共查询到18条相似文献,搜索用时 93 毫秒
1.
为定量分析长三角地区PM2.5区域性污染的变化特征,建立适用于长三角地区的PM2.5区域污染划分标准,基于2015—2020年长三角地区41个城市日均ρ(PM2.5)开展区域污染变化趋势研究,并针对长三角PM2.5重度区域污染开展了时空变化以及网络特征分析. 结果表明:①2015—2020年长三角三省一市年均ρ(PM2.5)降幅均在25%以上,城市ρ(PM2.5)分布呈北高南低的特征,南北城市之间ρ(PM2.5)差异较大,ρ(PM2.5)最高值与最低值相差35~46 μg/m3. ②2015—2020年长三角PM2.5区域污染天数比例为16.9%~35.9%,以轻度污染为主,不同年份中度和重度污染天数比例差异较大,且主要出现在秋冬季,轻度、中度和重度污染天数均呈波动下降趋势. ③与2015年相比,2019年和2020年PM2.5区域污染天数分别减少了38和69 d,且PM2.5重度区域污染持续天数和重度及以上污染城市数量均呈减少趋势. ④PM2.5重度区域污染日,长三角城市之间表现出较强的污染关联性,并可划分为4个子群. 以连云港市为代表的子群1位于长三角地区北部,PM2.5污染相对较重,受长三角区域内输送影响较小,但对区域内其他城市有一定的输送影响;以宁波市为代表的子群2和以南京市为代表的子群4受长三角区域内输送影响较大,并指示了东路沿海和中路两条污染传输通道;以安庆市为代表的子群3位于内陆地区,污染独立性相对较强,受长三角区域内输送影响较小,同时对长三角其他城市影响也较小. 研究显示,长三角地区PM2.5污染改善显著,但重度区域污染尚未消除,中北部城市的联防联控将对改善PM2.5区域污染起积极作用. 相似文献
2.
乌鲁木齐市是“丝绸之路经济带”关键节点城市,为了解乌鲁木齐市2015—2018年空气污染状况,利用2015年1月1日—2018年12月23日乌鲁木齐市7个国控空气质量监测站的ρ(PM2.5)、ρ(PM10)监测数据,基于ArcGIS空间分析平台,分析乌鲁木齐市PM2.5、PM10的时空分布特征.结果表明:ρ(PM2.5)从2015年(66.60 μg/m3)到2016年(76.93 μg/m3)呈上升趋势,在2016—2018年呈单一下降趋势;ρ(PM10)从2015年(132.74 μg/m3)到2016年(125.93 μg/m3)呈下降趋势,在2016—2018年呈单一上升趋势.2015—2018年工业活动集中的乌鲁木齐市边缘各区的ρ(PM2.5)、ρ(PM10)平均值比城市中心(商业区、居民区)分别高11.28、7.17 μg/m3,说明工业集中地区的大气环境质量受污染影响明显.此外,2015—2018年乌鲁木齐市大气污染呈季节性和北高南低的区域性分布特征.气象因子分析表明,ρ(PM2.5)、ρ(PM10)均与相对湿度呈正相关,与降雨量、风速等气象因素呈负相关.2015—2018年,乌鲁木齐市大气中ρ(PM2.5)/ρ(PM10)呈先增后降的趋势,冬季以PM2.5污染为主,其他季节以PM10污染为主.研究显示,2015—2018年乌鲁木齐市空气污染状况变化与地形、气象条件、城市化建设均有一定的关系. 相似文献
3.
基于2015~2020年中国333个城市PM2.5和O3浓度监测数据,利用空间聚类、趋势分析和地理重力模型等方法,定量分析我国主要城市的PM2.5-O3复合污染特征和时空演变格局.结果表明:(1) PM2.5和O3浓度存在协同变化规律,当ρ(PM2.5_mean)≤85μg·m-3时,ρ(PM2.5_mean)和ρ(O3_perc90)存在同步增长的现象;当ρ(PM2.5_mean)处于国家Ⅱ级限值(35±10)μg·m-3时,ρ(O3_perc90)平均值的峰值增速最快;当ρ(PM2.5_mean)>85μg·m-3时,ρ(O3_perc90)平均值出现显著下降趋势.(2)我国城市PM2.5和O3 相似文献
4.
采用PM2.5和人口格网数据,计算了2000~2016年中国PM2.5人口暴露风险值,并利用Theil-Sen Median趋势分析、标准偏差和Hurst指数等,分析了17a间中国PM2.5人口暴露风险的时空变化特征.结果表明:①17a间PM2.5人口暴露风险在胡焕庸线两侧差异巨大,东部高、西部低,东部多年风险均值为2.787,西部为0.065;②17a间PM2.5人口暴露风险在胡焕庸线两侧的变化幅度具有较显著差异,西部整体呈下降趋势,而在2011年和2015年有明显回升,东部自2001年迅速增加且保持平稳状态,直至2015年出现大幅度回落.③PM2.5人口暴露风险的稳定性与持续性差异显著,东部以不稳定与弱反持续性为主,西部则以稳定与强反持续性为主要特征.④暴露等级为危险与极危险水平下的人口总量与人口密度在空间上呈现出东部高西部低的分布状态. 相似文献
5.
北京地区冬春PM2.5和PM10污染水平时空分布及其与气象条件的关系 总被引:18,自引:12,他引:18
北京2012~2013年的冬春多次出现雾霾天气,可吸入颗粒物(PM10)污染严重.而PM2.5作为PM10中粒径较小的部分,在PM10中所占比重越高,污染越严重.因此,本研究选取了能够覆盖北京所有区县的30个PM2.5和PM10的质量浓度监测点,对该地区的PM2.5和PM10污染特征进行分析,确定其空间差异特征和时间性变化特征.普通克里格插值(Original Kriging)法得到的北京地区冬、春季颗粒物浓度分布图显示,颗粒物浓度从北部山区到南部地区逐渐递增,在中心城区处,西部高于东部,且局部地区存在一定的城乡差异.颗粒物浓度月变化曲线呈单峰单谷型,1月最高,4月最低;逐日变化反映了PM2.5和PM10浓度具有较好的相关性,且受气象条件影响显著;日变化呈双峰趋势.本文选取日平均气温(℃)、相对湿度(%)、风速(风级)、降水量(mm)等气象因子,利用Spearman秩相关分析研究各个气象因子对大气PM2.5和PM10浓度的影响.北京冬季PM2.5和PM10的质量浓度分别与气温、相对湿度正相关,与风速负相关,风速和相对湿度是影响污染物质量浓度分布的主要因素. 相似文献
6.
本文在检验PM2.5遥感数据可靠性的基础上,使用标准偏差分析、Hurst指数、Theil-Sen median趋势分析与Mann-Kendall检验和局部空间自相关等方法,在像元尺度上研究了2000~2016年中国PM2.5浓度的分布格局和演变过程.结果表明:①在空间分布上,PM2.5的浓度东部高,多年平均值为30.21μg/m3,西部低,多年平均值为4.37μg/m3,东西两侧差异巨大.西部地区和东北地区PM2.5的浓度整体呈现增长的态势,但西部地区变化较为平缓.PM2.5污染严重的区域分布在人口多且密集,经济较为发达的区域,如华北平原,东北平原,长江中下游平原,四川盆地等地区.②在时间序列上,以2007年为界,PM2.5的年变化趋势可分为两个阶段,从2000~2007期间我国的PM2.5浓度总体呈现上升趋势,年均增长0.95μg/m3,2007~2016年PM2.5浓度呈波动下降趋势,年均下降0.15 μg/m3;③稳定性:PM2.5浓度的稳定性在空间上差异显著,整体呈现出西部较稳定、东部不稳定的分布状态.东部极不稳定区域主要分布在四川盆地,华北平原,东北平原中部,长江中下游平原;④持续性:中国PM2.5持续性特征以弱反持续为主,主要分布在中国东部地区,预测未来PM2.5的变化规律与目前相反.其次弱持续性分布的区域较广,主要分布在山地、高原及高寒地区,说明这一区域未来PM2.5变化趋势与过去的变化趋势相同,但又具有复杂性和反复性.⑤人口暴露分析:分析不同PM2.5浓度级别上的人口百分比,发现2016年中国有52%的人口生活在PM2.5浓度年平均值为35 μg/m3以上的环境中,还有14.38%的人暴露在PM2.5年均浓度值为60 μg/m3以上的环境中. 相似文献
7.
为进一步梳理近年来我国城市区域大气PM2.5污染防治方面的研究成果,基于我国31个城市PM2.5污染现状,以城市群为视角,总结了京津冀城市群、长三角城市群与川渝城市群PM2.5组成与污染特征,分析了PM2.5及其含碳气溶胶、水溶性无机离子、地壳元素等的整体特征,并在城市群间进行对比分析.结果表明:①3个城市群的ρ(PM2.5)高低顺序依次为京津冀城市群>川渝城市群>长三角城市群,长距离传输使PM2.5污染成为京津冀城市群、长三角城市群与川渝城市群面临的共同问题.②3个城市群的PM2.5中均以SNA和OC为主,尽管ρ(PM2.5)水平有下降趋势,但个别污染物(如SNA)略呈上升趋势.③京津冀城市群与川渝城市群的ρ(OC)接近,并且均高于长三角城市群的80%,较高的ρ(OC)/ρ(EC)反映我国城市群普遍存在SOC污染.④各城市群PM2.5监测网(如监测时间和采样方法)发展水平迥异,... 相似文献
8.
基于PM2.5遥感数据和人口格网数据,利用污染物人口暴露风险模型、Theil-Sen Media和Mann-Kendall等方法,分析了2000~2016年全球PM2.5人口暴露风险时空分布特征,并识别出暴露高风险区域.结果表明,PM2.5遥感数据和人口格网数据可以客观地评价暴露风险程度.全球PM2.5平均浓度在各大洲差异显著,PM2.5污染的高值区域主要分布在东亚、南亚和东南亚.PM2.5质量浓度的多年平均值从高到低分别是亚洲14.7μg/m3、非洲8.1μg/m3、欧洲8.03μg/m3、南美洲5.69μg/m3、北美洲4.41μg/m3和大洋洲1.27μg/m3.2000~2016年,全球PM2.5人口暴露风险在宏观尺度上呈逐渐减少的趋势,而在区域内则呈现出差异性.空间上,全球PM2.5人口暴露风险各大洲从高到低依次为亚洲5.94、非洲0.62、欧洲0.45、南美洲0.32、北美洲0.27和大洋洲0.01.时间上,2000~2016年,亚洲和非洲PM2.5人口暴露风险呈增长趋势,欧洲和北美洲呈减少趋势,大洋洲和南美洲变化幅度较小. 相似文献
9.
利用1998~2016年全球PM2.5浓度栅格数据集,以地级以上城市为基本单元提取出PM2.5浓度数据,采用核密度估计法、全局空间自相关、局部空间自相关、热点分析等方法探讨我国地级以上城市PM2.5污染的时空格局演化规律.结果显示:①研究期内我国PM2.5浓度总体呈现上升趋势,年均增长0.55μg/m3;.变化趋势可以分为2个阶段:1998~2007年呈快速增长态势;2008~2016年呈现"下降~增长~下降"的变化趋势.按地区分析,东部和中部地区呈现相似的变化趋势.西部地区和东北地区均整体呈现增长的态势,但西部地区变化较为平缓,东北地区波动较为剧烈.②研究期内核密度曲线峰值逐步右移,这表明中国地级以上城市PM2.5污染程度总体上在加剧,且东部和中部城市加剧程度远大于西部.③PM2.5污染在空间分布上具有显著的空间正相关特征.高值聚集区集中分布在山东、河南、河北、江苏、安徽、湖南、湖北的大部分地区以及四川东部地区,1998~2007年间高值聚集城市数量呈现增加的态势,2007年达到峰值,空间上表现为向西部和南部扩张;此后高值集聚城市数量逐渐减少,聚集区南界逐渐北移.低值聚集区集中分布在内蒙古、黑龙江西北部、新疆、西藏、台湾、海南、福建等地区.研究期内低值聚集区城市数量整体呈现先增加后减少的波动状态. 相似文献
10.
PM2.5和PM10污染已成为全球关注的重要环境问题,监测其污染状况对人类健康、动植物生长、大气环境评价等具有重要意义。基于2013—2018年山东省17个城市大气PM2.5和PM10监测数据,利用时空分析方法和Spearman相关分析方法,研究其污染时空变化特征,并分析气象、人为及政策因素对二者的影响。结果表明:与2013年相比,2018年山东省大气PM2.5和PM10污染程度明显减轻,年均浓度降幅分别为48.72%、37.72%;6年整体月均PM2.5浓度呈近似"U"形变化规律,月均PM10浓度呈近似"V"形变化规律;PM2.5和PM10污染整体呈由西北内陆向东部沿海地区逐渐减轻的空间趋势;PM2.5和PM10浓度受气温和降水量2个气象因素影响较显著,受道路密度、城市绿化覆盖面积、SO2和NO 相似文献
11.
2005年四季在北京市不同功能区9个采样点采集大气PM10和PM2.5样品,并对其中有机物污染水平、分布特征及不同功能区PM10和PM2.5中有机物的相关性进行了探讨.结果表明,市区PM10和PM2.5中有机物年均值分别为41.39 μg/m3和34.84 μg/m3,是对照区十三陵的1.44倍和1.26倍;冬季有机物污染最严重,分别为春季的1.15、 1.82倍,秋季的2.06、 2.26倍,夏季的4.53、 6.26倍.不同季节PM2.5与PM10中EOM的比值超过0.60, 并呈现一定季节差异.各功能区有机污染表现出工业区(商业区)>居民区(交通区、对照区)的变化趋势,且不同功能区PM2.5中EOM对PM10中EOM的影响程度各异.有机组分的年均值有非烃>沥青质>芳烃>饱和烃的变化规律,而污染源的季节性排放是造成有机物组分季节变化的主要原因. 相似文献
12.
为了评估中国大气环境治理带来的健康效益,确定健康风险评价的主要驱动因素,本文使用结合人群活动因子的综合暴露响应模型,对中国东部和中部地区2013~2017年可归因于PM2.5的健康经济效益进行了估算,并量化了人口总量、人口老龄化、基准死亡率和PM2.5暴露浓度这4个因素对健康负担的影响贡献.结果表明,2013~2017年研究区域内PM2.5人口加权浓度下降了28.73%,PM2.5年均暴露浓度在35 μg·m-3及以下的人口比例从11.23%增加到27.91%.PM2.5浓度下降使得2017年归因死亡数下降了14.43%,可避免经济损失为5588.41亿元.当PM2.5暴露浓度达到国家二级标准(35 μg·m-3)、一级标准(15 μg·m-3)和世卫组织建议标准(10 μg·m-3)时,归因死亡人数较基准年(2017年)将减少8.22%、55.05%和79.36%,避免经济损失3190.85、21374.38和30812.97亿元.人口总量、人口老龄化、基准死亡率和PM2.5暴露浓度这4个因素对健康负担的贡献分别为-2.69%、-12.38%、1.66%和14.57%,其中污染物浓度降低是减轻健康负担的主导因素.中国的大气污染治理取得了显著成效,但在高PM2.5浓度和高人口密度的地区,大气污染导致的健康负担仍然很重,需要实施更加严格的空气污染控制政策. 相似文献
13.
为了解关中平原城市群PM2.5时空变化规律,利用2015~2018年国家空气质量检测平台发布的PM2.5实时监测数据,并用地统计学和探索性空间数据分析等方法,对关中平原城市群PM2.5污染的时空变化规律进行分析。结果表明,关中平原城市群PM2.5污染总体呈向好趋势,PM2.5年均超标城市由11个减少到8个,年均浓度超标率显著下降。PM2.5污染主要出现在冬季,春秋季过渡,夏季PM2.5浓度季度均值、月均值都最低,PM2.5日均值曲线与月均值曲线大致趋势一致,呈单峰"脉冲型"变化;PM2.5污染在空间上具有明显的分异性和集聚性特征,表现出"临汾-咸阳"为轴的高污染区面积逐渐缩小,而以平凉、天水为中心的低污染区面积逐渐扩大的空间变化规律。 相似文献
14.
根据郑州市2014~2016年间大气中PM10和PM2.5年平均浓度数值,采用泊松回归相对危险模型,评估了控制PM10和PM2.5污染后所能带来的95%置信区间下的健康效应及健康效益.结果表明,2014~2016年间,PM10浓度达到二级限值后所带来的经济效益(以亿元计,括号中为置信区间,下同)分别为181.8(150.4,211.2)、242.5(202.5,279.4)和206.2(173.3,239.2),分别占郑州市当年生产总值的2.7%、3.3%和2.5%;PM2.5浓度达标后所带来的经济效益分别为178.8(143.7,211.6)、216.5(174.6,255.3)和172.5(137.8,205.5),分别占郑州市当年生产总值的2.6%、3.0%和2.1%.PM10和PM2.5浓度达标后,城镇受益人数高于农村,急性支气管炎减少人数高于其他健康终端,对于慢性支气管炎,成人受益比儿童大,哮喘则相反.慢性支气管炎人数减少带来的健康经济效益最高,其次为哮喘,门诊和住院的健康效益最低. 相似文献
15.
基于GAM模型分析中国典型区域网格化PM2.5长期变化影响因素 总被引:1,自引:1,他引:1
为探究中国典型区域地表PM2.5浓度长期时空变化及其影响因素,运用广义可加模型(GAM)对1998~2016年均0. 01°×0. 01°地表PM2.5浓度网格化数据进行分析.典型区域多年平均PM2.5浓度从高到低:华东华中地区(40. 5μg·m-3)>华北地区(37. 4μg·m-3)>华南地区(27. 8μg·m-3)>东北地区(23. 7μg·m-3)>四川盆地(22. 4μg·m-3).东北地区PM2.5年际变化呈现明显上升趋势;其他地区1998~2007年呈上升趋势,2008~2016年出现下降趋势.在典型区域PM2.5浓度空间分布上,PM2.5浓度分布呈现显著的空间差异,多年来各区域PM2.5浓度高值分布相对稳定. PM2.5浓度变化的单因素GAM模型中,所有影响因素... 相似文献
16.
根据陕西省2016年12月至2017年5月PM2.5质量浓度逐小时数据,利用ArcGIS分析陕西省PM2.5污染时空变化格局,并分析造成南北差异的原因,再利用小波分析手段探讨各市PM2.5污染时间序列周期和突变特性。结果表明:(1)陕西省冬季PM2.5污染重,春季污染轻,并表现出"关中高,南北低"的特征,秦岭南北经济发展差异和供暖差异是控制陕西省PM2.5污染空间格局的主要原因;(2)冬季和春季单日PM2.5浓度变化趋势基本一致,为"双峰双谷型",日最低值出现在16∶00~18∶00;(3)Morlet小波分析结果显示,陕西省PM2.5日均变化序列存在多时间尺度特征。陕北城市PM2.5污染第1主周期为40 d,关中城市和陕南商洛市有40 d和65 d两个共同周期,安康市和汉中市共同周期为20 d和80 d;(4)陕西省PM2.5突变事件冬季频繁而春季较少,多发生在1月和2月,春季1次大范围的沙尘天气,造成了陕西省5月5日8个城市PM2.5污染浓度剧增。 相似文献
17.
随着工业化与城镇化的深入推进,成渝城市群的PM2.5污染不断加剧,呈明显的区域性与复合性特征.该研究以2015—2017年成渝城市群空气质量监测站的日均ρ(PM2.5)数据为基础,结合区域气象、遥感与统计年鉴等多源数据,采用反距离插值法分析了ρ(PM2.5)的时空分布差异,采用Moran's I指数与LISA指数探索了ρ(PM2.5)的全局和局部空间自相关性,并利用空间回归模型研究了自然、经济社会等因素对ρ(PM2.5)的影响.结果表明:①成渝城市群ρ(PM2.5)分布存在明显的时空差异.时间上,2015年PM2.5污染最严重,ρ(PM2.5)年均值为54.38 μg/m3,2016年、2017年PM2.5污染状况逐年减轻,ρ(PM2.5)年均值分别为53.68与47.56 μg/m3;空间上,成渝城市群东北部ρ(PM2.5)较低,而南部ρ(PM2.5)较高.②空间自相关分析结果表明,PM2.5污染在成渝城市群存在显著的空间聚集性,成渝城市群南部ρ(PM2.5)呈高值-高值聚集,成渝城市群北部ρ(PM2.5)则呈低值-低值聚集.③空间回归结果表明,成渝城市群范围内某一地区邻近区域的ρ(PM2.5)平均值增加1%时,该地区ρ(PM2.5)将上升至少0.38%.城镇化率对ρ(PM2.5)的影响最大,其次是第一产业增加值,再次是工业增加值占比和降水量.城镇化率、降水量与ρ(PM2.5)呈负相关,而第一产业增加值、工业增加值占比与ρ(PM2.5)呈正相关.研究显示,加快城镇化进程、减少第一产业排放、降低工业增加值占比(尤其是重污染工业)是有效解决成渝城市群PM2.5污染的重要手段. 相似文献
18.
为了定量评估我国空气污染治理产生环境健康效益的动态变化,本文运用2015~2018年的全国297个地级及以上城市数据,估算PM2.5污染造成的健康效应与健康经济损失变化,并分区域分城市对比分析.结果表明,由于ρ(PM2.5)大幅下降,2015~2018年全国暴露于ρ(PM2.5)超标地区人口逐年下降,占总人口的比重从80.88%下降至62.32%.各类健康终点总人数从3323.25万人下降到1591.45万人,健康经济损失从15790.39亿元下降到8384.16亿元,健康经济损失占GDP比重从2.31%下降到0.99%.6大区域中京津冀及周边地区、成渝地区的各类指标逐年下降,汾渭平原地区、长三角地区、珠三角地区和长江中游地区的各类指标呈现部分年份上升,随后下降的复杂趋势.但是汾渭平原地区的情况仍比其它地区严重,2018年的各类健康终点总人数比2015年增加1.89万人,健康经济损失增加107.14亿元,人均健康经济损失增加182.67元.保定、邢台和邯郸等市各指标值虽逐年下降,但每年仍居所有城市前10,西安、咸阳和临汾等市2018年的指标值不及2015年乐观.结果显示,我国空气污染治理产生的环境健康效益总体显著,但仍需进一步加强区域联防联控与一市一策. 相似文献