首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biosolids are known to have a potential to restore degraded land, but the long-term impacts of this practice on the environment, including water quality, still need to be evaluated. The surface water chemistry (NO3-, NH4+, and total P, Cd, Cu, and Hg) was monitored for 31 yr from 1972 to 2002 in a 6000-ha watershed at Fulton County, Illinois, where the Metropolitan Water Reclamation District of Greater Chicago was restoring the productivity of strip-mined land using biosolids. The mean cumulative loading rates during the past 31 yr were 875 dry Mg ha(-1) for 1120-ha fields in the biosolids-amended watershed and 4.3 dry Mg ha(-1) for the 670-ha fields in the control watershed. Biosolids were injected into mine spoil fields as liquid fertilizer from 1972 to 1985, and incorporated as dewatered cake from 1980 to 1996 and air-dried solids from 1987 to 2002. The mean annual loadings of nutrients and trace elements from biosolids in 1 ha were 735 kg N, 530 kg P, 4.5 kg Cd, 30.7 kg Cu, and 0.11 kg Hg in the fields of the biosolids-amended watershed, and negligible in the fields of the control watershed. Sampling of surface water was conducted monthly in the 1970s, and three times per year in the 1980s and 1990s. The water samples were collected from 12 reservoirs and 2 creeks receiving drainage from the fields in the control watershed, and 8 reservoirs and 4 creeks associated with the fields in the biosolids-amended watershed for the analysis of NO3- -N (including NO2- N), NH4+-N, and total P, Cd, Cu, and Hg. Compared to the control (0.18 mg L(-1)), surface water NO3- -N in the biosolids-amended watershed (2.23 mg L(-1)) was consistently higher; however, it was still below the Illinois limit of 10 mg L(-1) for public and food-processing water supplies. Biosolids applications had a significant effect on mean concentrations of ammonium N (0.11 mg L(-1) for control and 0.24 mg L(-1) for biosolids) and total P (0.10 mg L(-1) for control and 0.16 mg L(-1) for biosolids) in surface water. Application of biosolids did not increase the concentrations of Cd and Hg in surface water. The elevation of Cu in surface water with biosolids application only occurred in some years of the first decade, when land-applied sludges contained high concentrations of trace metals, including Cu. In fact, following the promulgation of 40 CFR Part 503, the concentrations of all three metals fell below the method detection level (MDL) in surface water for nearly all samplings. Nitrate in the surface water tends to be higher in spring, and ammonium, total P, and total Hg in summer and fall. Mean nitrate, ammonium, and total phosphorus concentrations were found to be greater in creeks than reservoirs. The results indicate that application of biosolids for land reclamation at high loading rates from 1972 to 2002, with adequate runoff and soil erosion control, had only a minor impact on surface water quality.  相似文献   

2.
The USEPA standards (40 CFR Part 503) for the use or disposal of sewage sludge (biosolids) derived risk-based numerical values for Mo for the biosolids --> land --> plant --> animal pathway (Pathway 6). Following legal challenge, most Mo numerical standards were withdrawn, pending additional field-generated data using modern biosolids (Mo concentrations <75 mg kg(-1) and a reassessment of this pathway. This paper presents a reevaluation of biosolids Mo data, refinement of the risk assessment algorithms, and a reassessment of Mo-induced hypocuprosis from land application of biosolids. Forage Mo uptake coefficients (UC) are derived from field studies, many of which used modern biosolids applied to numerous soil types, with varying soil pH values, and supporting various crops. Typical cattle diet scenarios are used to calculate a diet-weighted UC value that realistically represents forage Mo exposure to cattle. Recent biosolids use data are employed to estimate the fraction of animal forage (FC) likely to be affected by biosolids applications nationally. Field data are used to estimate long-term Mo leaching and a leaching correction factor (LC) is used to adjust cumulative biosolids application limits. The modified UC and new FC and LC factors are used in a new algorithm to calculate biosolids Mo Pathway 6 risk. The resulting numerical standards for Mo are cumulative limit (RPc)=40 kg Mo ha(-1), and alternate pollutant limit (APL) = 40 mg Mo kg(-1) We regard the modifications to algorithms and parameters and calculations as conservative, and believe that the risk of Mo-induced hypocuprosis from biosolids Mo is small. Providing adequate Cu mineral supplements, standard procedure in proper herd management, would augment the conservatism of the new risk assessment.  相似文献   

3.
Some speculate that bioaerosols from land application of biosolids pose occupational risks, but few studies have assessed aerosolization of microorganisms from biosolids or estimated occupational risks of infection. This study investigated levels of microorganisms in air immediately downwind of land application operations and estimated occupational risks from aerosolized microorganisms. In all, more than 300 air samples were collected downwind of biosolids application sites at various locations within the United States. Coliform bacteria, coliphages, and heterotrophic plate count (HPC) bacteria were enumerated from air and biosolids at each site. Concentrations of coliforms relative to Salmonella and concentrations of coliphage relative to enteroviruses in biosolids were used, in conjunction with levels of coliforms and coliphages measured in air during this study, to estimate exposure to Salmonella and enteroviruses in air. The HPC bacteria were ubiquitous in air near land application sites whether or not biosolids were being applied, and concentrations were positively correlated to windspeed. Coliform bacteria were detected only when biosolids were being applied to land or loaded into land applicators. Coliphages were detected in few air samples, and only when biosolids were being loaded into land applicators. In general, environmental parameters had little impact on concentrations of microorganisms in air immediately downwind of land application. The method of land application was most correlated to aerosolization. From this large body of data, the occupational risk of infection from bioaerosols was estimated to be 0.78 to 2.1%/yr. Extraordinary exposure scenarios carried an estimated annual risk of infection of up to 34%, with viruses posing the greatest threat. Risks from aerosolized microorganisms at biosolids land application sites appear to be lower than those at wastewater treatment plants, based on previously reported literature.  相似文献   

4.
Problems of sustainable development and environmental protection pose a challenge to humanity unprecedented in scope and complexity. Whether and how the problems are resolved have significant implications for human and ecological well-being. In this paper, I discuss briefly recent international recommendations to promote sustainable development and environmental protection. I then offer a perspective on the roles and prospects of the university in promoting sustainable development and environmental protection.  相似文献   

5.
Malodor emissions limit public acceptance of using municipal biosolids as natural organic resources in agricultural production. We aimed to identify major odorants and to evaluate odor concentrations associated with land application of anaerobically digested sewage sludges (Class B) and their alkaline (lime and coal fly ash)-stabilized products (Class A). These two types of biosolids were applied at 12.6 tonnes ha(-1) (dry weight) to microplots of very fine clayey Vertisol in the Jezreel Valley, northern Israel. The volatile organic compounds (VOCs) emitted from the biosolids before and during alkaline stabilization and after incorporation into the soil were analyzed by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Odor concentrations at the plots were evaluated on site with a Nasal Ranger field olfactometer that sniffed over a defined land surface area through a static chamber. The odors emitted by anaerobically digested sewage sludges from three activated sludge water treatment plants had one characteristic chemical fingerprint. Alkaline stabilization emitted substantial odors associated with high concentrations of ammonia and release of nitrogen-containing VOCs and did not effectively reduce the potential odor annoyance. Odorous VOCs could be generated within the soil after biosolids incorporation, presumably because of anaerobic conditions within soil-biosolids aggregates. We propose that dimethyl disulfide and dimethyl trisulfide, which seem to be most related to the odor concentrations of biosolids-treated soil, be used as potential chemical markers for the odor annoyance associated with incorporation of anaerobically digested sewage sludges.  相似文献   

6.
Municipal biosolids are typically not used on the steepest of forested slopes in the U.S. Pacific Northwest. The primary concern in using biosolids on steep slopes is movement of biosolids particles and soluble nutrients to surface waters during runoff events. We examined the pattern and extent of P and N runoff from a perennial stream draining a small, forested 21.4-ha watershed in western Washington before and after biosolids application. In this study, we applied biosolids at a rate of 13.5 Mg ha(-1) (700 kg N ha(-1) and 500 kg P ha(-1)) to 40% of the watershed following nearly 1.5 years of pre-application water sampling and 1.5 years thereafter. There was no evidence of direct runoff of P or N from biosolids into surface water. Elevated surface water discharge did not change the concentration of PO4-P, biologically available phosphorus (BAP), bioavailable particulate phosphorus (BPP), or total P nor did it affect the concentration-discharge relationship. Some instances of total P concentrations exceeding the USEPA surface water standard of 0.1 mg L(-1) were observed following biosolids application. However, total P in 27 Creek was predominately in particulate form and not labile, suggesting that detritus moving into the main creek channel and ephemeral drainage courses may be the principal P source. Ammonium N concentrations in runoff water were consistent before and after biosolids application, ranging from below detection limits (0.01 mg L(-1)) to 0.1 mg L(-1); no concentration-discharge relationship existed. Biosolids application changed the 27 Creek concentration-discharge relationship for NO3(-)-N. Before application, no relationship existed. Beginning nine months after biosolids application, increases in discharge were positively related to increases in NO3(-)-N concentrations. Nitrate concentrations in runoff following biosolids application were approximately 10 times less than the USEPA drinking water standard of 10 mg L(-1).  相似文献   

7.
8.
Strategies for beneficial use of biosolids in New Zealand and elsewhere are currently focused primarily on land application. The long-term success of these and other strategies is dependent not only on technical factors, but also on their environmental, economic, social and cultural sustainability. This paper briefly reviews the situation with respect to biosolids management in New Zealand, where land application is not yet widespread; the rise in public opposition to land application in the United States; and the biosolids industry's approach to public engagement. We argue that, at least until recently, the industry has misinterpreted the nature and meaning of public opposition and thus substituted public relations for public engagement. We argue that genuine public engagement is necessary and that its purpose cannot be to gain public acceptance for an already-decided-upon strategy. It therefore calls for humility among biosolids managers, including a willingness to open up the framing of 'the problem', to acknowledge areas of uncertainty, and to recognise the role of values in 'technical' decision-making. We then present and analyse an example of the use of the scenario workshop process for public participation in biosolids management policy in Christchurch, New Zealand, and conclude that scenario workshops and related methods represent an opportunity to enhance sustainable waste management when certain conditions are met.  相似文献   

9.
Soil stability and revegetation is a great concern following forest wildfires. Biosolids application might enhance revegetation efforts and enhance soil stability. In May 1997, we applied Metro Wastewater Reclamation District (Denver, CO, USA) composted biosolids at rates of 0, 5, 10, 20, 40, and 80 Mg ha(-1) to a severely burned, previously forested site near Buffalo Creek, CO to improve soil C and N levels and help establish eight native, seeded grasses. The soils on the site belong to the Sphinx series (sandy-skeletal, mixed, frigid, shallow Typic Ustorthents). Vegetation and soils data were collected for four years following treatment. During the four years following treatment, total plant biomass ranged from approximately 50 to 230 g m(-2) and generally increased with increasing biosolids application. The percentage of bare ground ranged from 4 to 58% and generally decreased with increasing biosolids rate. Higher rates of biosolids application were associated with increased concentrations of N, P, and Zn in tissue of the dominant plant species, streambank wheatgrass [Elymus lanceolatus (Scribn. & J.G. Sm) Gould subsp. lanceolatus], relative to the unamended, unfertilized control. At two months following biosolids application (1997), total soil C and N at soil depths of 0 to 7.5, 7.5 to 15, and 15 to 30 cm showed significant (P < 0.05) linear increases (r2 > 0.88) as biosolids rate increased. The surface soil layer also showed this effect one year after application (1998). For Years 2 through 4 (1999-2001) following treatment, soil C and N levels declined but did not show consistent trends. The increase in productivity and cover resulting from the use of biosolids can aid in the rehabilitation of wildfire sites and reduce soil erosion in ecosystems similar to the Buffalo Creek area.  相似文献   

10.
Phosphorus (P) is one of the most important mineral nutrients in agricultural systems, and along with nitrogen (N), is generally the most limiting nutrient for plant production. Farming systems have intensified greatly over time, and in recent years it has become apparent that the concomitant increase in losses of N and P from agricultural land is having a serious detrimental effect on water quality and the environment. The last two decades have seen a marked increase in research into the issues surrounding diffuse losses of P to surface and ground water. This paper reviews this research, examining the issue of P forms in runoff, and highlighting the exceptions to some generally held assumptions about land use and P transport. In particular the review focuses on P losses associated with recent P fertilizer application, as opposed to organic manures, both on the amounts and the forms of P in runoff water. The effects of the physicochemical characteristics of different forms of P fertilizer are explored, particularly in relation to water solubility. Various means of mitigating the risk of loss of P are discussed. It is argued that the influence of recent fertilizer applications is an under-researched area, yet may offer the most readily applicable opportunity to mitigate P losses by land users. This review highlights and discusses some options that have recently become available that may make a significant contribution to the task of sustainable management of nutrient losses from agriculture.  相似文献   

11.
Sustainable land application: an overview   总被引:1,自引:0,他引:1  
Man has land-applied societal nonhazardous wastes for centuries as a means of disposal and to improve the soil via the recycling of nutrients and the addition of organic matter. Nonhazardous wastes include a vast array of materials, including manures, biosolids, composts, wastewater effluents, food-processing wastes, industrial by-products; these are collectively referred to herein as residuals. Because of economic restraints and environmental concerns about land-filling and incineration, interest in land application continues to grow. A major lesson that has been learned, however, is that the traditional definition of land application that emphasizes applying residuals to land in a manner that protects human and animal health, safeguards soil and water resources, and maintains long-term ecosystem quality is incomplete unless the earning of public trust in the practices is included. This overview provides an introduction to a subset of papers and posters presented at the conference, "Sustainable Land Application," held in Orlando, FL, in January 2004. The USEPA, USDA, and multiple national and state organizations with interest in, and/or responsibilities for, ensuring the sustainability of the practice sponsored the conference. The overriding conference objectives were to highlight significant developments in land treatment theory and practice, and to identify future research needs to address critical gaps in the knowledge base that must be addressed to ensure sustainable land application of residuals.  相似文献   

12.
Cavitational reactors are a novel and promising form of multiphase reactors, based on the principle of release of large magnitude of energy due to the violent collapse of the cavities. An overview of cavitational reactors in the specific area of water disinfection, in terms of the basic mechanism, different reactor designs including recommendations for optimum operating parameters and applicability of the cavitation phenomena for disinfection of different micro-organisms have been presented. A design of a pilot scale sonochemical reactor has been presented, which forms the basis for development of industrial scale reactors. Economic analysis for comparison of cavitation phenomena with other conventional techniques of disinfection has been discussed. It appears that though cavitation is quite successful in treatment of water at laboratory scale operations, comparatively higher cost of treatment as compared to the conventional chemical methods is a hindrance in its industrial scale application. Intensification of cavitational activity and efficient design of industrial scale hydrodynamic cavitation reactors is required for ensuring successful application of cavitational reactors at industrial scale operation.  相似文献   

13.
The long-term application of biosolids that periodically contained elevated metal concentrations has raised questions about potential effects on animal health. To address these concerns, we determined metal concentrations (As, Cd, Cu, Pb, Hg, Mo, Ni, Se, and Zn) in both soil and bermudagrass [Cynodon dactylon (L.) Pers.] forage from 10 fields in the following categories of biosolids application: six or more years (>6YR), less than six years (<6YR), and no applications (NS). Soil metal concentrations in all groups were similar to values reported for mineral soils in Georgia, and well below USEPA cumulative limits. Average metal concentrations in the forage were below the maximum tolerable level (MTL) for beef cattle, although two biosolids-amended fields in the >6YR group produced forage that was at or near the MTL for Cd and Mo, and one field in the <6YR group produced forage above the MTL for Cd. The Cu to Mo ratios in forage decreased with increasing time of sludge application, with the average in the >6YR group at a proposed 5:1 Cu to Mo ratio limit to protect ruminant health. Sulfur concentrations in the forage from all three groups was near the MTL of 4 g kg(-1). The study indicated that toxic levels of metals have not accumulated in the soils due to long-term biosolids application. Overall forage quality from the biosolids-amended fields was similar to that of commercially fertilized fields; however, due to the relatively high S and potential for a low Cu to Mo ratio, Cu supplements should be used to ensure ruminant health.  相似文献   

14.
This paper provides an overview of the environmental impact of mining on viable future land use and underlines the imperative of improved environmental management and closure planning. It argues that pollution prevention, through planning for closure, can lead to cost-effective strategies for sustainable minerals development and viable future land use. This seems to be most true for greenfield sites since, generally, the earlier closure planning and pollution prevention is built into a project, the more cost-effective and environmentally benign closure will be. Further, for greenfield sites, pollution prevention techniques can be employed from the outset, at the stages of exploration and mine development, and then monitored and improved through the operation stage to closure, and can be kept in place to manage future land use.
The paper discusses how global changes in the industry, following the liberalisation of investment regimes, and mergers and strategic alliances between key firms, has, by virtue of the diffusion of new technology, led to further opportunities to prevent pollution and optimise future land use through planning for closure from the outset. The objectives and components of closure plans are also reviewed as the paper draws on case studies to highlight some of the possible constraints and challenges to pollution prevention that may be faced at the level of both public policy and corporate strategy. The article concludes by suggesting a forward-looking approach to integrated environmental management and viable future land-use planning based on a dynamic model for environmental management.  相似文献   

15.
Interest in plant nutrient issues for sustainable land application of residuals is increasingly driven by environmental concerns. The indicators of concern are P and N in surface waters, nitrate leaching, and emissions of ammonia and greenhouse gases. Federal regulations require residual application rates to be on a N basis at most, and on a P basis when risk of P loss in surface runoff is high. Modeling of mineralization offers the potential for more accurate determinations of potentially available nitrogen (PAN) and quick tests could allow the determination of PAN on residuals immediately before land application. Methods for reducing ammonia emissions from livestock operations and new techniques for quantifying emissions under field conditions are being developed. Calibration and validation of P loss assessment tools is an ongoing concern and the interpretation of edge of field P losses warrants further attention. The solubility of P in residuals and soils can be influenced by various amendments or treatment processes. High available P grains or phytase enzyme supplementation can reduce total and soluble P in animal manures by reducing the need for diet supplementation with inorganic P. The use of synchrotron-based X-ray absorption spectroscopy has identified chemical forms of inorganic P. Considerable progress has been made addressing plant nutrient issues for sustainable land application and interest in this topic will remain strong into the foreseeable future.  相似文献   

16.
Detectable levels of dioxins have been reported in biosolids, but very little information is available on the effect of long-term application of biosolids on dioxins accumulation in soil and uptake by plants. We analyzed dioxins in soil and corn tissue samples from field plots after 30 continuous applications of biosolids at 0 (Control), 16.8, and 67.2 Mg biosolids ha(-1) yr(-1) resulting in 0, 504, and 2016 Mg ha(-1) cumulative loadings of biosolids, respectively. The levels of dioxins in soil were only 79.9, 115.5, and 247.5 ng toxic equivalents (TEQs) kg(-1) in the 0, 504, and 2016 Mg biosolids ha(-1) plots, respectively. Dioxins were not detected in the corn grain, and only trace levels (6.8-7.5 ng TEQs kg(-1)) were found in the corn stover; however, these values were not statistically different between control and biosolids-amended soils. These observations suggest that although long-term application of biosolids may increase the levels of dioxins in soil, it does not affect dioxins uptake by corn.  相似文献   

17.
The amount of biosolids recycled in agriculture has steadily increased during the last decades. However, few models are available to predict the accompanying risks, mainly due to the presence of trace element and organic contaminants, and benefits for soil fertility of their application. This paper deals with using data mining to assess the benefits and risks of biosolids application in agriculture. The analyzed data come from a 10-yr field experiment in northeast France focusing on the effects of biosolid application and mineral fertilization on soil fertility and contamination. Biosolids were applied at agriculturally recommended rates. Biosolids had a significant effect on soil fertility, causing in particular a persistent increase in plant-available phosphorus (P) relative to plots receiving mineral fertilizer. However, soil fertility at seeding and crop management method had greater effects than biosolid application on soil fertility at harvest, especially soil nitrogen (N) content. Levels of trace elements and organic contaminants in soils remained below legal threshold values. Levels of extractable metals correlated more strongly than total metal levels with other factors. Levels of organic contaminants, particularly polycyclic aromatic hydrocarbons, were linked to total metal levels in biosolids and treated soil. This study confirmed that biosolid application at rates recommended for agriculture is a safe option for increasing soil fertility. However, the quality of the biosolids selected has to be taken into account. The results also indicate the power of data mining in examining links between parameters in complex data sets.  相似文献   

18.
China is the largest steel producer and consumer around the world. Quantifying the Chinese steel flow from cradle to grave can assist this industry to fully understand its historical status and future options on production route transformation, capacity planning, scrap availability, resource and energy consumption. With the help of the systematic methods combined dynamic MFA (material flow analysis) with scenario analysis, the Chinese steel cycle during the first half of the 21st century was quantified and several thought-provoking conclusions were draw. In the past decade, lots of pig iron or molten iron was fed into EAF (electric arc furnace) and the scrap usage of EAF fluctuated slightly. Thus, the real scrap-EAF route share is much lower than the EAF production share. On the other hand, we reconfirmed that the scrap supply in China will rise significantly in the future. Meanwhile, the secondary production route share will grow sharply and exceed primary production share before or after 2050 depending on our options. The scrap recycling rate and construction's lifetime play a vital role in this trend. In the end, an intensive discussion on production capacities’ adjustment and energy and resource consumption was conducted and relative policy suggestions were given. It is worth noting that scrap usage is crucial to future energy saving and emissions reduction of Chinese steel sector and its energy consumption might peak as early as 2015.  相似文献   

19.
Glyphosate [N-(phosphonomethyl) glycine]-resistant crops (GRCs), canola (Brassica napus L.), cotton (Gossypium hirsutum L.), maize (Zea mays L.), and soybean [Glycine max (L.) Merr.] have been commercialized and grown extensively in the Western Hemisphere and, to a lesser extent, elsewhere. Glyphosate-resistant cotton and soybean have become dominant in those countries where their planting is permitted. Effects of glyphosate on contamination of soil, water, and air are minimal, compared to some of the herbicides that they replace. No risks have been found with food or feed safety or nutritional value in products from currently available GRCs. Glyphosate-resistant crops have promoted the adoption of reduced- or no-tillage agriculture in the USA and Argentina, providing a substantial environmental benefit. Weed species in GRC fields have shifted to those that can more successfully withstand glyphosate and to those that avoid the time of its application. Three weed species have evolved resistance to glyphosate in GRCs. Glyphosate-resistant crops have greater potential to become problems as volunteer crops than do conventional crops. Glyphosate resistance transgenes have been found in fields of canola that are supposed to be non-transgenic. Under some circumstances, the largest risk of GRCs may be transgene flow (introgression) from GRCs to related species that might become problems in natural ecosystems. Glyphosate resistance transgenes themselves are highly unlikely to be a risk in wild plant populations, but when linked to transgenes that may impart fitness benefits outside of agriculture (e.g., insect resistance), natural ecosystems could be affected. The development and use of failsafe introgression barriers in crops with such linked genes is needed.  相似文献   

20.
Land application of biosolids is a beneficial-use practice whose ecological effects depend in part on hydrological effects. Biosolids were surface-applied to square 0.5-m2 plots at four rates (0, 7, 34, and 90 dry Mg ha(-1)) on each of three soil-cover combinations in Chihuahuan Desert grassland and shrubland. Infiltration and erosion were measured during two seasons for three biosolids post-application ages. Infiltration was measured during eight periods of a 30-min simulated rain. Biosolids application affected infiltration rate, cumulative infiltration, and erosion. Infiltration increased with increasing biosolids application rate. Application of biosolids at 90 dry Mg ha(-1) increased steady-state infiltration rate by 1.9 to 7.9 cm h(-1). Most of the measured differences in runoff among biosolids application rates were too large to be the result of interception losses and/or increased hydraulic gradient due to increased roughness. Soil erosion was reduced by the application of biosolids; however, the extent of reduction in erosion depended on the initial erodibility of the site. Typically, the greatest marginal reductions in erosion were achieved at the lower biosolids application rates (7 and 34 dry Mg ha(-1)); the difference in erosion between 34 and 90 dry Mg ha(-1) biosolids application rates was not significant. Surface application of biosolids has important hydrological consequences on runoff and soil erosion in desert grasslands that depend on the rate of biosolids applied, and the site and biosolids characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号