not significantly affect the sorption behavior of CBZ; however, following pre-adsorption of DOM by the bulk soil, an increase in sorption affinity and decrease in sorption linearity were observed. In this latter treatment, desorption hysteresis of CBZ was significantly increased for both sorbents. We hypothesize that this was due to either strong chemical interactions of CBZ with the adsorbed DOM or physical encapsulation of CBZ in DOM-clay complexes. Based on this study, we suggest that DOM facilitates stronger interactions of polar PCs with the solid surface. This mechanism can reduce PC desorption ability in soils. 相似文献
18.
Ntow WJ Drechsel P Botwe BO Kelderman P Gijzen HJ 《Journal of environmental quality》2008,37(2):696-703
A study of two small streams at Akumadan and Tono, Ghana, was undertaken during the rain and dry season periods between February 2005 and January 2006 to investigate the impact of vegetable field runoff on their quality. In each stream we compared the concentration of current-use pesticides in one site immediately upstream of a vegetable field with a second site immediately downstream. Only trace concentrations of endosulfan and chlorpyrifos were detected at both sites in both streams in the dry season. In the wet season, rain-induced runoff transported pesticides into downstream stretches of the streams. Average peak levels in the streams themselves were 0.07 microg L(-1) endosulfan, 0.02 microg L(-1) chlorpyrifos (the Akumadan stream); 0.04 microg L(-1) endosulfan, 0.02 microg L(-1) chlorpyrifos (the Tono stream). Respective average pesticide levels associated with streambed sediment were 1.34 and 0.32 microg kg(-1) (the Akumadan stream), and 0.92 and 0.84 microg kg(-1) (the Tono stream). Further investigations are needed to establish the potential endosulfan and chlorpyrifos effects on aquatic invertebrate and fish in these streams. Meanwhile measures should be undertaken to reduce the input of these chemicals via runoff. 相似文献
19.
Interactions of organic compounds with wastewater dissolved organic matter: role of hydrophobic fractions 总被引:1,自引:0,他引:1
The role of structural fractions of dissolved organic matter (DOM) from wastewater in the sorption process of hydrophobic organic compounds is still not clear. In this study, DOM from two wastewater treatment plants (Lachish and Netanya, Israel) was fractionated to hydrophobic acid (HoA) and hydrophobic neutral (HoN) fractions. The fractions were characterized and their sorptive capabilities for s-triazine herbicides and polycyclic aromatic hydrocarbons (PAHs) were studied. For all sorbates, the binding to the HoN fractions was much higher than to HoA fractions. The HoA fractions were more polar than the HoN fractions, containing a higher level of carboxylic functionalities. However the higher binding coefficients of atrazine (2-chloro-4-ethylamine-6-isopropylamino-s-triazine) and ametryn [2-(ethylamino)-4-isopropylamino-6-methyl-thio-s-triazine] obtained for the HoN fractions suggest that their sorption is governed by hydrophobic-like interactions rather than H bonding. The values of binding coefficients of PAHs measured for the HoN fractions were within the range reported for humic acids and much higher than other fractions, suggesting that this fraction plays an important role in the overall sorption of these compounds by DOM. Higher sorption coefficients were measured for the Netanya DOM sample containing higher level of hydrophobic fractions (HoA + HoN) than the Lachish DOM, suggesting that the sorption of hydrophobic organic compounds by DOM is governed by the level of these structural substances. The evaluation of mobility of organic pollutants by wastewater irrigation requires not only assessment of the total carbon concentration but also, more importantly, the content of the hydrophobic fractions. 相似文献
20.
Dissolved organic carbon in runoff and tile-drain water under corn and forage fertilized with hog manure 总被引:3,自引:0,他引:3
Royer I Angers DA Chantigny MH Simard RR Cluis D 《Journal of environmental quality》2007,36(3):855-863
Dissolved organic carbon (DOC) export from soils can play a significant role in soil C cycling and in nutrient and pollutant transport. However, information about DOC losses from agricultural soils as influenced by management practices is scarce. We compared the effects of mineral fertilizer (MF) and liquid hog manure (LHM) applications on the concentration and molecular size of DOC released in runoff and tile-drain water under corn (Zea mays L.) and forage cropping systems. Runoff and tile-drain water samples were collected during a 2-mo period (October to December 1998) and DOC concentration was measured. Characterization of DOC was performed by tangential ultrafiltration with nominal cut-offs at 3 and 100 kDa. Mean concentration of DOC in runoff water (12.7 mg DOC L(-1)) was higher than in tile-drain water (6.5 mg DOC L(-1)). Incorporation of corn residues increased the DOC concentration by 6- to 17-fold in surface runoff, but this effect was short-lived. In runoff water, the relative size of the DOC molecules increased when corn residues and LHM were applied probably due to partial microbial breakdown of these organic materials and to a faster decomposition or preferential adsorption of the small molecules. The DOC concentration in tile-drain water was slightly higher under forage (7.5 mg DOC L(-1)) than under corn (5.4 mg DOC L(-1)) even though the application rates of LHM were higher in corn plots. We suggest that preferential flow facilitated the migration of DOC to tile drains in forage plots. In conclusion, incorporation of corn residues and LHM increased the concentration of DOC and the relative size of the molecules in surface runoff water, whereas DOC in tile-drain water was mostly influenced by the cropping system with relatively more DOC and larger molecules under forage than corn. 相似文献