首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Denitrification potential in urban riparian zones   总被引:3,自引:0,他引:3  
Denitrification, the anaerobic microbial conversion of nitrate (NO3-) to nitrogen (N) gases, is an important process contributing to the ability of riparian zones to function as "sinks" for NO3- in watersheds. There has been little analysis of riparian zones in urban watersheds despite concerns about high NO3- concentrations in many urban streams. Vegetation and soils in urban ecosystems are often highly disturbed, and few studies have examined microbial processes like denitrification in these ecosystems. In this study, we measured denitrification potential and a suite of related microbial parameters (microbial biomass carbon [C] and N content, potential net N mineralization and nitrification, soil inorganic N pools) in four rural and four urban riparian zones in the Baltimore, MD metropolitan area. Two of the riparian zones were forested and two had herbaceous vegetation in each land use context. There were few differences between urban and rural and herbaceous and forest riparian zones, but variability was much higher in urban than rural sites. There were strong positive relationships between soil moisture and organic matter content and denitrification potential. Given the importance of surface runoff in urban watersheds, the high denitrification potential of the surface soils that we observed suggests that if surface runoff can be channeled through areas with high denitrification potential (e.g., stormwater detention basins with wetland vegetation), these areas could function as important NO3- sinks in urban watersheds.  相似文献   

2.
Improved understanding of the importance of different surfaces in supporting attached nitrifying and denitrifying bacteria is essential if we are to optimize the N removal capacity of treatment wetlands. The aim of this study was therefore to examine the nitrifying and denitrifying capacity of different surfaces in a constructed treatment wetland and to assess the relative importance of these surfaces for overall N removal in the wetland. Intact sediment cores, old pine and spruce twigs, shoots of Eurasian watermilfoil (Myriophyllum spicatum L.), and filamentous macro-algae were collected in July and November 1999 in two basins of the wetland system. One of the basins had been constructed on land that contained lots of wood debris, particularly twigs of coniferous trees. Potential nitrification was measured using the isotope-dilution technique, and potential denitrification was determined using the acetylene-inhibition technique in laboratory microcosm incubations. Nitrification rates were highest on the twigs. These rates were three and 100 times higher than in the sediment and on Eurasian watermilfoil, respectively. Potential denitrification rates were highest in the sediment. These rates were three times higher than on the twigs and 40 times higher than on Eurasian watermilfoil. The distribution of denitrifying bacteria was most likely due to the availability of organic material, with higher denitrification rates in the sediment than on surfaces in the water column. Our results indicate that denitrification, and particularly nitrification, in treatment wetlands could be significantly increased by addition of surfaces such as twigs.  相似文献   

3.
Mechanisms of nutrient attenuation in a subsurface flow riparian wetland   总被引:2,自引:0,他引:2  
Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.  相似文献   

4.
Florida Everglades restoration plans are aimed at maintaining and restoring characteristic landscape features such as soil, vegetation, and hydrologic patterns. This study presents the results from an exhaustive spatial sampling of key soil properties in Water Conservation Area 1 (WCA 1), which is part of the northern Everglades. Three soil strata were sampled: floc, upper 0- to 10-cm soil layer, and 10- to 20-cm soil layer. A variety of properties were measured including bulk density (BD), loss on ignition (LOI), total phosphorus (TP), total inorganic phosphorus (TIP), total nitrogen (TN), total carbon (TC), total iron (TFe), total magnesium (TMg), total aluminum (TAl), and total calcium (TCa). Interpolated maps and model prediction uncertainties of properties were generated using geostatistical methods. We found that the uncertainty associated with spatial predictions of floc, particularly floc BD, was highest, whereas spatial predictions of soil chemical properties such as soil Ca were more accurate. The resultant spatial patterns for these soil properties identified three predominant features in WCA 1: (i) a north to south gradient in soil properties associated with the predominant hydrological gradient, (ii) areas of considerable soil nutrient enrichment along the western canal of WCA 1, and (iii) areas of considerable Fe enrichment along the eastern canal. By using geostatistical techniques we were able to describe the spatial dynamics of soil variables and express these predictions with an acceptable level of uncertainty.  相似文献   

5.
The Florida Everglades have undergone significant ecological change resulting from anthropogenic manipulation of historical regimes of hydrology, nutrient loading, and fire. Water Conservation Area 2A (WCA-2A) in the northern Everglades has been a focal point for the study of ecological effects of nutrient loading, especially phosphorus (P), from the nearby Everglades Agricultural Area (EAA). The overall objective of our study was to evaluate recent (1990 to 1998) changes in the spatial extent and patterns of soil P enrichment in Everglades WCA-2A. Surface soil was sampled to a depth of 10 cm at 62 sites within WCA-2A during 1998 for analysis of total phosphorus (TP) content. Geostatistical methods were used to create an interpolated grid of soil TP values across WCA-2A. Comparison of the results of this study with a similar study performed in 1990 showed that the extent of soil P enrichment in surface soil and sediments increased between 1990 and 1998, as evidenced by increased coverage of highly P-enriched soil near the primary surface inflows and a general increase in the concentration of soil TP in the interior regions of WCA-2A. Approximately 73% (31 777 ha) of the total land area of WCA-2A was considered P-enriched (soil total P > 500 mg kg(-1)) in 1998, compared with 48% of the land area (20,829 ha) in 1990, an average increase of 1,327 ha yr(-1). Study results indicate that the soil P enrichment "front" has advanced further into the relatively unimpacted interior of WCA-2A during the past several years.  相似文献   

6.
This study describes the spatial variability in nitrogen (N) transformation within a constructed wetland (CW) treating domestic effluent. Nitrogen cycling within the CW was driven by settlement and mineralization of particulate organic nitrogen and uptake of NO3-. The concentration of NO3- was found to decrease, as the delta15N-NO3- signature increased, as water flowed through the CW, allowing denitrification rates to be estimated on the basis of the degree of fractionation of delta15N-NO3-. Estimates of denitrification hinged on the determination of a net isotope effect (eta), which was influenced byprocesses that enrich or deplete 15NO3- (e.g., nitrification), as well as the rate constants associated with the different processes involved in denitrification (i.e., diffusion and enzyme activity). The influence of nitrification on eta was quantified; however, it remained unclear how eta varied due to variability in denitrification rate constants. A series of stable isotope amendment experiments was used to further constrain the value of eta and calculate rates of denitrification, and nitrification, within the wetland. The maximum calculated rate of denitrification was 956 +/- 187 micromol N m(-2) h(-1), and the maximum rate of nitrification was 182 +/- 28.9 micromol N m(-2) h(-1). Uptake of NO3- was quantitatively more important than denitrification throughoutthe wetland. Rates of N cycling varied spatially within thewetland, with denitrification dominating in the downstream deoxygenated region of the wetland. Studies that use fractionation of N to derive rate estimates must exercise caution when interpreting the net isotope effect. We suggest a sampling procedure for future natural abundance studies that may help improve the accuracy of N cycling rate estimates.  相似文献   

7.
Denitrification in alluvial wetlands in an urban landscape   总被引:1,自引:0,他引:1  
Riparian wetlands have been shown to be effective "sinks" for nitrate N (NO3-), minimizing the downstream export of N to streams and coastal water bodies. However, the vast majority of riparian denitrification research has been in agricultural and forested watersheds, with relatively little work on riparian wetland function in urban watersheds. We investigated the variation and magnitude of denitrification in three constructed and two relict oxbow urban wetlands, and in two forested reference wetlands in the Baltimore metropolitan area. Denitrification rates in wetland sediments were measured with a 15N-enriched NO3- "push-pull" groundwater tracer method during the summer and winter of 2008. Mean denitrification rates did not differ among the wetland types and ranged from 147 +/- 29 microg N kg soil(-1) d(-1) in constructed stormwater wetlands to 100 +/- 11 microg N kg soil(-1) d(-1) in relict oxbows to 106 +/- 32 microg N kg soil(-1) d(-1) in forested reference wetlands. High denitrification rates were observed in both summer and winter, suggesting that these wetlands are sinks for NO3- year round. Comparison of denitrification rates with NO3- standing stocks in the wetland water column and stream NO3- loads indicated that mass removal of NO3- in urban wetland sediments by denitrification could be substantial. Our results suggest that urban wetlands have the potential to reduce NO3- in urban landscapes and should be considered as a means to manage N in urban watersheds.  相似文献   

8.
Hydrologic influence on stability of organic phosphorus in wetland detritus   总被引:2,自引:0,他引:2  
Accretion of organic matter in wetlands provides long-term storage for nutrients and other contaminants. Water-table fluctuations and resulting alternate flooded and drained conditions may substantially alter the stability of stored materials including phosphorus (P). To study the effects of hydrologic fluctuation on P mobilization in wetlands, recently accreted detrial material (derived primarily from Typha spp.) was collected from the Everglades Nutrient Removal Project (ENRP), a constructed wetland used to treat agricultural drainage water in the northern Everglades. The detrital material was subjected to different periods of drawdown and consecutive reflooding under laboratory conditions. The 31P nuclear magnetic resonance (31P NMR) spectroscopy analysis revealed that sugar phosphate, glycerophosphate, polynucleotides, and phospholipids (glycerophosphoethanolamine and glycerophosphocholine) were the major forms of P in the detrital material. After 30 d of drawdown, polynucleotides were reduced to trace levels, whereas sugar phosphate, glycerophosphate, and phospholipids remained the major fractions of organic P. Microorganisms seemed to preferentially utilize nucleic acid P, perhaps to obtain associated nutrients including carbon and nitrogen. At the end of the 30-d reflooding period, cumulative P flux from detritus to water column accounted for 3% of the total P (< or = 15 d of drawdown) and further decreased to 2% at 30 d of drawdown, but increased to 8% at 60 d of drawdown. The drawdown (< or = 30 d) not only reduced P flux to the water column, but also increased the humification and microbial immobilization of P. Excessive drawdown (60 d), however, triggered the release of P into the water column as the water content of detritus decreased from 95 to 11%.  相似文献   

9.
Soil biotic and abiotic factors strongly influence nitrogen (N) availability and increases in nitrification rates associated with the application of manure. In this study, we examine the effects of edaphic properties and a dairy (Bos taurus) slurry amendment on N availability, nitrification rates and nitrifier communities. Soils of variable texture and clay mineralogy were collected from six USDA-ARS research sites and incubated for 28 d with and without dairy slurry applied at a rate of ~300 kg N ha(-1). Periodically, subsamples were removed for analyses of 2 M KCl extractable N and nitrification potential, as well as gene copy numbers of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Spearman coefficients for nitrification potentials and AOB copy number were positively correlated with total soil C, total soil N, cation exchange capacity, and clay mineralogy in treatments with and without slurry application. Our data show that the quantity and type of clay minerals present in a soil affect nitrifier populations, nitrification rates, and the release of inorganic N. Nitrogen mineralization, nitrification potentials, and edaphic properties were positively correlated with AOB gene copy numbers. On average, AOA gene copy numbers were an order of magnitude lower than those of AOB across the six soils and did not increase with slurry application. Our research suggests that the two nitrifier communities overlap but have different optimum environmental conditions for growth and activity that are partly determined by the interaction of manure-derived ammonium with soil properties.  相似文献   

10.
Enzyme catalyzed reactions are generally considered the rate-limiting step in organic matter degradation and may be significantly influenced by the structure and composition of plant communities. Changes in these rates have the potential to effect long-term peat accumulation and influence the topography of a wetland ecosystem. To determine habitat influences on enzyme activities, we examined slough and sawgrass plots within enriched and reference phosphorus (P) sites in the Everglades. Assays were performed for the enzymes involved in carbon (C), nitrogen (N), and P cycling and lignin depolymerization. Enzyme activities were normalized and analyzed in terms of a resource allocation strategy. Plant composition was found to significantly alter the allocation of enzymatic resources due to varying substrate complexities. Potential decomposition in the slough was less influenced by lignin than in the sawgrass habitats. Additionally, an index relating hydrolytic and oxidative enzymes was significantly greater in the slough habitats, whereas C/N ratios were significantly lower. These indices suggest more favorable decomposition conditions and thus slower peat accretion within the slough communities, which may contribute to the development of elevation differences within the sawgrass ridge and slough topography of the Everglades.  相似文献   

11.
In this study, we used chlorofluorocarbon (CFC) age-dating to investigate the geochemistry of N enrichment within a bedrock aquifer depth profile beneath a south central Wisconsin agricultural landscape. Measurement of N(2)O and excess N(2) allowed us to reconstruct the total NO(3)(-) and total nitrogen (TN) leached to ground water and was essential for tracing the separate influences of soil nitrification and ground water denitrification in the collateral geochemical chronology. We identify four geochemical impacts due to a steady ground water N enrichment trajectory (39 +/- 2.2 micromol L(-1) yr(-1), r(2) = 0.96) over two decades (1963-1985) of rapidly escalating N use. First, as a by-product of soil nitrification, N(2)O entered ground water at a stable (r(2) = 0.99) mole ratio of 0.24 +/- 0.007 mole% (N(2)O-N/NO(3)-N). The gathering of excess N(2)O in ground water is a potential concern relative to greenhouse gas emissions and stratospheric ozone depletion after it discharges to surface water. Second, excess N(2) measurements revealed that NO(3)(-) was a prominent, mobile, labile electron acceptor comparable in importance to O(2.) Denitrification transformed 36 +/- 15 mole% (mol mol(-1) x 100) of the total N within the profile to N(2) gas, delaying exceedance of the NO(3)(-) drinking water standard by approximately 6 yr. Third, soil acids produced from nitrification substantially increased the concentrations of major, dolomitic ions (Ca, Mg, HCO(3)(-)) in ground water relative to pre-enrichment conditions. By 1985, concentrations approximately doubled; by 2006, CFC age-date projections suggest concentrations may have tripled. Finally, the nitrification induced mobilization of Ca may have caused a co-release of P from Ca-rich soil surfaces. Dissolved P increased from an approximate background value of 0.02 mg L(-1) in 1963 to 0.07 mg L(-1) in 1985. The CFC age-date projections suggest the concentration could have reached 0.11 mg L(-1) in ground water recharge by 2006. These results highlight an intersection of the N and P cycles potentially important for managing the quality of ground water discharged to surface water.  相似文献   

12.
Wetlands respond to nutrient enrichment with characteristic increases in soil nutrients and shifts in plant community composition. These responses to eutrophication tend to be more rapid and longer lasting in oligotrophic systems. In this study, we documented changes associated with water quality from 1989 to 1999 in oligotrophic Everglades wetlands. We accomplished this by resampling soils and macrophytes along four transects in 1999 that were originally sampled in 1989. In addition to documenting soil phosphorus (P) levels and decadal changes in plant species composition at the same sites, we report macrophyte tissue nutrient and biomass data from 1999 for future temporal comparisons. Water quality improved throughout much of the Everglades in the 1990s. In spite of this improvement, though, we found that water quality impacts worsened during this time in areas of the northern Everglades (western Loxahatchee National Wildlife Refuge [NWR] and Water Conservation Area [WCA] 2A). Zones of high soil P (exceeding 700 mg P kg(-1) dry wt. soil) increased to more than 1 km from the western margin canal into the Loxahatchee NWR and more than 4 km from northern boundary canal into WCA-2A. This doubling of the high soil P zones since 1989 was paralleled with an expansion of cattail (Typha spp.)-dominated marsh in both regions. Macrophyte species richness declined in both areas from 1989 to 1999 (27% in the Loxahatchee NWR and 33% in WCA-2A). In contrast, areas well south of the Everglades Agricultural Area, induding WCA-3A and Everglades National Park (ENP), did not decline during this time. We found no significant decadal change in plant community patterns from 1989 and 1999 along transects in southern WCA-3A or Shark River Slough (ENP). Our 1999 sampling also included a new transect in Taylor Slough (ENP), which will allow change analysis here in the future. Regular sampling of these transects, to verify decadal-scale environmental impacts or improvements, will continue to be an important tool for long-term management and restoration of the Everglades.  相似文献   

13.
Atmospheric deposition of nitrogenous compounds to ombrotrophic peatlands (i.e., those that have peat layers higher than their surroundings and receive nutrients and minerals exclusively by precipitation) has the potential to significantly alter ecosystem functioning. This study utilized the acetylene inhibition technique to estimate the relative importance of denitrification in nitrogen removal from a primarily ombrotrophic peatland, in an attempt to estimate the threat of increased nitrogen loadings to these areas. Estimates of mean rates of denitrification ranged from -2.76 to 84.0 ng N(2)O-N cm(-3) h(-1) (equivalent to -150 to 4800 microg N(2)O-N m(-2) h(-1)) using an ex situ core technique and from -8.30 to 5.98 microg N(2)O-N m(-2) h(-1) using an in situ chamber technique. Core rates may have been elevated over natural field levels due to effects of disturbance on substrate availability, and chamber rates may have been low due to diffusional constraints on acetylene and N(2)O. Net nitrification was also measured in an attempt to evaluate this process as a source of nitrate for denitrifiers. The low rates of net nitrification measured, in combination with the low rates of in situ denitrification and the very low amounts of free nitrate measured in this peatland, suggests that inorganic N turnover in this wetland is low. Results showed that nitrate was a limiting factor for denitrification in this peatland, with mean rates from nitrate-amended cores ranging from 13.1 to 260 ng N(2)O-N cm(-3) h(-1), and it is expected that increases in nitrogen loadings will increase denitrification rates in this ecosystem.  相似文献   

14.
Accumulation of soluble salts resulting from fertilizer N may affect microbial production of N(2)O and CO(2) in soils. This study was conducted to determine the effects of electrical conductivity (EC) and water content on N(2)O and CO(2) production in five soils under intensive cropping. Surface soils from maize fields were washed, repacked and brought to 60% or 90% water-filled pore space (WFPS). Salt mixtures were added to achieve an initial in situ soil EC of 0.5, 1.0, 1.5 and 2.0 dS m(-1). The soil cores were incubated at 25 degrees C for 10 d. Average CO(2) production decreased with increasing EC at both soil water contents, indicating a general reduction in microbial respiration with increasing EC. Average cumulative N(2)O production at 60% WFPS decreased from 2.0 mg N(2)O-N m(-2) at an initial EC of 0.5 dS m(-1) to 0.86 mg N(2)O-N m(-2) at 2.0 dS m(-1). At 90% WFPS, N(2)O production was 2 to 40 times greater than that at 60% WFPS and maximum N(2)O losses occurred at the highest EC level of 2.0 dS m(-1). Differences in the magnitude of gas emissions at varying WFPS were due to available substrate N and the predominance of nitrification under aerobic conditions (60% WFPS) and denitrification when oxygen was limited (90% WFPS). Differences in gas emissions at varying soil EC may be due to changes in mechanisms of adjustment to salt stress and ion toxicities by microbial communities. Direct effects of EC on microbial respiration and N(2)O emissions need to be accounted for in ecosystems models for predicting soil greenhouse gas emissions.  相似文献   

15.
The effect of soil fumigation on N mineralization and nitrification needs to be better quantified to optimize N fertilizer advice and predict NO(-)(3) concentrations in crops and NO(-)(3) leaching risks. Seven soils representing a range in soil texture and organic matter contents were fumigated with Cyanamid DD 95 (a mixture of 1,3-dichloropropane and 1,3-dichloropropene). After removal of the fumigant, the fumigated soils and unfumigated controls were incubated for 20 wk and N mineralization and nitrification were monitored by destructive sampling. The average short-term N mineralization rates (k(s)) were significantly larger in the fumigated than in the unfumigated soils (P = 0.025), but the differences in k(s) between fumigated and unfumigated soils could not be related to soil properties. The average long-term N mineralization rates (k(l)) were slightly larger in the fumigated soils but the difference with the unfumigated soils was not significant. Again, the differences in k(l) values could not be related to soil properties. Nitrification was inhibited completely for at least 3 wk in all soils, and an effect on nitrification could be observed up to 17 wk in one soil. An S-shaped function was fitted to the nitrification data corrected for N mineralization, and both the rate constant (gamma) and the time at which maximum nitrification was reached (t(max)) were strongly correlated to soil pH. However, since no correlations were found between the effect of fumigation on N mineralization and soil properties, taking into account the effects of fumigation in fertilizer advice and in the prediction of NO(-)(3) leaching risks will need further research.  相似文献   

16.
Riparian zones within the Appalachian Valley and Ridge physiographic province are often characterized by localized variability in soil moisture and organic carbon content, as well as variability in the distribution of soils formed from alluvial and colluvial processes. These sources of variability may significantly influence denitrification rates. This investigation studied the attenuation of nitrate (NO3- -N) as wastewater effluent flowed through the shallow ground water of a forested headwater riparian zone within the Appalachian Valley and Ridge physiographic province. Ground water flow and NO3- -N measurements indicated that NO3- -N discharged to the riparian zone preferentially flowed through the A and B horizons of depressional wetlands located in relic meander scars, with NO3- -N decreasing from > 12 to < 0.5 mg L(-1). Denitrification enzyme activity (DEA) attributable to riparian zone location, soil horizon, and NO3- -N amendments was also determined. Mean DEA in saturated soils attained values as high as 210 microg N kg(-1) h(-1), and was significantly higher than in unsaturated soils, regardless of horizon (p < 0.001). Denitrification enzyme activity in the shallow A horizon of wetland soils was significantly higher (p < 0.001) than in deeper soils. Significant stimulation of DEA (p = 0.027) by N03- -N amendments occurred only in the meander scar soils receiving low NO3- -N (<3.6 mg L(-1)) concentrations. Significant denitrification of high NO3- -N ground water can occur in riparian wetland soils, but DEA is dependent upon localized differences in the degree of soil saturation and organic carbon content.  相似文献   

17.
In manure disposal systems, denitrification is a major pathway for N loss and to reduce N transport to surface and ground water. We measured denitrification and the changes in soil N pools in a liquid manure disposal system at the interface of a pasture and a riparian forest. Liquid swine manure was applied weekly at two rates (approximately 800 and 1600 kg N ha-1 yr-1) to triplicate plots of overland flow treatment systems with three different vegetation treatments. Denitrification (acetylene block technique on intact cores) and soil N pools were determined bimonthly for 3 yr. The higher rate of manure application had higher denitrification rates and higher soil nitrate. Depth 1 soil (0-6 cm) had higher denitrification, nitrate, and ammonium than depth 2 soil (6-12 cm). The vegetation treatment consisting of 20 m of grass and 10 m of forest had lower denitrification. Denitrification did not vary significantly with position in the plot (7, 14, 21, and 28 m downslope), but nitrate decreased in the downslope direction while ammonium increased downslope. Denitrification ranged from 4 to 12% of total N applied in the manure. Denitrification rates were similar to those from a nearby dairy manure irrigation site, but were generally a lower percent of N applied, especially at the high swine effluent rate. Denitrification rates for these soils range from 40 to 200 kg N ha-1 yr-1 for the top 12 cm of soil treated with typical liquid manure that is high in ammonium and low in nitrate.  相似文献   

18.
Agricultural soils are responsible for the majority of nitrous oxide (N(2)O) emissions in the USA. Irrigated cropping, particularly in the western USA, is an important source of N(2)O emissions. However, the impacts of tillage intensity and N fertilizer amount and type have not been extensively studied for irrigated systems. The DAYCENT biogeochemical model was tested using N(2)O, crop yield, soil N and C, and other data collected from irrigated cropping systems in northeastern Colorado during 2002 to 2006. DAYCENT uses daily weather, soil texture, and land management information to simulate C and N fluxes between the atmosphere, soil, and vegetation. The model properly represented the impacts of tillage intensity and N fertilizer amount on crop yields, soil organic C (SOC), and soil water content. DAYCENT N(2)O emissions matched the measured data in that simulated emissions increased as N fertilization rates increased and emissions from no-till (NT) tended to be lower on average than conventional-till (CT). However, the model overestimated N(2)O emissions. Lowering the amount of N(2)O emitted per unit of N nitrified from 2 to 1% helped improve model fit but the treatments receiving no N fertilizer were still overestimated by more than a factor of 2. Both the model and measurements showed that soil NO(3)(-) levels increase with N fertilizer addition and with tillage intensity, but DAYCENT underestimated NO(3)(-) levels, particularly for the treatments receiving no N fertilizer. We suggest that DAYCENT could be improved by reducing the background nitrification rate and by accounting for the impact of changes in microbial community structure on denitrification rates.  相似文献   

19.
Temporal oscillations in hydrology are a common occurrence in wetlands and can result in alternating flooded and drained conditions in the surface soil. These oscillations in water levels can stimulate microbial activities and result in the mobilization and redistribution of significant amounts of carbon (C), nitrogen (N), and phosphorus (P). The goal of this study was to experimentally simulate a drawdown and reflood of marsh soil from a nutrient-enriched site and a reference site of a wetland (Blue Cypress Marsh Conservation Area, Florida). The goal was to better understand the changes in biogeochemistry and microbial activities present in these soils as a result of hydrological fluctuations. Measurements of dissolved reactive phosphorus (DRP), ammonia, and nitrate in the floodwater indicated significantly higher (alpha = 0.05) NH(4)(+) and DRP fluxes from the nutrient-enriched site; floodwaters in the cores from both sites contained significant NO(3)(-) concentrations (9.6 mg N L(-1)), which was rapidly consumed over the core incubation period (30 d). Water level drawdown and reflooding initially stimulated the soil microbial biomass, methanogenic rates, and extracellular enzyme activities (acid phosphatase and beta-glucosidase). The anaerobic microbial metabolic activities (CO(2)) where initially significantly (alpha = 0.05) enhanced by the reflood, resulting in roughly equivalent rates as the aerobic respiratory activities (CO(2)), presumably as a function of the high water column NO(3)(-) levels. This study illustrates that the reflood event in the hydrological cycles in a wetland can significantly stimulate the activities of hydrolytic enzymes and microbiological communities in these soils.  相似文献   

20.
Reclamation of trace element polluted soils often requires the improvement of the soil quality by using appropriate organic amendments. Low quality compost from municipal solid waste has been tested for reclamation of soils, but these materials can provide high amounts of heavy metals. Therefore, a high-quality compost, with low levels of heavy metals, produced from the main by-product of the Spanish olive oil extraction industry ("alperujo") was evaluated for remediation of soils affected by a pyritic mine sludge. Two contaminated soils were selected from the same area: they were characterised by differing pH values (4.6 and 7.3) and total metal concentrations, which greatly affected the fractionation of the metals. Compost was applied to soil at two rates (equivalent to 48 and 72 Tm ha(-1)) and compared with an inorganic fertiliser treatment. Compost acted as an available nutrient source (C, N and P) and showed a low mineralisation rate, suggesting a slow release of nutrients and thus favouring long term soil fertility. In addition, the liming effect of the compost led to a significant reduction of toxicity for soil microorganisms in the acidic soil and immobilisation of soil heavy metals (especially Mn and Zn), resulting in a clear increase in both soil microbial biomass and nitrification. Such positive effects were clearly greater than those provoked by the mineral fertiliser even at the lowest compost application rate, which indicates that this type of compost can be very useful for bioremediation programmes (reclamation and revegetation of polluted soils) based on phytostabilisation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号