首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biodegradable hydrogels prepared by -irradiation from microbial poly(amino acid)s are reviewed. pH-sensitive hydrogels were prepared by means of -irradiation of poly(-glutamic acid) (PGA) produced byBacillus subtilis IFO3335 and poly(-lysine) (PL) produced byStreptomyces albulus in aqueous solutions. The preparation conditions, swelling equilibria, hydrolytic degradation, and enzymatic degradation of these hydrogels were studied. A hydrogel with a wide variety of swelling behaviors has been produced by -irradiation from a mixture solution of PGA and PL.Paper presented at the 4th International Workshop on Biodegradable Plastics and Polymers, October 11–14, 1995, Durham, New Hampshire, USA.  相似文献   

2.
A 12-year record of water quality data for runoff from a spruce forested hillslope with podzolic soils shows the impacts of conifer harvesting and replanting in relation to nitrate generation and its influence on surface water acidification. With felling, nitrate increases from a background of 18 Eq/l to about 50 Eq/l after 1 to 2 years and then declines to background levels over the next 1 to 2 years and to lower concentrations thereafter. This change is mirrored by an acidification process as manifest by a change in Gran alkalinity, acid neutralization capacity (ANC) and aluminium concentrations as well as pH. For example, Gran alkalinity and ANC, which start at negative concentrations prior to felling (about –20 and –50 Eq/l, respectively), become more negative (–30 and –100 Eq/l, respectively) at high nitrate concentrations. Correspondingly, pH decreases from about 4.7 to 4.5 and aluminium concentrations increase from about 14 to 16 M. Subsequently, the acidification is reversed as nitrate concentrations decline and after five years post-felling the system has higher pH, Gran alkalinity and ANC together with lower aluminium concentrations than even before the felling took place (the post-felling values are about 4.9, -15 Eq/l, –20 Eq/l and 7 M/l, respectively).Other determinands show clear changes over time. For example, there is a marked increase in sodium and chloride prior to and around the time of felling (200 to 300 and 230 to 400 Eq/l, respectively), with a subsequent decline in concentration to pre-felling and to lower values of around 160 and 170 Eq/l, respectively, thereafter. This change is probably associated with abnormally high inputs of sea-salts from the atmosphere during the first quarter of the year of felling, and dilution thereafter, rather than a direct consequence of the felling activity itself: this change in sea salt loading has had an impact on stream acidity. Dissolved organic carbon and iron also change with concentrations increasing over time (60 to 200 and 1.0 to 1.5 M/l, respectively) and this mirrors a general pattern observed across the Plynlimon catchments irrespective of whether or not there has been felling activity.The implications of the findings are discussed in relations to environmental management and hydrochemical processes.  相似文献   

3.
A new method for evaluating biodegradability of starch-based and certain other polymer blends uses the pre- and postexposure stable carbon isotope composition of material coupled with weight loss data to determine which components have degraded. The naturally occurring stable isotope of carbon.13C, is enriched in corn starch (13C, approx. –11) compared to petroleum-derived synthetic polymers (13C, approx. –32). Results on starch-synthetic polymer blends indicate that the 13C signatures of these blends are near-linear mixtures of their component 13C. Values of a 13C for starch-synthetic polymer blends exposed to biologically active laboratory soil and artificial seawater conditions are depleted in13C compared to unexposed samples, suggesting loss of the starch component. Combined with weight loss data for the exposed samples, the 13C values are statistically consistent with models requiring loss of the soluble component glycerin, followed by loss of starch, then petrochemical polymer, or simultaneous loss of starch and petrochemical polymer. Replicate 13C analyses of starch-synthetic polymer blends increase the statistical power of this relatively inexpensive, accessible technique to discriminate between degrading components.  相似文献   

4.
The effect of starch granule size on the viscosity of starch-filled poly(hydroxy ester ether) (PHEE) composites was characterized using size-fractionated potato starch, as well as unfractionated starches (rice, corn, wheat, and potato). Potato starch was separated using an air classifier into four particle size fractions: <18 m, 18-24 m, 24-30 m, and >30 m. The starch was dried to a moisture content of 0.5% to minimize moisture effects on composite rheology. PHEE and potato starch were extruded with starch volume fractions of 0.46 and 0.66. Stress relaxation, frequency and strain sweep, and temperature-dependence measurements were carried out. Although small variations in viscosity were seen with the different potato starch fractions, differences were not significant at a volume fraction of 0.46. Viscosity differences between the different particle size fractions were more pronounced at a volume fraction of 0.66. The temperature dependence could be described by an Arrhenius relation, with an apparent activation energy of 84 kJ/mole. At a volume fraction of 0.46, the starch/PHEE viscosities increased in the order potato starch < wheat starch corn starch < rice starch.  相似文献   

5.
The legislative framework of waste management in Taiwan has never been efficient, mainly due to unclear definitions and regulations. In 2002, this system was split into two parts by enacting a new law, the Resource Recycling and Re-use Act (RRRA). However, it then became more complicated and recycling effectiveness was impeded. The causes were mainly the unclear definitions, conflicts about the scope, and issues between the RRRA and the Waste Disposal Act (WDA). This article examines the recycling legislation experience in Taiwan, and proposes two modifications for resolving these problems. The first proposal is merging these two acts into one. The second proposed modification maintains a two-system structure but introduces a new subject, discards, into the law. The subject of discards is further categorized as recyclable resources or waste, which correspond to recycling operations and disposal operations, respectively. The new structures, interfaces, prerequisites, properties, and comparisons are also explained.  相似文献   

6.
Reaction of granular potato starch with urea and biuret resulted in the formation of products, which were soluble neither in cold nor boiling water. The net reaction was a monosubstitution of the hydrogen atom in one hydroxyl group in each D-glucose unit of starch with the either CO–NH2 or CO–NH–CO–NH2 moiety, respectively. Properties of the products, particularly these with urea, depended on the mode of reaction. Reactions were carried out in the microwave oven as well as with convection heating. The products retained the granular form of starch but a vast majority of granules were damaged. -Amylolysis of those materials revealed that their susceptibility to the enzyme increasing in the order: starch-amylolysis with simultaneous insolubility in water make these products suitable as ruminant fodder and, eventually, biodegradable material.  相似文献   

7.
The biodegradation of several types of cyclodextrins (CDs) under laboratory-controlled composting conditions was investigated. CDs are used in a broad range of applications in food, pharmaceutical, medical, chemical, and textile industries because of their specific chemical characteristics related to their hydrophobic interior and hydrophilic exterior. The three naturally occurring cyclodextrins -CD, -CD, and -CD proved to be completely and readily biodegradable. Chemical modification of these basic compounds can have a major impact on the biodegradation rate and final biodegradation percentage. Fully acetylated -CD and -CD were found to be nonbiodegradable during 45 days of composting. Reducing the degree of acetylation had a positive effect on the biodegradation. Complete biodegradation was obtained for partially acetylated -CD with a degree of substitution (DS) of 7. The methylation (DS = 13) of -CD resulted in an undegradable compound during the 47 days composting, while (2-hydroxy)propyl--CD reached a plateau in biodegradation at a percentage of 20%. The incorporation of the antimicrobial agents imazalil and allyl-isothiocyanate into -CD had no negative impact on biodegradation, which makes these antimicrobial agents/CD complexes suitable for incorporation into biodegradable active packaging.  相似文献   

8.
The nature and distribution of the acetylated groups were evaluated by 13C-NMR and 1H-NMR. The starch substrate with a DS of 1.5 comprises only two patterns: -(14)-d-glucopyranose and 2,3,6-tri-O-acetyl--(14)-d-glucopyranose. The starch with a DS of 3.0 also comprises two patterns: 2,3,4,6-tetra-O-acetyl--(14)-d-glucopyranose and 2,3,6-tri-O-acetyl--(14)-d-glucopyranose; whereas starch (DS = 1.9) contains 4 patterns: 2,3,6-tri-O-acetyl--(14)-d-glucopyranose, 2,3,4,6-tetra-O-acetyl--(14)-d-glucopyranose terminal, 2,6-di-O-acetyl--(14)-d-glucopyranose, and 3,6-di-O-acetyl--(14)-d-glucopyranose. Using esterase from Viscozyme, it has been possible to hydrolyze up to 7% of the DS 3.0 starch. An -amylase (Fungamyl 800) was then added to these acetylesterases. With a 2.4 FAU/mL fraction of -amylase and 2.4 U/mL from the Viscozyme's acetylesterase, 28% of the acetylated end groups were hydrolyzed for the starch substrates with DS 3.0. Moreover, a synergic action between -amylase and acetylesterase was noticed, allowing fragmentation of 32% for DS 1.5, 30% for DS 1.9, and 11% for DS 3.0.  相似文献   

9.
Six types of plastics and plastic blends, the latter composed at least partially of biodegradable material, were exposed to aerobically treated wastewater (activated sludge) to ascertain their biodegradability. In one study, duplicate samples of 6% starch in polypropylene, 12% starch in linear low-density polyethylene, 30% polycaprolactone in linear low-density polyethylene, and poly(-hydroxybutyrate-co-hydroxyvalerate) (PHB/V), a microbially produced polyester, were exposed to activated sludge for 5 months, and changes in mass, molecular weight average, and tensile properties were measured. None of the blended material showed any sign of degradation. PHB/V, however, showed a considerable loss of mass and a significant loss of tensile strength. In a second study, PHB/V degraded rapidly, but another type of microbial polymer which forms a thermoplastic elastomer, poly(-hydroxyoctanoate), did not degrade. These results illustrate the potential for disposal and degradation of PHB/V in municipal wastewater.  相似文献   

10.
The biodegradability of poly--hydroxybutyrate and poly--caprolactone in soil compostage before and after irradiation of the polymers for 192, 425, and 600 h in a Weather-Ometer was examined. The biodegradability tests were done in soil compostage at pH 7.0, 9.0, and 11.0 to assess the influence of this parameter on degradation. The rate of degradation was directly proportional to the soil alkalinity. Poly--hydroxybutyrate showed the greatest weight loss and aging in a Weather-Ometer did not significantly increase the biodegradation, except when the polymer was aged for 425 h and buried in soil compostage of pH 11.0.  相似文献   

11.
A two-stage process for the chemical recycling of plastics is proposed. In this process, which consists of two reactors, plastics are converted into hydrogen and carbon. In the first reactor, plastic chips are thermally decomposed into hydrocarbons. In the second reactor, the hydrocarbons formed in the first reactor are catalytically decomposed into carbon and hydrogen. In this study, in order to obtain basic data for the second reactor, propene was catalytically decomposed in a laboratory-scale spouted-bed reactor (600mm high, 21.6mm internal diameter, made of SUS304). The effect of the type of spouting medium used on the decomposition behavior of propene was investigated using four types of spouting medium (nickel-plated -alumina, palladium-plated -alumina, nickel-impregnated -alumina, and -alumina). The nickel-impregnated -alumina gave the best propene conversion and hydrogen yield.  相似文献   

12.
This article describes landfill-mining tests, including excavation, screening, and fraction characterization, carried out in the Msalycke and Gladsax landfills for municipal solid waste (MSW) in Sweden. The excavated waste in these two sites was 17–22 and 23–25 years old, respectively. The main part of Msalycke was unaffected by degradation, and during excavations no substantial amount of biogas was detected. After screening, three size fractions were obtained: <18mm, 18–50mm, and >50mm. Soil amendment and anaerobic digestion with energy extraction are suggested for the first and second fraction, respectively. Incineration with energy recovery is possible with the third fraction after any coarse (inert) material is removed, and construction/demolition waste can easily be recycled provided that it is not contaminated by hazardous material. Excavated waste taken from different depths was also analysed and compared in relation to composition, calorific value, and leachate constituents.  相似文献   

13.
Poly(-caprolactone) (PCL) was blended with diatomaceous earth (diatomite) and irradiated with -rays to introduce cross-linking between PCL molecules or both components. The unwashed diatomite containing a little of a volatile component showed high efficiency of introduction of cross-linking, whereas that with no volatile component showed low efficiency of introduction of cross-linking. Elongational viscosity, melt viscosity, and modulus of PCL/diatomite blend irradiated at various doses were significantly improved. Enzymatic degradation of the PCL/diatomite blend became faster than that of the PCL, though that of the blend irradiated became slower.  相似文献   

14.
Biodegradable polyesters were synthesized by ring-opening copolymerization of -butyrolactone (BL) and its derivatives withl-lactide (LLA). Although tetraphenyl tin was the main catalyst used, other organometallic catalysts were used as well.1H and13C NMR spectra showed that poly(BL-co-LLA)s were statistical and that their number-average molecular weights were as high as 7×104. The maximum BL content obtained from copolymerization BL/LLA was around 17%. TheT m andT g values of the copolymers showed a gradual depression with an increase in BL content. NoT m was obtained for the copolymers containing more than 13 mol% BL. The biodegradability of the copolyesters was evaluated by enzymatic hydrolysis and nonenzymatic hydrolysis tests. The enzymatic hydrolysis was carried out at 37°C for 24 h using lipases fromRhizopus arrhizus andR. delemar. Hydrolyses by both lipases showed that an increase in BL content of the copolymer resulted in enhanced biodegradability. Nonenzymatic accelerated hydrolysis of copolymers at 70°C was found to increase proportionally to their exposure time. The hydrolysis rate of these copolymers was considerably faster than that of PLLA. The higher hydrolyzability was recorded for the BL-rich copolymers. The copolymerization of -methyl--butyrolactone (MBL) or -ethyl--butyrolactone (EBL) with LLA resulted in relatively LA-rich copolymers.  相似文献   

15.
Epoxy resin and polyetheretherketone (PEEK) resin were decomposed into their monomers such as phenol, cresols, and their analogues by thermal treatment in sub- and supercritical water in a 10-ml tubing bomb reactor. The addition of basic compounds such as Na2CO3 was effective in promoting the decomposition reaction of the resins. In the reaction of epoxy resin, the yield of identified products reached 10% for the reaction at 703K over 1h. In the reaction of PEEK resin, the total yield of phenol and dibenzofuran reached 88% for the reaction at 703K over 3h. Chemical participation of water in the decomposition reaction was confirmed by the reaction of dinaphthylether.  相似文献   

16.
The synthetic analogue of a bacterially produced polyester, poly(-hydroxybutyrate) (PHB) was synthesized from racemic -butyrolactone using anin situ trimethyl aluminum-water catalyst. The polymer was fractionated into samples differing in molecular weight and isotactic diad content. The latter was closely related to degree of crystallinity. The biodegradation of these fractions were examined by monitoring mass loss over time in the presence of anAlcaligenes faecalis T1 extracellular bacterial poly(-hydroxybutyrate) depolymerase. The fraction with high isotactic diad tacticity content showed little or no degradation over a 50 hour incubation period, whereas the fraction of intermediate isotactic diad content degraded in a continuous steady fashion at a rate that was less than that for bacterial PHB. The low isotactic diad fraction underwent a rapid initial degradation, followed by no further mass loss. The presence of stereoblocks in the polymer structure of the various fractions was an influence on the degree of susceptibility towards degradation and is related to sample crystallinity.  相似文献   

17.
Extremely high emissions of S and N compounds in Central Europe (both 280 mmol m-2 yr-1) declined by 70and 35%, respectively, during the last decade. Decreaseddeposition rates of SO4 -2, NO3 -, and NH4 + in the region paralleled emission declines. The reduction in atmospheric inputs of S and N to mountain ecosystemshas resulted in a pronounced reversal of acidification in the Tatra Mountains and Bohemian Forest lakes. Between the 1987–1990and 1997–1999 periods, concentrations of SO4 -2 and NO3 - decreased (average ± standard deviation) by 22±7 and 12±7 mol L-1, respectively, in theTatra Mountains, and by 19±7 and 15±10 mol L-1, respectively, in the Bohemian Forest. Their decrease was compensated in part (1) by a decrease in Ca2+ + Mg2+ (17±7 mol L-1) and H+ (4±6 mol L-1), and an increase in HCO3 -(10±10 mol L-1) in the Tatra Mountains lakes, and (2) by a decrease in Al (7±4 mol L-1), Ca2+ + Mg2+ (9±6 mol L-1), and H+ (6±5 mol L-1), in Bohemian Forest lakes. Despite the rapid decline in lake water concentrations of SO4 -2 and NO3 - in response to reduced S and N emissions, their present concentrations in some lakes are higher than predictionsbased on observed concentrations at comparable emission rates during development of acidification. This hysteresis in chemical reversal from acidification has delayed biological recovery of the lakes. The only unequivocal sign of biological recovery hasbeen observed in erné Lake (Bohemian Forest) where a cladoceran species Ceriodaphnia quadrangular has recentlyreached its pre-acidification abundance.  相似文献   

18.
Poly (-caprolactone) (PCL), poly (-valerolactone) (PVL), poly (-caprolactone-co--valerolactone) [P(CL-co-VL)], and poly (-caprolactone-co-ethylene oxide-co--caprolactone) (PCL-PEO-PCL) were synthesized by ring-opening and diol-initiated polymerization of -caprolactone and -valerolactone. The degradation of the samples by chemical hydrolysis and in a soil burial test was evaluated. It was found that PCL, PVL, and P(CL-co-VL) degrade mainly enzymatically. The rate of degradation depends on their molecular weight, chemical structure, composition, and morphology. PCL-PEO-PCL block copolymers exhibit a repelling effect to the microorganisms in the soil, which depends on the molecular weight and relative amount of PEO block in the copolymer.  相似文献   

19.
In vitro digestibility of 10 polymers was studied. Only starch, starch blend, gelatin, and silk were more than 10% digested by the enzyme cocktail. Cellophane, polyhydroxy--valerate, pullulan, levan, shellac, ethylene vinyl alcohol, and polyethylene were less than 10% digestible. The implications from these data are that these materials would act physiologically as dietary fiber or residue.Paper presented at the Biodegradable Materials and Packaging Conference, September 22–23, 1993, Natick, Massachusetts.  相似文献   

20.
The degradation of several biodegradable polymers was measured as a result of exposure to an anaerobic medium. The polymers investigated included materials based upon polylactic acid, polylactone, and poly(hydroxy butyrate/valerate) as well as those incorporating starch-based materials. The degradation was monitored by methane and carbon dioxide evolution. In addition, the physical and chemical changes were noted as a result of exposure. These measurements included changes in mass, dimension, and molecular weight. FTIR, UV-vis, proton, and13C NMR spectra were also recorded prior to and after exposure. The results clearly indicated that several biological and chemical degradation processes were occurring with the biodegradable polymers studied.Paper presented at the Bio/Environmentally Degradable Polymer Society—Second National Meeting, August 19–21, 1993, Chicago, Illinois.Issued as NRCC No. 37549.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号