首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. Krembs  A. Engel 《Marine Biology》2001,138(1):173-185
The distribution and abundance of transparent exopolymer particles (TEP) was determined in and below pack ice of the Laptev Sea from July to September 1995. Samples were collected from the lowermost 10 cm of ice floes and at 10 cm below the ice–water interface. Abundance of bacteria, protists and TEP was determined, and the sea ice–water boundary layer was characterized using temperature, salinity and molecular viscous shear stress. TEP, with a distinct size distribution signal, were found in highest concentrations inside the sea ice, ranging from not detectable to 16 cm2 l−1 (median: 2.9 cm2 l−1). In the water, concentrations were one order of magnitude lower, ranged from below detection to 2.7 cm2 l−1 (median: 0.2 cm2 l−1) and decreased after the middle of August, whereas abundances of autotrophic flagellates (AF), diatoms, heterotrophic flagellates (HF) and ciliates increased. The abundance of TEP decreased with its size in all samples following a power law relationship. The relation of TEP to the microbial community differed between the sea ice and water, being positively correlated with bacteria and diatoms in the ice and negatively correlated with HF in the sea water. The presence of a pycnocline significantly influenced the abundance of organisms, diatom composition and TEP concentrations. Pennate diatoms dominated by Nitzschia frigida were most abundant inside the ice. Though bacteria have the potential to produce exopolymeric substances (EPS), the results of this study indicate that the majority of TEP at the ice–water interface in first-year Arctic summer pack ice are produced by diatoms. Received: 19 August 1999 / Accepted: 4 July 2000  相似文献   

2.
The marine planktonic copepodsCalanus glacialis Jaschnov andPseudocalanus minutus (Kroyer) typically dominate the copepod biomass in spring under the ice in southeastern Hudson Bay, Canada. Females of both species exhibited significant diel feeding cycles, as measured by gut pigment content, throughout a bloom of ice algae at the ice-water interface in 1986. Periods of grazing correlated well with a nighttime vertical migration by females to within 0.2 m of the ice-water interface, suggesting that feeding took place at or just below the thermohaline boundary between seawater and the interfacial layer containing the ice algae. Seasonal melting of the ice bottom in mid-May resulted in freshening of the surface layer and release of the ice algae into the water column. FemaleC. glacialis andP. minutus responded by ceasing migration to the interface. Gut pigment content, and by reasonable assumption, feeding activity in the water column, increased substantially immediately after this event. In mid-May, the water column phytoplankton consisted of flagellates, sedimenting ice algal cells, and diatoms (Navicula pelagica andChaetoceros sp.) previously found at the interface and then growing in the water column. We conclude that algae growing at the ice-water interface, and sedimenting or actively growing algae derived from this interfacial layer, are a regular and principal source of nutrition for these pelagic copepods during and immediately after the ice algal bloom.  相似文献   

3.
S. Itakura  I. Imai  K. Itoh 《Marine Biology》1997,128(3):497-508
Abundance and temporal distribution of viable (able to germinate) resting stage cells of planktonic diatoms in bottom sediments have been investigated almost monthly during 1989 to 1992 in Hiroshima Bay, western part of Seto Inland Sea, Japan. The abundance of viable resting stages in bottom sediments was enumerated with the extinction dilution method (most probable number method, MPN). In bottom sediments of Hiroshima Bay, dominantly distributed species and/ or genera of the diatom resting stages were Skeletonema costatum, Chaetoceros spp. and Thalassiosira spp. Viable resting stages of these diatoms were densely distributed on the orders of 103 to 106 (MPN g−1 wet sediments), and persisted in bottom sediments throughout the investigation period. Conversely, vegetative cells of these diatoms fluctuated remarkably in the water column and disappeared sporadically. Survival of the resting stages in a collected sediment sample was also determined with the MPN method, at different storage temperatures (5, 10, 15, 20, 25 °C). The survival test demonstrated that the diatom resting stages could survive in the dark for several months or years in sediments. Resting stages survived longer at the lower storage temperature, and the order of longevity was consistent within three diatoms (Chaetoceros spp. > Thalassiosira spp. > S. costatum) at each storage temperature. The present study suggests that these diatom resting stages in the coastal bottom sediments could serve as a “seed bank”, analogous to those of terrestrial plants. The seed bank would ensure the survival of diatoms within highly fluctuating coastal environments, while it would also be the source of sporadic and autochthonous diatom blooms in coastal waters. Received: 29 November 1996 / Accepted: 16 December 1996  相似文献   

4.
While it is known that Antarctic sea ice biomass and productivity are highly variable over small spatial and temporal scales, there have been very few measurements from eastern Antarctic. Here we attempt to quantify the biomass and productivity and relate patterns of variability to sea ice latitude ice thickness and vertical distribution. Sea ice algal biomass in spring in 2002, 2003 and 2004 was low, in the range 0.01–8.41 mg Chl a m−2, with a mean and standard deviation of 2.08 ± 1.74 mg Chl a m−2 (n = 199). An increased concentration of algae at the bottom of the ice was most pronounced in thicker ice. There was little evidence to suggest that there was a gradient of biomass distribution with latitude. Maximum in situ production in 2002 was approximately 2.6 mg C m−2 h−1 with assimilation numbers of 0.73 mg C (mg Chl a)−1 h−1. Assimilation numbers determined by the 14C incubations in 2002 varied between 0.031 and 0.457 mg C (mg Chl a)−1 h−1. Maximum fluorescence quantum yields of the incubated ice samples in 2002 were 0.470 ± 0.041 with E k indices between 19 and 44 μmol photons m−2 s−1. These findings are consistent with the shade-adapted character of ice algal communities. In 2004 maximum in situ production was 5.9 mg C m−2 h−1 with an assimilation number of 5.4 mg C (mg Chl a)−1 h−1. Sea ice biomass increased with ice thickness but showed no correlation with latitude or the time the ice was collected. Forty-four percent of the biomass was located in bottom communities and these were more commonly found in thicker ice. Surface communities were uncommon.  相似文献   

5.
We report the first evidence that pennate diatoms growing within the bottom layer of first-year ice in the Arctic produce significant amounts of particulate dimethylsulfoniopropionate (DMSPp) and dissolved DMSP+DMS. In 1992 in Resolute Passage, a tributary of Barrow Strait, DMSPp concentrations within the bottom layer of ice reached 1055 mg S m-3 at the end of the vernal bloom, a value one order of magnitude higher than the maximum value reported in antarctic ice. Bottom-ice concentrations in DMSPp and DMSPd+DMS were significantly correlated with the abundance of the dominant pennate diatom Nitzschia frigida. Intracellular concentration in DMSP of ice algae was very low (0.001 pg cell-1) at the end of April when algae were light-limited and reached 1.17 pg cell-1 in mid-May following an increase in light and algal growth. We calculate that the rapid release of the dissolved DMSP+DMS from the ice into surface waters following the ice break-up will generate a sea-to-air DMS flux of 0.7 mg S m-2 d-1, a pulse ten times higher than the mean arctic summer flux. We estimate that this 1-d pulse represents up to 5% of the annual DMS emission in the Arctic.  相似文献   

6.
Phytoplankton growth and microzooplankton grazing were measured in two productive coastal regions of the North Pacific: northern Puget Sound and the coastal Gulf of Alaska. Rates of phytoplankton growth (range: 0.09–2.69 day−1) and microzooplankton grazing (range: 0.00–2.10 day−1) varied seasonally, with lowest values in late fall and winter, and highest values in spring and summer. Chlorophyll concentrations also varied widely (0.19–13.65 μg l−1). Large (>8 μm) phytoplankton cells consistently dominated phytoplankton communities under bloom conditions, contributing on average 65% of total chlorophyll biomass when chlorophyll exceeded 2 μg l−1. Microzooplankton grazing was an important loss process affecting phytoplankton, with grazing rates equivalent to nearly two-thirds (64%) of growth rates on average. Both small and large phytoplankton cells were consumed, with the ratio of grazing to growth (g:μ) for the two size classes averaging 0.80 and 0.42, respectively. Perhaps surprisingly, the coupling between microzooplankton grazing and phytoplankton growth was tighter during phytoplankton blooms than during low biomass periods, with g:μ averaging 0.78 during blooms and 0.49 at other times. This tight coupling may be a result of the high potential growth and ingestion rates of protist grazers, some of which feed on bloom-forming diatoms and other large phytoplankton. Large ciliates and Gyrodinium-like dinoflagellates contributed substantially to microzooplankton biomass at diatom bloom stations in the Gulf of Alaska, and microzooplankton biomass overall was strongly correlated with >8 μm chlorophyll concentrations. Because grazing tended to be proportionally greater when phytoplankton biomass was high, the absolute amount of chlorophyll consumed by microzooplankton was often substantial. In nearly two-thirds of the experiments (14/23), more chlorophyll was ingested by microzooplankton than was available for all other biological and physical loss processes combined. Microzooplankton were important intermediaries in the transfer of primary production to higher trophic levels in these coastal marine food webs. Received: 12 November 1999 / Accepted: 4 October 2000  相似文献   

7.
Grazing of phytoplankton by copepods in eastern Antarctic coastal waters   总被引:1,自引:0,他引:1  
Chlorophyll a, primary productivity and grazing by copepods on phytoplankton were measured in the upper water column during the summer of 1994/1995 at a coastal site near Davis Station, East Antarctica. Chlorophyll a was at a maximum in mid-December, then dropped markedly as the coastal fast ice melted and broke‐out. Phytoplankton biomass increased again from mid‐ to late‐February. Copepods accounted for at least 65% of zooplankton biomass in the water column before sea ice break‐out, whereas larval polychaetes and ctenophores dominated after ice break‐out. Oncaeacurvata was the numerically dominant species throughout the study. The highest grazing rate (8.7 mg C␣m−3␣d−1) was recorded on 21 December when O.␣curvata accounted for 64% of the total. Grazing had decreased markedly by 28 December (0.9 mg C m−3 d−1); again O. curvata accounted for over 50% of the total ingested. Copepod grazing increased after ice break-out until the last experiment on 20 February (⋍5 mg C␣m−3␣d−1). The main species responsible for grazing during this period were O. curvata, Oithonasimilis, Calanoidesacutus and unidentified copepod nauplii. It was estimated that copepods removed between 1 and 5% of primary productivity. Received: 11 October 1996 / Accepted: 22 October 1996  相似文献   

8.
Using four replicate microcosms in the laboratory, we induced a phytoplankton bloom by enclosing a natural community sampled from Masnou Harbor (N.E. Spain) in November 1987, and examined the pattern of algal succession during the bloom. Good replicability of the temporal patterns of the community biomass and the abundance of most species demonstrated that succession was a directional, non-random process. The successional pathway observed (small flagellates » small centric diatoms » small flagellates) resembled that observed by other authors studying phytoplankton blooms. This pattern differed from previous models of algal succession in that dinoflagellates never comprised a substantial fraction of the community biomass, and in that algal cell size did not tend to increase along the successional sequence. Algal cell size, however, was an important determinant of phytoplankton community structure, since it constrained the density, but not the biomass, achievable by the different species. We suggest that there is not a single, general pattern of phytoplankton succession, but that distinction should be made, at least between seasonal and bloom patterns of phytoplankton succession.  相似文献   

9.
From September to November 1991, UV-absorbing mycosporine-like amino acids (MAAs) were monitored in a natural population of the sea urchin Sterechinusneumayeri from a coastal area of Anvers Island (Antarctic Peninsula). MAA concentrations were determined for specific tissues (gonad, digestive tract and body wall) from adults collected at four depths (intertidal, 8, 15 and 24 m). Four MAAs were identified: mycosporine-glycine, shinorine, porphyra-334 and paly-thine. Concentrations of MAAs among replicate individuals varied considerably. Ovaries had high concentrations of MAAs (84 to 1389 μg g−1 dry wt), while testes had non-detectable levels. The relative abundance of specific MAAs in ovaries appeared to be related to the spawning cycle. Digestive-tract samples had MAA concentrations as high as 3000 μg g−1 dry wt, but the mean MAA content in intertidal individuals decreased by 70% over 3 mo during spring. The body walls of sea urchins had very low amounts of MAAs (≤ 0.08 μg g−1 dry wt). There were significant depth differences in the␣total MAA content of the ovary ( p <0.001), ( p <0.015), digestive tract ( p <0.001), and body wall with organisms from the intertidal and 8 m depth having the highest concentrations of MAAs. Biological dosimetry indicated that UV-B (280 to 320 nm) wavelengths penetrated 3 to 7 m below the sea ice during the study period. The total MAA content in ovaries decreased with depth on all sample dates; however, the MAA content of the digestive tract and body wall did not exhibit a consistent pattern of change with depth. The MAA content of tissues did not change significantly with the temporal gradient of light exposure that was established by both ozone depletion and increasing photoperiod, except in the digestive tract sampled from intertidal specimens. Adult urchins are probably well-protected from UV exposure by the water column and a calcareous test; however, the results of this study suggest that, even under ice cover, depth of habitation is a determinant of MAA content in S. neumayeri. Large daily and seasonal fluctuations in the light regime, which are characteristic of Antarctic coastal environments, apparently do not provide reliable cues to elicit a detectable, temporal, biochemical response. Received: 19 February 1997 / Accepted: 26 March 1997  相似文献   

10.
Solar radiation as a primary abiotic factor affecting productivity of seaweeds was monitored in the Arctic Kongsfjord on Spitsbergen from 1996 to 1998. The radiation was measured in air and underwater, with special emphasis on the UV-B (ultraviolet B, 280–320 nm) radiation, which may increase under conditions of stratospheric ozone depletion. The recorded irradiances were related to ozone concentrations measured concurrently in the atmosphere above the Kongsfjord with a balloon-carried ozone probe and by TOMS satellite. For comparison, an ozone index (a spectroradiometrically determined irradiance of a wavelength dependent on ozone concentration, standardized to a non-affected wavelength) was used to indicate the total ozone concentration present in the atmosphere. Weather conditions and, hence, solar irradiance measured at ground level were seldom stable throughout the study. UV-B irradiation was clearly dependent on the actual ozone concentration in the atmosphere with a maximal fluence rate of downward irradiance of 0.27 W m−2 on the ground and a maximal daily fluence (radiation exposure) of 23.3 kJ m−2. To characterize the water body, the light transmittance, temperature and salinity were monitored at two different locations: (1) at a sheltered shallow-water bay and (2) at a wave-exposed, deep-water location within the Kongsfjord. During the clearest water conditions in spring, the vertical attenuation coefficient (K d) for photosynthetically active radiation (PAR) was 0.12 m−1 and for UV-B 0.34 m−1. In spring, coinciding with low temperatures and clear water conditions, the harmful UV radiation penetrated deeply into the water column and the threshold irradiance negatively affecting primary plant productivity was still found at about 5–6 m depth. The water body in spring was characterized as a Jerlov coastal water type 1. With increasing temperature in summer, snow layers and glacier ice melted, resulting in a high discharge of turbid fresh water into the fjord. This caused a stratification in the optical features, the salinity and temperature of the water body. During melt-water input, a turbid freshwater layer was formed above the more dense sea water. Under these conditions, light attenuation was stronger than defined for a Jerlov coastal water type 9. Solar radiation was strongly attenuated in the first few metres of the water column. Consequently, organisms in deeper water are protected against harmful UV-B radiation. In the surface water, turbidity decreased when rising tide caused an advection of clearer oceanic water. In the course of the summer season, salinity continuously decreased and water temperature increased particularly in shallow water regions. The impact of global climate change on the radiation conditions under water and its effects on primary production of seaweeds are discussed, since organisms in the eulittoral and upper sublittoral zones are affected by UV radiation throughout the polar day. In clearer water conditions during spring, this may also apply to organisms inhabiting greater depths. Received: 20 June 2000 / Accepted: 17 October 2000  相似文献   

11.
The reproductive strategies of two gammaridean amphipod species, Gammarus wilkitzkii and Apherusa glacialis, that permanently inhabit the Arctic sea ice were investigated. G. wilkitzkii reaches sexual maturity at an age of 2 years and produces 128 ± 54 eggs fem.−1 yr−1. Mating takes place during fall and winter, and the development of the large eggs (0.60 to 0.80 mm diam.) lasts 6 to 7 months. The sex ratio of G. wilkitzkii was dominated by males in a proportion of 1.5:1. In vivo studies showed that juveniles are released in batches from the brood pouches of the females during April and May. A. glacialis reaches sexual maturity at the age of 1 year and produces 555 ± 151 eggs fem.−1 yr−1. The eggs are between 0.18 and 0.23 mm in diameter, and are the smallest known for gammaridean amphipods. Eggs are kept in packages of two to eight in the brood pouches of females. The sex ratio of A. glacialis was dominated by females in a proportion of 3:1. The high fecundity of both amphipod species, the release of juveniles in batches over a period of time, a high proportion of females (A. glacialis), and an elongated life-span with multiple spawnings (G. wilkitzkii) are discussed as possible adaptations to the specific and highly variable conditions under Arctic sea ice. Received: 29 December 1999 / Accepted: 8 March 2000  相似文献   

12.
Mesozooplankton (<5 mm) collected by stratified oblique tows with a 1-m2 MOCNESS was examined at four stations in the Arabian Sea, with special reference to the bathypelagic zone. The profiles commenced about 20 m above bottom, at 4430 m as a maximum depth. The highest mesozooplankton biomass concentrations (wet weight per cubic meter) were obtained from the surface layer during night. A secondary maximum was situated between 150 and 450 m, with maximum concentrations at daytime. This layer coincided with the daytime residence depth of the deep scattering layer. The standing crop of the mesozooplankton in the upper 1000 m was highest at station WAST at 16°N; 60°E (ca. 47 000 mg m−2); station CAST at 14°N; 65°E ranked second (ca. 22 500 mg m−2), followed by station SAST at 10°N; 65°E (11 420 mg m−2). The differences can be related to different productivity regimes at the sea surface generated by the Findlater Jet during the SW monsoon. The differences in surface production were also reflected below 1000 m depth, in the bathypelagic zone, with mesozooplankton wet weights of 5330 mg m−2 at WAST, 3210 mg m−2 at CAST, 3390 mg m−2 at EAST (15°N; 65°E) and 2690 mg m−2 at SAST. The decrease of mesozooplankton concentration with depth in the oxygen minimum zone (OMZ) was stronger than in comparable depths of open-ocean areas where an OMZ is absent. Among the discriminated four size classes of mesozooplankton, the largest fraction (2 to 5 mm) indicated a biomass peak at 1200 m depth, which coincided with the lower boundary layer of the OMZ. The rate of decrease of mesozooplankton biomass with depth in the bathypelagic zone was statistically similar between the sites, even though the absolute zooplankton biomass at the sites was different. There is no evidence that the presumed lower carbon degradation rates in the OMZ of the Arabian Sea caused a larger standing crop and less of a decrease in biomass with depth in the bathypelagic zone in comparison to other seas. Received: 16 May 1997 / Accepted: 5 June 1997  相似文献   

13.
The spatial strategies and activity patterns of two populations of Pachygrapsus marmoratus (Fabricius), from Italy and Portugal, were studied in the field. The Mediterranean site was a non-tidal splash zone about 30 cm wide, while the Atlantic site was a 30 m wide intertidal belt. Almost all P. marmoratus of both populations were active on the emerged rocks, rarely entering the sea. The Mediterranean crabs actively fed on the algal turf throughout the 24 h, while in Portugal active crabs were more numerous at night. In the Italian population, all crabs were packed together, although large males had larger activity areas than females and smaller males. In Portugal, the large males were more concentrated in the sublittoral fringe, while both small males and females were confined to the eulittoral and littoral fringe. The Italian P. marmoratus performed feeding loops within areas smaller than 9 m2. Although most Portuguese crabs showed the same spatial strategy, some of them performed feeding migrations to the sublittoral fringe, covering distances of up to 20 m. Environmental factors (e.g. temperature), physical factors (e.g. refuge availability) and biotic factors (e.g. competitors and predators) of the different shores probably determine the behavioural plasticity of␣P.␣marmoratus. Received: 1 February 1998 / Accepted: 13 November 1998  相似文献   

14.
To elucidate the effects of temperature and algal cell concentration on pumping of water in the ascidian Ciona intestinalis a number of different experiments were performed. Beat frequency of the lateral cilia in the openings of the branchial sac was measured in intact specimens using a microprojection objective and a monochrome CCD video camera. At constant low algal cell concentration, beat frequencies increased linearly with temperature from 4.0 Hz (±0.5) at 7.4 °C to 13.6 Hz (±1.6) at 20.1 °C. At a constant temperature of 15 °C, beat frequency decreased with increasing algal cell concentration from approximately 3000 to >10 000 Rhodomonas sp. cells ml−1. The decrease was observed both in experiments where the ascidians had been acclimated to a fixed algal cell concentration and in experiments with changing concentrations. Effect of algal cell concentration on squirting/siphon closure and flow velocity in the exhalent siphon was measured using a thermistor. At low algal cell concentrations, flow velocity in the exhalent siphon was stable, apart from a few short squirts. At very high algal cell concentrations, the flow velocity was reduced and much less stable, with prolonged squirting. The effect of gut content on filtration was studied in experiments with specimens acclimated to high algal cell concentrations. Results showed a close relation between gut clearance and filtration rate. From the experimental results and a qualitative analysis of the Ciona-pump it was concluded that the ciliary beat frequency is proportional to the water flow through the sea squirt and that changes in pumping caused by temperature or algal cell concentration are under nervous control or governed by enzyme kinetics, rather than being a result of physico-mechanical properties, i.e. pump efficiency versus flow resistance, of the ascidian pump. Received: 6 October 1997 / Accepted: 8 October 1998  相似文献   

15.
During the austral summers of 1990–1993, phytoplankton studies were conducted in the vicinity of Elephant Island, Antarctica, to investigate the spatial and temporal variability of phytoplankton biomass and taxonomic composition. There was much intraannual variability, with a trend for increasing biomass from January–February (Leg I) to February–March (Leg II), except in the 1993 studies. There was also a change in phytoplankton composition between the two legs. During 1990–1991 the increase was due mostly to diatoms, during 1992 mostly to an increase of flagellates; during 1993 there was a decrease in total biomass between the two legs, with diatoms decreasing, so that dinoflagellates, which increased slightly in numbers, dominated the biomass during the second leg. There was also much inter-annual variability, with the summers of 1990–1991 having greater biomass and higher proportions of microplanktonic diatoms than that of 1992–1993, which had a higher proportion of flagellates. Cluster analyses revealed the presence of four major phytoplankton assemblages, with varying geographical distributions. The northwestern portion of the grid (Drake Passage waters), was characterized by nanoplanktonic diatoms during 1990–1991 and 1993, but by nanoplanktonic flagellates during 1992. The central area (Drake-Bransfield confluence) was characterized by microplanktonic diatoms in 1990–1991, but by cryptophytes or flagellates in 1992–1993. The south and southeastern portion of the area (Bransfield Strait waters) was characterized mainly by either cryptophytes or other flagellates during all 4 yr. The spatial and temporal variability of phytoplankton could not be ascribed specifically to the geographical extent of the different water masses found in the study area, but appears to be due to changing growth conditions in the upper water column as influenced by physical mixing and meteorological conditions, as well as to effects of differential grazing.  相似文献   

16.
IP25 is a highly branched isoprenoid and an organic geochemical biomarker that is produced by some Arctic sea ice diatoms. IP25 has previously been used in Arctic palaeo sea ice reconstruction studies and as a tracer for studying Arctic food webs. Here, the molecular structure of IP25 has been confirmed by 1H and 13C NMR spectroscopy following large-scale extraction from marine sediments obtained from the Canadian Arctic and purification using a combination of open-column and HPLC chromatographic methods. The structure of IP25 was consistent between the three different sampling locations and was identical to that found previously for this biomarker following synthesis from a closely related highly branched isoprenoid diene. Since this study represents the first structural characterisation of IP25 in sediments, future analysis of sedimentary IP25 for palaeo Arctic sea ice reconstructions can be carried out with much greater confidence.  相似文献   

17.
A marine algicidal gliding bacterium Cytophaga sp. strain J18/M01 was isolated in 1990 from a station in northern Harima-Nada, the Seto Inland Sea, Japan, using the harmful red tide alga Chattonella antiqua (Hada) Ono as a susceptible organism. The bacterium can prey upon various species of microalgae. Temporal fluctuations of this bacterium and Chattonella spp. [C. antiqua and C. marina (Subrahmanyan) Hara et Chihara] were investigated weekly at the above station in the summer of 1997 and 1998, using immunofluorescence assay employing highly specific polyclonal antibodies for the bacterium. In the summer of 1997, the cell density of Chattonella spp. showed a maximum value (70 cells ml−1) on 8 July, and decreased thereafter. The bacterium Cytophaga sp. J18/M01 was commonly detected around a few hundreds of cells per milliliter or less. The number of Cytophaga sp. J18/M01 increased after the peak of Chattonella spp., and the maximum cell number of the bacterium was 1350 ml−1. This algicidal bacterium also followed the changes of total amounts of microalgal biomass (chlorophyll a+pheophytin) when Chattonella spp. were absent. In the summer of 1998, Chattonella spp. were relatively less abundant (maximum 21 cells ml−1), and the algicidal bacterium Cytophaga sp. J18/M01 showed a close relationship with the change of total microalgal biomass. The present study suggests that the algicidal bacterium Cytophaga sp. J18/M01 preyed upon, not only harmful red tide microalgae, but also other common microalgae such as diatoms, and the bacterium presumably plays an important role in regulating microalgal biomass in natural marine environments. Received: 20 April 2000 / Accepted: 1 December 2000  相似文献   

18.
The role of ambient and enhanced ultraviolet-B radiation (UVB; 280 to 315 nm) in a natural sand-associated microbenthic community was studied in a 3-week experiment by incubating intact sediment cores from a shallow bay in an outdoor flow-through system with 27 aquaria. After sampling of initial cores, the remaining cores (one per aquarium) were given one of three treatments: no, ambient, and moderately enhanced UVB, and sampled, nine at a time, after 5, 12, and 19 d. The response of the community was studied by analysing algal and meiofaunal composition and biomass, chlorophyll a content, composition of pigments and fatty acids, and content of UV-absorbing compounds (state variables), as well as carbon fixation and allocation, and bacterial productivity (rate variables). Among rate variables, significant effects of UVB-treatments were found for carbon fixation and allocation, while bacterial productivity was not affected. For state variables, a significant response was observed for the composition of microalgae and fatty acids, and for chlorophyll a content. The effect of treatments was mainly observed as differences in development with time (two-way analysis of variance, treatment × time interaction). Towards the end of the experiment, the no-UVB treatment most often differed from one or both of the two treatments with UVB exposure, the latter showing lower values. There were marked successional changes in the community, irrespective of treatment. The microalgal community changed from being dominated by coccoid cyanobacteria and epipsammic diatoms to a dominance of epipelic diatoms and filamentous cyanobacteria. The pattern of carbon allocation, as well as an increased C/N ratio of the sediment, suggested limitation of growth, perhaps by nutrients, at the end of the experiment. This may possibly have acted synergistically with UVB exposure to create the treatment effects. The new knowledge gained from our experiment is that ambient UVB can exert a stress on the function of sand-associated microbenthic communities in shallow waters and that this effect coincides with structural differences in the community. More experiments in natural or semi-natural systems are needed to allow better prediction of microbenthic community-level responses to UVB. Received: 11 November 1997 / Accepted: 12 June 1998  相似文献   

19.
Besides diatoms Demospongiae are the most important consumers of dissolved silica in the sea. They can play an important role for the silica budget especially in the shallow water areas of the Baltic Sea. The dependence of the silica uptake rate on the silica concentration of the seawater was measured for the sponge Halichondria panicea (Pallas, 1766). The sponges were collected in Kiel Bight. The uptake conformed to Michaelis–Menten kinetics with a half-saturation constant of 46.41 μM and a saturated uptake rate of 19.33 μmol h−1 g−1 ( p < 0.01). In the red algae zone of Kiel Bight the sponges depend on silica supply from the surrounding waters and may be silica-limited rather than food-limited in growth. Because of the much faster uptake of silica by diatoms and their lower saturation point, as well as the difference in spatial distribution of the two main silica consumers, a competition for silica between sponges and diatoms seems unlikely. Received: 21 June 1997 / Accepted: 15 July 1997  相似文献   

20.
D. Dietrich  H. Arndt 《Marine Biology》2000,136(2):309-322
 The structure of a benthic microbial food web and its seasonal changes were studied in the shallow brackish waters of the island of Hiddensee, northeastern Germany, at two sites in close proximity by monthly or bimonthly sampling from July 1995 to June 1996. Abundance and biomass of phototrophic and non-phototrophic bacteria, heterotrophic flagellates (HF) and ciliates as well as the biomass of microphytobenthos were determined in the upper 0.3 cm sediment layer. Abundance of organisms showed strong positive correlation with water temperature, with the exception of the bacteria. Non-phototrophic bacterial numbers ranged from 7 × 108 to 6.7 × 109 cells cm−3 and phototrophic bacterial abundance from 4 × 107 to 2.7 × 108. Heterotrophic protist abundance ranged from 8 × 103 to 104 × 103 ind cm−3 for HF and from 39 to 747 ind cm−3 for ciliates. The biomass partitioning demonstrated the primary importance of non-phototrophic bacteria (min. 0.83, max. 84.87 μg C cm−3), followed by the microphytobenthos (min. 1.32, max. 50.93 μg C cm−3). The heterotrophic protists contributed roughly the same fraction to the total microbial biomass, with the biomass of the HF being slightly higher (HF 0.23 to 1.76 μg C cm−3, ciliates 0.04 to 1.17 μg C cm−3). Taxonomic classification of the benthic HF revealed the euglenids to be the most important group in terms of abundance and biomass, followed by thaumatomastigids and kinetoplastids. Other important groups were apusomonads, cercomonads, pedinellids and cryptomonads. The structure of the HF assemblage showed strong seasonal changes with euglenids being the most abundant taxa in summer, while apusomonads and thaumatomastigids were predominant in winter. Similar to the pelagic microbial food web, benthic picophototrophic bacteria were occasionally abundant, and the feeding modes of heterotrophic protists exhibited a great variety (predominantly omnivores, bacterivores, herbivores or predators). Filter-feeding HF were of little importance. Contrary to the pelagic environment, a top-down control on total benthic bacterial numbers by HF seemed unlikely at the studied stations which were characterised by muddy sand. Received: 6 January 1999 / Accepted: 21 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号