首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract

Biofilters do not provide much water for bacteria to grow. To use them efficiently and properly, it is essential to understand the kinetics of water transformation and to control moisture levels. This study aims to clarify whether the metabolism of microorganisms will improve the water-holding capacity of media or will intensify drying. This experiment was conducted in duplicate, that is, both with and without bacterial inoculation. Both the constant water content mode and the declining water content mode show that microbial growth in a log phase will enhance drying. In contrast, the bacteria growing in a logarithmic decline phase will improve water-holding capacity. Basically, water evaporation can result from the latent heat obtained from microbial respiration or from the physical temperature difference between the unsaturated air and the wet media. Two ways that biofilters can gain water are from water incorporated into bacteria cells and from water obtained from the oxidation of volatile organic compounds (VOCs).  相似文献   

2.
针对底泥如何快速脱水干化问题,提出了一种相变式真空预压技术,实现了原位、高效和纯物理特点的快速脱水干化。通过室内模拟实验、现场实验和工程示范,先后开展了真空负压下纯水、水砂混合物和疏浚底泥的激烈相变点模拟研究,确定了温度和真空负压之间的变化规律,以及不同介质激烈相变点的确定方法,并探究了温度对底泥脱水干化效果的影响及温压耦合加载模式。结果表明:水的激烈相变点在相同介质下,随着真空负压增加而降低,不同介质中水的激烈相变点有所差异,纯水最低,水砂混合物次之,淤泥最高;通过累计出水量、出水速率和孔隙水压力的变化规律与温度之间关系确定了底泥的激烈相变点温度为68.7 ℃,脱水干化后的含水率为16.1 %,较常规真空预压降低了34.2 %,较电渗式真空预压降低了26.5 %,体积压缩率达到60.5 %,固结度97.2 %;确定了温压耦合加载模式,工程应用中初始真空负压为20~30 kPa,持续时间为3 d,其次为50~60 kPa,持续时间为5 d,然后真空满载 (80 kPa以上) ,真空满载后开始持续加载温度至底泥激烈相变点附近,并采用温控电箱进行间歇式加载,保证底泥温度一直处于激烈相变点附近,脱水速率最大化,节约能耗。该研究成果为底泥快速脱水干化提供一种新技术,并为此类工程的实施提供技术指导。  相似文献   

3.
Akagi J  Zsolnay A  Bastida F 《Chemosphere》2007,69(7):1040-1046
The dissolved organic matter (DOM) in soils is essentially defined by the way in which it is obtained. Therefore, we need to understand as to how pre-treatment of a soil will affect the characteristics of DOM, since this fraction may be strongly influenced by a soil's water content. The effect of two different pre-treatments on DOM from the A-horizons of a large variety of ecosystems and regions were compared. In both cases the soils were allowed to air-dry. In one case the air-dried soil was directly extracted (AD), while in the other case it was preincubated for 1 week at 50% of its water holding capacity (INCU). AD is simpler, but INCU brings the soil, and especially its microbial population, back to a standardised state, which is more representative of the usual state in the field. Both methods are used whenever an adjustment of the soil water content is essential to compare different regions or to eliminate short term weather effects. A significant regression indicated that the dissolved organic carbon (DOC) extracted from INCU samples was only 20% of AD DOC. Both the absorptivity (UV absorption divided by DOC) of 86% of the samples, and a fluorescence emission spectrum based Humification Index in all cases increased as a result of preincubation. This would indicate that labile compounds released during drying were metabolised during the incubation. However, the magnitude of this increase varied, and no correlation with soil organic and microbial carbon, pH, or texture could be detected. The results show that DOM extracted from AD and INCU soils is not comparable and that the differences are mainly due to the impact of air-drying on the microbial activity.  相似文献   

4.
以昆明地区污水处理厂脱水污泥为对象进行生物干化处理,考察了典型工况条件下污泥干化处理效果,探究了微生物活性及其有机质代谢,并对干化处理产物的土地利用潜力进行了评价分析。结果表明,采用污水厂脱水污泥进行处理时,混合物料初始含水率以65%左右较为适宜,采用底部间歇曝气+顶部间歇抽风的通风方式,堆体自热升温至60 ℃以上,高温期持续时间长达30 h;干化处理120 h时,含水率降低至50%以下,水分净去除率达到16%。干化进程中,混合料中DOC质量浓度呈降低趋势,但SCFAs组分及其浓度波动明显。伴随着堆体温度的变化,常温、中温或嗜热微生物发生更替,微生物活性及其生化代谢差异明显。干化产物中可溶性磷以及氮钾质量分数均较高,重金属Cd、As、Hg满足GB4284-2018 B级标准限值,Cr、Pb等其他重金属质量浓度满足A级标准限值,种子发芽指数GI值高达90%,污泥干化产物具备园林绿化、矿山修复等方面土地利用前景。本研究结果可为污水厂污泥处理处置及资源化利用提供参考。  相似文献   

5.
K Kümmerer 《Chemosphere》2001,45(6-7):957-969
After administration, pharmaceuticals are excreted by the patients into wastewater. Unused medications are sometimes disposed of in drains. The drugs enter the aquatic environment and eventually reach drinking water if they are not biodegraded or eliminated during sewage treatment. Additionally, antibiotics and disinfectants are supposed to disturb the wastewater treatment process and the microbial ecology in surface waters. Furthermore, resistant bacteria may be selected in the aeration tanks of STPs by the antibiotic substances present. Recently, pharmaceuticals have been detected in surface water, ground water and drinking water. However, only little is known about the significance of emissions from households and hospitals. A brief summary of input by different sources, occurrence, and elimination of different pharmaceutical groups such as antibiotics, anti-tumour drugs, anaesthetics and contrast media as well as AOX resulting from hospital effluent input into sewage water and surface water will be presented.  相似文献   

6.
Microbial methane (CH4) oxidation is a main control on emissions of this important greenhouse gas from ecosystems such as contaminated aquifers or wetlands under aerobic onditions. Due to a lack of suitable model systems, we designed a laboratory column to study this process in diffusional CH4/O2 counter-gradients in unsaturated porous media. Analysis and simulations of the steady-state CH4, CO2 and O2 gas profiles showed that in a 15-cm-deep active zone, CH4 oxidation followed first-order kinetics with respect to CH4 with a high apparent first-order rate constant of approximately 30 h(-1). Total cell counts obtained using DAPI-staining suggested growth of methanotrophic bacteria, resulting in a high capacity for CH4 oxidation. This together with apparent tolerance to anoxic conditions enabled a rapid response of the methanotrophic community to changing substrate availability, which was induced by changes in O2 concentrations at the top of the column. Microbial oxidation was confirmed by a approximately 7 per thousand enrichment in CH4 stable carbon isotope ratios along profiles. Using a fractionation factor of 1.025+/-0.0005 for microbial oxidation estimated from this shift and the fractionation factor for diffusion, simulations of isotope profiles agreed well with measured data confirming large fractionation associated with microbial oxidation. The designed column should be valuable for investigating response of methanotrophic bacteria to environmental parameters in future studies.  相似文献   

7.
Park SK  Kim YK  Choi SC 《Chemosphere》2008,72(7):1027-1034
Consequences of orthophosphate addition for corrosion control in water distribution pipes with respect to microbial growth were investigated using batch and dynamic tests. Batch tests showed that the release of copper in either low or high organic carbon content water was decreased by 69% and 56% with addition 206 microg PO(4)-P, respectively. Dosing of orthophosphate against corrosion did not increase microbial growth potential in the water and in the biofilm in both corroded and uncorroded systems receiving tap water with a low content of organic carbon and of biodegradable organic fraction. However, in tap water having a high concentration of organic carbon from acetate addition, orthophosphate addition promoted the growth of bacteria, allowed more bacteria to assemble on corroded and uncorroded surfaces, and increased the consumption of organic carbon. Orthophosphate consumption did not exceed 1% of the amount of easily biodegradable organic carbon required for microbial growth, and the orthophosphate demand for corrosion control greatly exceeded the nutritional requirement of microbial growth. The results of the dynamic tests demonstrated that there was a significant effect of interaction between biodegradable organic carbon and orthophosphate on biofilm growth, whereby the effect of orthophosphate flux on microbial growth was dependent on the levels of biodegradable organic carbon. Controlling an easily biodegradable organic carbon would be therefore necessary to minimize the microbial growth potential induced by orthophosphate-based anticorrosion treatment.  相似文献   

8.
Xia XH  Yu H  Yang ZF  Huang GH 《Chemosphere》2006,65(3):457-466
The contamination of polycyclic aromatic hydrocarbons (PAHs) has become one of the major problems in the Yellow River of China. As the Yellow River is the most turbid large river in the world, it remains unknown to which extent the high suspended sediment content in the river may affect the fate and effect of PAHs. Here we report the effect of sediment on biodegradation of chrysene, benzo(a)pyrene and benzo(g,h,i)perylene with phenanthrene as a co-metabolism substrate in natural waters from the Yellow River. Biodegradation kinetics of the PAHs in the river water with various levels of sediment contents were studied in the laboratory by fitting with a biodegradation kinetics model for organic compounds not supporting growth. The results indicated that the biodegradation rates of PAHs increased with the sediment content in the water. When the sediment contents were 0, 4 and 10 g/l, the biodegradation rate constants of chrysene with the initial concentration of 3.80 microg/l were 0.053, 0.084 and 0.111 d(-1), respectively. Further studies suggested the enhanced biodegradation rate in the presence of sediment was caused by the following mechanisms: (1) the population of PAH-degrading bacteria in the water system was found to increase with the sediment content; the bacteria population on sediment phase was far greater than that on water phase during the cultivation process; (2) the sorption of PAHs on the sediment phase was well described by the dual adsorption-partition model. Although the sorption capacity of PAH per unit weight of sediment decreased with the increase of the sediment content, the amount of sorbed PAH increased with the sediment content; and, (3) the desorption of PAHs from the solid phase led to a higher concentration near the water-sediment interface. Since the bacteria were also attached to the interface, this resulted in an increased contact chance between the bacteria and PAHs.  相似文献   

9.
以高效石油降解菌N2、KB为目的菌种,玉米粉、麸皮和锯末为载体制备固体菌剂,并测定了这3种载体的饱和持水量、pH值和吸菌量。以吸菌量为评价指标,结合经济性综合选择最优载体,同时还考察了温度、pH值和料水比对最优载体吸菌量的影响。通过测定微生物数量和石油降解率的变化,考察了植物微生物联合修复效果。结果表明,与玉米粉和麸皮相比,锯末饱和持水量更大、吸菌量较大。锯末是木材厂的下脚料,可以实现高价值资源化利用。在温度30℃,pH为7,料水比1:1.5的最适培养条件下,固体菌剂中N2和KB两种细菌的活菌数量分别高达1.00×109CFU·g-1和1.58×109 CFU·g-1。采用生物菌剂和柳枝稷对石油污染土壤进行植物-微生物联合修复实验,100 d后石油降解率可达到50.5%。  相似文献   

10.
Limited information exists on influences of the diffusive transport of volatile organic contaminants (VOC) on bacterial activity in the unsaturated zone of the terrestrial subsurface. Diffusion of VOC in the vapor-phase is much more efficient than in water and results in effective VOC transport and high bioavailability despite restricted mobility of bacteria in the vadose zone. Since many bacteria tend to accumulate at solid-water, solid-air and air-water interfaces, such phase boundaries are of a special interest for VOC-biodegradation. In an attempt to evaluate microbial activity toward air-borne substrates, this study investigated the spatio-temporal interplay between growth of Pseudomonas putida (NAH7) on vapor-phase naphthalene (NAPH) and its repercussion on vapor-phase NAPH concentrations. Our data demonstrate that growth rates of strain PpG7 were inversely correlated to the distance from the source of vapor-phase NAPH. Despite the high gas phase diffusivity of NAPH, microbial growth was absent at distances above 5 cm from the source when sufficient biomass was located in between. This indicates a high efficiency of suspended bacteria to acquire vapor-phase compounds and influence headspace concentration gradients at the centimeter-scale. It further suggests a crucial role of microorganisms as biofilters for gas-phase VOC emanating from contaminated groundwater or soil.  相似文献   

11.
Abstract

Screening of biofiltering material for treatment of volatile organic compounds was performed by using a gas stream containing methyl ethyl ketone (MEK) as a target pollutant. Filtering media (FM) for screening were prepared by blending compost (such as pig and cow manure) and filling material (such as fern chips, wheat bran, and bagasse). Results show that a blend of pig manure/fern chips = 9:1 (wt basis) was superior with respect to the stability of the pH and the water-holding capacity of the FM and in the capacity for treating the target compound. Complete removal of the target compound was obtained at an organic loading of 100 g per cubic meter of filtering media per hour. By using the screened FM for treating MEK and toluene, long-term stability (>1,200 hours) and complete removal can be obtained at an organic loading of 50 g per cubic meter of FM per hour for either compound.  相似文献   

12.
目前,对于多孔介质中轻非水相液体(LNAPL)污染物的电阻率特性存在2种截然相反的观点,影响了LNAPL污染场地电阻率资料的解释结果。为此,通过自行设计的装置进行试验,重点探讨电阻率与砂样颗粒粒径、含水量和LNAPL饱和度等参数之间的变化关系。结果发现,在砂样被LNAPL饱和过程中,砂样的颗粒粒径和含水量对其电阻率相对值的变化有重大影响,含水量低的砂样电阻率相对值变化幅度很小,而含水量高的砂样电阻率相对值变化幅度很大,粗粒径的砂样电阻率相对值的变化明显高于细颗粒砂样。对于"水-油-气"三相体系和"水-油"二相体系,电阻率和含水量的关系曲线均可用Archie公式很好拟合。该试验结果对于提高LNAPL污染场地电阻率资料的解释结果的准确度具有重要的意义,在确定相关的参数如渗透系数、LNAPL饱和度等方面具有重要的实际应用价值。  相似文献   

13.
Although it has already been shown that calcareous stone can be consolidated by using a bacterially inoculated culture medium, a more user-friendly method is the in situ application of a sterile culture medium that is able to activate, among the microbial community of the stone, those bacteria with a potential for calcium carbonate precipitation. In order to test this new method for stone consolidation, non-sterilized decayed porous limestone was immersed in sterile nutritional media. Results were compared to those of the runs in which stone sterilized prior to the treatment was used. The effects of the microbial community on stone consolidation were determined by recording the evolution of the culture media chemistry. The treated stone was tested for mechanical resistance and porosity. Results demonstrate that the tested media were able to activate bacteria from the microbial community of the stone. As a consequence of the growth of these bacteria, an alkalinization occurred that resulted in calcium carbonate precipitation. The new precipitate was compatible with the substrate and consolidated the stone without pore plugging. Therefore, a good candidate to in situ consolidate decayed porous limestone is the application of a sterile culture medium with the characteristics specified in the present study.  相似文献   

14.
The aim of the current study was to investigate the potential of an aquatic plant, the water hyacinth (Eichhornia crassipes) devoid rhizospheric bacteria, to reduce naphthalene (a polyaromatic hydrocarbon) present in wastewater and wetlands.The capability of sterile water hyacinth plants to remove naphthalene from water and wastewater was studied in batch systems. Water hyacinths enhance the removal of pollutants through their consumption as nutrients and also through microbial activity of their rhizospheric bacteria.Experimental kinetics of naphthalene removal by water hyacinth coupled with natural rhizospheric bacteria was 100% after 9 d. Plants, decoupled of rhizospheric bacteria, reduced naphthalene concentration up to 45% during 7 d. Additionally, naphthalene uptake by water hyacinth revealed a biphasic behavior: a rapid first phase completed after 2.5 h, and a second, considerably slower rate, phase (2.5-225 h). In conclusion, water hyacinth devoid rhizospheric bacteria reduced significantly naphthalene concentration in water, revealing a considerable plant contribution in the biodegradation process of this pollutant.  相似文献   

15.
以梁塘河治理措施中的主体工程潮汐式生态滤床为研究对象,考察其对平原河网地区污染河流中的N、P及有机污染物等的去除效果,并通过高通量测序技术分析潮汐式生态滤床混合层的微生物群落组成。结果表明,以潮汐式生态滤床为主体的治理工程运行稳定,河流水质趋好,且在受到污染冲击后,水质能迅速恢复。潮汐式生态滤床对[NH4+-N]有很好的去除效果,[NH4+-N]去除率最高为99.42%,平均去除率为80.94%。潮汐式生态滤床对TP和IMn也有一定的去除效果,平均去除率为34.37%和35.65%。潮汐式生态滤床内部硝化作用明显,微生物群落分析结果表明,滤床内主要的优势菌属是norank_f_norank_o_Chloroplast (1.72%~12.61%) 和硝化螺旋菌属 (Nitrospiria,1.75%~8.75%) 。norank_f_norank_o_Chloroplast作为第一优势菌属,其相对丰度远超其他菌属,且随着滤床的持续运行,具有硝化作用的硝化螺旋菌属相对丰度增长显著。微生物群落相似性和差异性分析结果表明,滤床微生物群落结构稳定,不受季节、温度的影响,尽管运行时长对滤床内部群落组成造成一定差异,但并不存在显著性。本研究以梁塘河水系为例开展水环境生态治理,一方面旨在提升梁塘河水环境质量,另一方面也为平原河网地区,尤其是位于城区的平原河网地区河流生态治理提供示范参考。  相似文献   

16.
A model is developed for hydrocarbon biodegradation, which includes saturated and unsaturated flow, multi-species transport, heat transport, and bacterial growth processes. Numerical accuracy of the model was tested against analytical solutions. The model was also verified against laboratory results for a saturated-flow problem and reasonable match was obtained. Expressions are proposed for inhibition due to water content and temperature fluctuations. Bioactivities under cyclic water content variation were studied under no-flow conditions. A quantitative approach was used to reconcile some of the apparent contradictory conclusions regarding the efficiency of biodegradation of soils under wetting and drying conditions. The efficiency depends on the nature of the oxygenation process. For cases involving the presence of dissolved oxygen and the absence of O2 vapor, subjecting the soil to constant water content close to its optimal value for degradation is most efficient. However, wetting and drying can enhance degradation if O2 is only provided through aeration or direct contact between air and the medium. Also presented are the results of a typical field application of the model and a discussion of the effects of tides, saturation inhibition, and heat inhibition. Other inhibition factors, such as pH or salinity, can be easily incorporated in the formulation. The quantitative approach developed here can be used in assessing bioremediation not only in tidal aquifers but also in areas where water-table or temperature effects are of significance. The approach can be useful in the design of remediation strategies under water-flow or no-flow conditions involving water content and temperature fluctuations.  相似文献   

17.
The need for developing environmentally superior and sustainable solutions for managing the animal waste at commercial swine farms in eastern North Carolina has been recognized in recent years. Program OPEN (Odor, Pathogens, and Emissions of Nitrogen), funded by the North Carolina State University Animal and Poultry Waste Management Center (APWMC), was initiated and charged with the evaluation of potential environmentally superior technologies (ESTs) that have been developed and implemented at selected swine farms or facilities. The OPEN program has demonstrated the effectiveness of a new paradigm for policy-relevant environmental research related to North Carolina's animal waste management programs. This new paradigm is based on a commitment to improve scientific understanding associated with a wide array of environmental issues (i.e., issues related to the movement of N from animal waste into air, water, and soil media; the transmission of odor and odorants; disease-transmitting vectors; and airborne pathogens). The primary focus of this paper is on emissions of ammonia (NH3) from some potential ESTs that were being evaluated at full-scale swine facilities. During 2-week-long periods in two different seasons (warm and cold), NH3 fluxes from water-holding structures and NH3 emissions from animal houses or barns were measured at six potential EST sites: (1) Barham farm--in-ground ambient temperature anaerobic digester/energy recovery/greenhouse vegetable production system; (2) BOC #93 farm--upflow biofiltration system--EKOKAN; (3) Carrolls farm--aerobic blanket system--ISSUES-ABS; (4) Corbett #1 farm--solids separation/ gasification for energy and ash recovery centralized system--BEST; (5) Corbett #2 farm--solid separation/ reciprocating water technology--ReCip; and (6) Vestal farm--Recycling of Nutrient, Energy and Water System--ISSUES-RENEW. The ESTs were compared with similar measurements made at two conventional lagoon and spray technology (LST) farms (Moore farm and Stokes farm). A flow-through dynamic chamber system and two sets of open-path Fourier transform infrared (OP-FTIR) spectrometers measured NH3 fluxes continuously from water-holding structures and emissions from housing units at the EST and conventional LST sites. A statistical-observational model for lagoon NH3 flux was developed using a multiple linear regression analysis of 15-min averaged NH3 flux data against the relevant environmental parameters measured at the two conventional farms during two different seasons of the year. This was used to compare the water-holding structures at ESTs with those from lagoons at conventional sites under similar environmental conditions. Percentage reductions in NH3 emissions from different components of each potential EST, as well as the whole farm on which the EST was located were evaluated from the estimated emissions from water-holding structures, barns, etc., all normalized by the appropriate nitrogen excretion rate at the potential EST farm, as well as from the appropriate conventional farm. This study showed that ammonia emissions were reduced by all but one potential EST for both experimental periods. However, on the basis of our evaluation results and analysis and available information in the scientific literature, the evaluated alternative technologies may require additional technical modifications to be qualified as unconditional ESTs relative to NH3 emissions reductions.  相似文献   

18.
A microbial consortia consisting of three bacteria isolated from tanning and textile wastewaters revealed high capacity to simultaneously bioaccumulate dye and Cr(VI). The identity of the bacteria were determined by 16S rRNA gene analysis to be closely related to Ochrobactrium sp., Salmonella enterica and Pseudomonas aeruginosa. Dependence of initial pH values and range of concentrations of the dye Reactive Black B (33.2-103.1 mg l(-1)) and Cr(VI) (19.9-127.6 mg l(-1)) were examined to find the effect of pH on the dye and Cr(VI) bioaccumulation. Optimal pH for growth of the consortia in media containing 35 mg l(-1) dye and 50 mg l(-1) Cr(VI) was determined to be around 8. The Cr(VI) bioaccumulation by the consortia was rapid in media containing molasses with or without reactive dye with a maximum Cr(VI) bioaccumulation yield ranging from 90% to 99% within a 2-4d period. A slightly lower yield for the dye bioaccumulation was measured with a maximum dye bioaccumulation of 80% at 59.3 mg l(-1) dye and 69.8 mg l(-1) Cr(VI). The highest specific Cr uptake value was obtained as 76.7 mg g(-1) at 117.1 mg l(-1) Cr(VI) and 50.8 mg l(-1) dye concentration. This ability to bioaccumulate dye and Cr(VI) was more efficient than the enriched sludge from which they were isolated.  相似文献   

19.
为了实时掌握轻非水相液体 (LNAPL) 泄漏后在黏土中的动态分布及入渗时的运移规律,进行了室内模型箱实验,由上至下设置均一含水土层及含毛细水土层,采用高密度电阻率成像法对土体的电阻率变化进行监测,获得了加注过程中及加注结束后LNAPL的运移规律。实验结果表明:LNAPL渗入黏土提高了黏土的电阻率,质量含水率为10%的黏土可提高50 Ω·m左右,随黏土含水率的增加,该提高数值逐渐减小;0~9 h加注阶段,在质量含水率10%的土层中LNAPL水平扩散速度的峰值将近90 cm2·h−1,运移至非饱和毛细带时,随土体含水率的增加,其水平扩散速度的峰值逐渐降低;停止加注后,LNAPL在黏土中的高浓度污染区位置逐渐下移,局部区域的污染羽锋面出现回缩,回缩速度可达0.15 cm2·h−1。该研究可为探索沿海、沿江等低渗黏土污染区中LNAPL的运移规律及分布特征提供参考。  相似文献   

20.
Hyun S  Jafvert CT  Lee LS  Rao PS 《Chemosphere》2006,63(10):1621-1631
Placement of a microbial active sand cap on a coal tar-contaminated river sediment has been suggested as a cost effective remediation strategy. This approach assumes that the flux of contaminants from the sediment is sufficiently balanced by oxygen and nutrient fluxes into the sand layer such that microbial activity will reduce contaminant concentrations within the new benthic zone and reduce the contaminant flux to the water column. The dynamics of such a system were evaluated using batch and column studies with microbial communities from tar-contaminated sediment under different aeration and nutrient inputs. In a 30-d batch degradation study on aqueous extracts of coal tar sediment, oxygen and nutrient concentrations were found to be key parameters controlling the degradation rates of polycyclic aromatic hydrocarbons (PAHs). For the five PAHs monitored (naphthalene, fluorene, phenanthrene, anthracene, and pyrene), degradation rates were inversely proportional to molecular size. For the column studies, where three columns were packed with a 20-cm sand layer on the top of a 5 cm of sediment layer, flow was established to sand layers with (1) aerated water, (2) N(2) sparged water, or (3) HgCl(2)-sterilized N(2) sparged water. After steady-state conditions, PAH concentrations in effluents were the lowest in the aerated column, except for pyrene, whose concentration was invariant with all effluents. These laboratory scale studies support that if sufficient aeration can be achieved in the field through either active and passive means, the resulting microbially active sand layer can improve the water quality of the benthic zone and reduce the flux of many, but not all, PAHs to the water column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号