首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Seasonal sampling was carried out based on day/night, vertically stratified tows (100 or 125 m strata) in the upper 900 m of the water column over the mid-slope commercial fishing grounds south of Tasmania. A large midwater trawl (105 m2 mouth area) was used with an opening/closing cod-end. Subtropical convergence and subtropical species dominated the fauna, but many less abundant, more widely-distributed species were also present. Fishes, which contributed 89% of micronekton biomass and 135 of 178 species, were dominated by the Myctophidae (48% biomass and 48 species). Twenty micronekton species made up 80% of the total biomass. Overall, the micronekton fish biomass in this region was 2.2 g m−2 wet weight. A pronounced day/night shift in the distribution of biomass was attributable to diel migratory species. During the day, <0.2% of the total micronekton biomass was found in 0 to 300 m; most biomass was below 400 m, with peaks at 400 to 525 m and 775 to 900 m. At night, 53% of the biomass was found in 0 to 300 m, with progressively less in each deeper stratum. The vertical ranges of individual species typically exceeded 400 to 500 m during the day and night and were non-coincident, although nyctoepipelagic migrators were concentrated in the surface 200 m at night. Distinct epipelagic, lower and upper mesopelagic assemblages were identified, and patterns of epipelagic migration, limited migration and non-migration were categorised for species from each of the lower and upper mesopelagic assemblages. The vertical distribution of these assemblages was coincident with the primary water masses: subantarctic mode water (∼250 to 600 m) and antarctic intermediate water (below ∼700 m). The flux of migrating micronekton, estimated at 0.94 to 3.36 g C m−2 yr−1 to the lower mesopelagic and 1.14 to 4.06 g C m−2 yr−1 to the upper mesopelagic, appeared to be considerably outweighed by the consumption needs of aggregated mid-slope benthopelagic predators. We suggest that advection of mesopelagic prey in antarctic intermediate water may sustain aggregated populations of orange roughy (Hoplostethus atlanticus) and other predators on the micronekton in mid-slope depths at this site. Received: 2 April 1997 / Accepted: 21 August 1997  相似文献   

2.
Y. Yamada  T. Ikeda 《Marine Biology》2000,137(5-6):933-942
 Using the number of segments of pleopod rami as a marker of instar number, the population structure (instar composition) of the mesopelagic gammarid amphipod Cyphocaris challengeri was investigated by monthly samplings from May 1997 to April 1999 at a station off southwest Hokkaido, Japan. Laboratory-rearing experiments were also conducted to establish the relationship between the number of segments of pleopod rami and instar number, and to estimate the growth pattern of this gammarid based on the intermolt period and molt-increment data. Stratified sampling in the field (0 to 200 and 200 to 400 m depth strata) showed this species occurred mainly at 200 to 400 m depth during the day. Instar analysis indicated that C. challengeri has 12 instars in females and 11 instars in males. Based on observations of secondary sexual characters, Instars 1 to 6 were designated juveniles (Instars 1 to 3 occurred in the marsupia of gravid females); in males, 7 to 9 were immature and 10 and 11 were mature, while in females 7 and 8 were immature and 9 to 12 were mature. Off southwest Hokkaido, Instar 4 (just released from a female's marsupium) was found throughout the year, with a peak abundance occurring in April to July of each year. A sequential development of Instar 4 to 9 (youngest adult instar) through the year was observed. Generation length (i.e. the time required to grow from Instar 4 to 10) was estimated from a laboratory-obtained growth curve to be 216 to 584 d at the in situ temperature range (2 to 5 °C), which is consistent with observations on field populations. Specimens older than Instar 9 were rare in the field and could not be used in laboratory-rearing experiments, so longevity could not be estimated. Eggs were oval and measured 0.6 mm (large diameter). Brood size ranged from 20 to 65. Comparing the present results with those of epipelagic hyperiid amphipods, the nearly identical growth rates together with the production of fewer but larger eggs seen in C. challengeri appear to reflect to the typical life mode of deep-living pelagic crustaceans. Received: 14 February 2000 / Accepted: 6 July 2000  相似文献   

3.
Mycosporine-like amino acids (MAAs), which occur in diverse taxonomic groups, exhibit in vivo absorption maxima between 310 nm and 360 nm and may play a photoprotective role against ultraviolet (UV) exposure. Using cultures of colonial Phaeocystis antarctica, we examined the relationship between MAA concentration, in vivo UV absorption, photoprotective (carotenoid) and photosynthetic pigments, and photosynthetically available radiation (PAR, 350–700 nm). UV absorption was high; chlorophyll-specific absorption, a * ph, at 330 nm ranged from 0.06 to 0.41 m2/mg chlorophyll a. Values of a * ph (330) were 4–13 times greater than a * ph (676). Mycosporine-glycine, shinorine, and mycosporine-glycine valine are responsible for the strong in vivo UV absorption. The sum of all MAAs increased with irradiance when normalized to chlorophyll a or carbon concentrations, whereas individual MAAs varied independently from each other. Mycosporine-glycine concentrations showed no statistically significant change over the range of light intensities, whereas mycosporine-glycine and shinorine concentrations increased at higher irradiances. The relative fluorescence yield for chlorophyll a was low in the UV region compared to the visible region, implying that absorbed UV radiation (<375 nm) is transferred inefficiently to chlorophyll a in the reaction center. Quantitative estimates of UV screening by MAAs are attributed to elevated MAA concentrations and increased diameter at high light. Received: 31 March 1999 / Accepted: 13 July 2000  相似文献   

4.
Vertical distribution, life cycle, and developmental characteristics of the mesopelagic copepod Gaidius variabilis Brodsky in the Oyashio region were investigated by combining analyses of field copepodite populations with laboratory-rearing data of egg hatching and naupliar development. Field samplings from five discrete depths between the surface and ≤2000 m were made approximately every month for 1 year. Most populations of G. variabilis occurred between 600 and 1000 m depth. A modest degree of reversed diel vertical migration behavior and some stage-specific depth-distribution patterns were noted. All copepodite stages were observed throughout the year, suggesting a year-round spawning of G. variabilis. From a prominent abundance peak of Copepodite Stage 1 (C1) seen in June to August, together with development times of eggs and nauplii obtained in laboratory-rearing experiments, the major spawning season was extrapolated to be April to June, the phytoplankton bloom season. Tracing the peak abundance of each copepodite stage (distinguishing males and females for C4 to C6), the generation times of males and females were deduced as 2 and 1 year, respectively. All between-stage increments in terms of wet-, dry-, and ash-free dry weights were greatest in C3/C4, and least in C5/C6 for both males and females. The increments in C3/C4 and C4/C5 were greater for males than for females, reflecting a longer stage duration of the males. These weights did not increase in C5/C6 males, possibly because feeding ceased in C6 males. These results for G. variabilis are compared with those for some mesopelagic copepods previously reported from other regions. Received: 25 October 1999 / Accepted: 20 March 2000  相似文献   

5.
We have examined the variability and potential adaptive significance of the wavelengths of light produced by gelatinous zooplankton. Bioluminescence spectra were measured from 100 species of planktonic cnidarians and ctenophores collected between 1 and 3500 m depth. Species averages of maximal wavelengths for all groups ranged from 440 to 506 nm. Ctenophores (41 species) had characteristically longer wavelengths than medusae (34 species), and the wavelengths from siphonophores (25 species) had a bimodal distribution across species. Four species each produced two different wavelengths of light, and in the siphonophore Abylopsistetragona these differences were associated with specific body regions. Light from deep-dwelling species had significantly shorter wavelengths than light from shallow species in both ctenophores (p = 0.010) and medusae (p = 0.009). Although light production in these organisms was limited to the blue-green wavelengths, it appears that within this range, colors are well-adapted to the particular environment which the species inhabit. Received: 27 April 1998 / Accepted: 27 October 1998  相似文献   

6.
From September to November 1991, UV-absorbing mycosporine-like amino acids (MAAs) were monitored in a natural population of the sea urchin Sterechinusneumayeri from a coastal area of Anvers Island (Antarctic Peninsula). MAA concentrations were determined for specific tissues (gonad, digestive tract and body wall) from adults collected at four depths (intertidal, 8, 15 and 24 m). Four MAAs were identified: mycosporine-glycine, shinorine, porphyra-334 and paly-thine. Concentrations of MAAs among replicate individuals varied considerably. Ovaries had high concentrations of MAAs (84 to 1389 μg g−1 dry wt), while testes had non-detectable levels. The relative abundance of specific MAAs in ovaries appeared to be related to the spawning cycle. Digestive-tract samples had MAA concentrations as high as 3000 μg g−1 dry wt, but the mean MAA content in intertidal individuals decreased by 70% over 3 mo during spring. The body walls of sea urchins had very low amounts of MAAs (≤ 0.08 μg g−1 dry wt). There were significant depth differences in the␣total MAA content of the ovary ( p <0.001), ( p <0.015), digestive tract ( p <0.001), and body wall with organisms from the intertidal and 8 m depth having the highest concentrations of MAAs. Biological dosimetry indicated that UV-B (280 to 320 nm) wavelengths penetrated 3 to 7 m below the sea ice during the study period. The total MAA content in ovaries decreased with depth on all sample dates; however, the MAA content of the digestive tract and body wall did not exhibit a consistent pattern of change with depth. The MAA content of tissues did not change significantly with the temporal gradient of light exposure that was established by both ozone depletion and increasing photoperiod, except in the digestive tract sampled from intertidal specimens. Adult urchins are probably well-protected from UV exposure by the water column and a calcareous test; however, the results of this study suggest that, even under ice cover, depth of habitation is a determinant of MAA content in S. neumayeri. Large daily and seasonal fluctuations in the light regime, which are characteristic of Antarctic coastal environments, apparently do not provide reliable cues to elicit a detectable, temporal, biochemical response. Received: 19 February 1997 / Accepted: 26 March 1997  相似文献   

7.
Solar radiation as a primary abiotic factor affecting productivity of seaweeds was monitored in the Arctic Kongsfjord on Spitsbergen from 1996 to 1998. The radiation was measured in air and underwater, with special emphasis on the UV-B (ultraviolet B, 280–320 nm) radiation, which may increase under conditions of stratospheric ozone depletion. The recorded irradiances were related to ozone concentrations measured concurrently in the atmosphere above the Kongsfjord with a balloon-carried ozone probe and by TOMS satellite. For comparison, an ozone index (a spectroradiometrically determined irradiance of a wavelength dependent on ozone concentration, standardized to a non-affected wavelength) was used to indicate the total ozone concentration present in the atmosphere. Weather conditions and, hence, solar irradiance measured at ground level were seldom stable throughout the study. UV-B irradiation was clearly dependent on the actual ozone concentration in the atmosphere with a maximal fluence rate of downward irradiance of 0.27 W m−2 on the ground and a maximal daily fluence (radiation exposure) of 23.3 kJ m−2. To characterize the water body, the light transmittance, temperature and salinity were monitored at two different locations: (1) at a sheltered shallow-water bay and (2) at a wave-exposed, deep-water location within the Kongsfjord. During the clearest water conditions in spring, the vertical attenuation coefficient (K d) for photosynthetically active radiation (PAR) was 0.12 m−1 and for UV-B 0.34 m−1. In spring, coinciding with low temperatures and clear water conditions, the harmful UV radiation penetrated deeply into the water column and the threshold irradiance negatively affecting primary plant productivity was still found at about 5–6 m depth. The water body in spring was characterized as a Jerlov coastal water type 1. With increasing temperature in summer, snow layers and glacier ice melted, resulting in a high discharge of turbid fresh water into the fjord. This caused a stratification in the optical features, the salinity and temperature of the water body. During melt-water input, a turbid freshwater layer was formed above the more dense sea water. Under these conditions, light attenuation was stronger than defined for a Jerlov coastal water type 9. Solar radiation was strongly attenuated in the first few metres of the water column. Consequently, organisms in deeper water are protected against harmful UV-B radiation. In the surface water, turbidity decreased when rising tide caused an advection of clearer oceanic water. In the course of the summer season, salinity continuously decreased and water temperature increased particularly in shallow water regions. The impact of global climate change on the radiation conditions under water and its effects on primary production of seaweeds are discussed, since organisms in the eulittoral and upper sublittoral zones are affected by UV radiation throughout the polar day. In clearer water conditions during spring, this may also apply to organisms inhabiting greater depths. Received: 20 June 2000 / Accepted: 17 October 2000  相似文献   

8.
Statolith microstructure was studied in 56 Ancistrocheirus lesueurii (25 to 423 mm of mantle length, ML) caught in the central-east Atlantic. Statolith growth increments were grouped into three main growth zones, distinguished mainly by increment width. The second transition in the statolith microstructure (from Zone 2 to Zone 3) coincides with the life history shift from epipelagic and upper mesopelagic to a bathyal habitat. Second-order bands (mean 27.65 growth increments) and sub-bands (mean 13.6 growth increments) within statolith microstructure appeared to be related to the lunar cycle. Striking sexual dimorphism is reflected in the age and growth rates: males live ca. 1 yr, while females only start maturing at this age and obviously live >1.5 yr. A. lesueurii is a slow growing squid, attaining 25 to 30 mm ML at the age of 100 d. After ontogenetic migrations into bathypelagic waters at ML > 30 to 35 mm, growth rates gradually decrease to the minimum known values for squids. Based on back-calculated hatching dates, A. lesueurii hatches throughout the year with a peak between November and March. Received: 28 August 1996 / Accepted: 31 January 1997  相似文献   

9.
The species abundance, vertical distribution and diurnal vertical migration of cyclopoid copepods was analyzed in the central Red Sea in October–November 1980. Samples were taken to a depth of 450 m with a multiple opening — closing plankton net with 0.1-mm mesh-size. Selected important species were allocated to five different groups according to their depth distributions during daytime. The greatest number of species (9) was found in the lower epipelagic zone (40 to 100 m), below the strong seasonal thermocline. The lowest number of species (1) occurred in the upper part of the upper mesopelagic zone (100 to 250 m), which is characterized by a strong dissolved oxygen gradient. Five species had a bimodal vertical distribution, with dual peak abundances in the epipelagic and upper mesopelagic zones. Distinct differences in distribution patterns were noted between sexes and/or developmental stages. The vertical range of diurnally migrating species was small, usually less than 50 to 100 m. Characteristic diurnal changes in the vertical succession of dominant species occur within the epipelagic zone (0 to 100 m). Species-specific vertical distribution patterns are compared with published data from other areas. A conspicuous difference in the proportion of carcasses was noted between species: small species (<0.5 mm in length) had a much higher proportion of carcasses, usually between 20 and 40% of the total standing stock, than larger ones (<5%). The potential causes of this phenomenon, which may be due to (1) methodological bias, (2) a lower sinking velocity of small carcasses, or (3) a higher mortality rate of small species, are discussed.  相似文献   

10.
Acoustic telemetry was used to examine patterns of activity and space utilisation of coelacanths, nocturnal predators which spend the day in submarine caves. Nine coelacanths (Latimeria chalumnae) were tracked, each for a period of 1 to 16 nights at Grande Comore, West Indian Ocean. Activities lasted on average 9 h, usually starting shortly after sunset and ending before sunrise. Vertically, coelacanths moved up and down at and below cave level by following the bottom contour, mainly between 180 and 400 m depth. The deepest record was 698 m, the shallowest 133 m. Most time was spent between 200 and 300 m depth. Large individuals performed deep excursions to depths below 400 m, usually once per night. The fish spent most time in water temperatures of 15 to 19 °C; they rarely ventured into waters warmer than 22 °C measured at depths shallower than 160 m depth. Horizontally, coelacanths stayed in narrow areas ranging from <1 to 10 km of coastline. Coelacanths are extremely slow drift-hunters with an estimated average swimming speed of 3.2 m min−1, often travelling not more than 3 km per night. They probably take advantage of local upwelling and downwelling and slow currents occurring parallel to the steep slopes. This study shows that coelacanths are inhabitants of the subphotic zone, where they are active mainly below the depth of their daytime refuges. Received: 7 July 1999 / Accepted: 11 February 2000  相似文献   

11.
In the Gulf of St. Lawrence, Canada, productivity-determining biophysical interactions occur in the upper 0 to 30 m of the water column. The eggs and larvae of several commercially important marine invertebrates and fishes (e.g. Gadus morhua L.) are found in this layer. Measurements of the diffuse attenuation coefficients for ultraviolet-B radiation (280 to 320 nm, UV-B) at various locations in this geographic region indicated maximum 10% depths (the depth to which 10% of the surface energy penetrates at a given wavelength) of 3 to 4 m at a wavelength of 310 nm. This represents a significant percentage of the summer mixed-layer water column: organisms residing in this layer are exposed to UV-B radiation. Laboratory experiments using a Xenon-arc-lamp based solar simulator revealed that cod embryos exposed to UV-B exhibited high wavelength-dependent mortality. The strongest effects occurred under exposures to wavelengths below 312 nm. This susceptibility was also dependent upon developmental stage; mortality was particularly high during gastrulation. At the shorter wavelengths (<305 nm) UV-B-induced mortality was strongly dose-dependent, and not significantly influenced by dose-rate. The biological weighting function (BWF) derived for UV-B-induced mortality in cod eggs is similar to that reported for naked DNA – suggesting that the mortality is a direct result of DNA damage. There was no evidence of a detrimental effect of ultraviolet-A radiation (320 to 400 nm). Calculations based upon the BWF indicate that, under current noon surface irradiance, 50% of cod eggs located at or very near (within 10 cm) the ocean surface will be dead after 42 h of exposure. Under solar spectral irradiance simulating a 20% decrease in ozone layer thickness, this time drops to 32 h. These are first-order estimates based upon surface irradiance taken at a time of day during which the values would be maximal. Nonetheless, they illustrate the relative changes in UV-B impacts that will result from ozone layer depletions expected over the coming decades. It is also important to point out that variability in cloud cover, water quality, and vertical distribution and displacement of cod eggs and larvae within the mixed layer, can all have a greater effect on the flux of UV-B radiation to which fish eggs are exposed than will ozone layer depletion at these latitudes. Received: 2 March 1998 / Accepted: 18 December 1998  相似文献   

12.
 A reproductive strategy consisting of deep- water spawning and egg-care was inferred for the midwater squid Gonatus onyx Young, 1972. Brooding females and associated eggs and hatchlings, captured between 1250 and 1750 m depth off southern California, are described. Brooding females appear to be senescent and lack tentacles. Large eggs of this species (3 mm) at cold temperatures (3 °C at capture depth) may require as long as 9 mo to develop. The high lipid content of the digestive gland in adult females of this species may provide fuel to support such an extended “brooding” period. Received: 22 February 1999 / Accepted: 25 May 2000  相似文献   

13.
Mesozooplankton (<5 mm) collected by stratified oblique tows with a 1-m2 MOCNESS was examined at four stations in the Arabian Sea, with special reference to the bathypelagic zone. The profiles commenced about 20 m above bottom, at 4430 m as a maximum depth. The highest mesozooplankton biomass concentrations (wet weight per cubic meter) were obtained from the surface layer during night. A secondary maximum was situated between 150 and 450 m, with maximum concentrations at daytime. This layer coincided with the daytime residence depth of the deep scattering layer. The standing crop of the mesozooplankton in the upper 1000 m was highest at station WAST at 16°N; 60°E (ca. 47 000 mg m−2); station CAST at 14°N; 65°E ranked second (ca. 22 500 mg m−2), followed by station SAST at 10°N; 65°E (11 420 mg m−2). The differences can be related to different productivity regimes at the sea surface generated by the Findlater Jet during the SW monsoon. The differences in surface production were also reflected below 1000 m depth, in the bathypelagic zone, with mesozooplankton wet weights of 5330 mg m−2 at WAST, 3210 mg m−2 at CAST, 3390 mg m−2 at EAST (15°N; 65°E) and 2690 mg m−2 at SAST. The decrease of mesozooplankton concentration with depth in the oxygen minimum zone (OMZ) was stronger than in comparable depths of open-ocean areas where an OMZ is absent. Among the discriminated four size classes of mesozooplankton, the largest fraction (2 to 5 mm) indicated a biomass peak at 1200 m depth, which coincided with the lower boundary layer of the OMZ. The rate of decrease of mesozooplankton biomass with depth in the bathypelagic zone was statistically similar between the sites, even though the absolute zooplankton biomass at the sites was different. There is no evidence that the presumed lower carbon degradation rates in the OMZ of the Arabian Sea caused a larger standing crop and less of a decrease in biomass with depth in the bathypelagic zone in comparison to other seas. Received: 16 May 1997 / Accepted: 5 June 1997  相似文献   

14.
The sea urchin Lytechinus variegatus is capable of surviving chronic exposure to sodium phosphate (inorganic phosphate) concentrations as high as 3.2 mg l−1, and triethyl phosphate (organic phosphate) concentrations of 1,000 mg l−1. However, chronic exposure to low (0.8 mg l−1 inorganic and 10 mg l−1 organic phosphate), medium (1.6 mg l−1 inorganic and 100 mg l−1 organic phosphate) or high (3.2 mg l−1 inorganic and 1,000 mg l−1 organic phosphate) sublethal concentrations of these phosphates inhibits feeding, fecal production, nutrient absorption and allocation, growth and righting behavior. Food consumption and fecal production declined significantly in individuals exposed to medium and high concentrations of inorganic phosphates and all levels of organic phosphates. Feeding absorption efficiencies for total organics and carbohydrates decreased significantly in individuals held in the highest concentration of organic phosphate. Feeding absorption efficiencies for lipids were significantly reduced in the highest inorganic phosphate concentration only, while they decreased significantly for protein with increasing phosphate exposure. Carbohydrate and lipid levels in gonad and gut tissues decreased significantly with exposure to increasing phosphate concentrations, potentially impairing both gametogenesis and nutrient storage in the gut. Moreover, gonad indices significantly decreased in individuals exposed to the highest concentrations of either phosphate. Growth rates decreased significantly under the influence of all phosphate concentrations, while increasing in seawater alone. Individuals exposed to increasing phosphate concentrations showed reduced righting responses (a measure of stress) and no acclimation in righting times during chronic exposure to phosphates over a 4 week period. These findings indicate that shallow-water populations of L. variegatus subjected to inorganic and organic phosphate pollutants will exhibit stress and be inhibited in their growth and performance due to reductions in feeding, nutrient absorption and allocation of nutrients to key somatic and reproductive tissues. Received: 10 April 2000 / Accepted: 2 October 2000  相似文献   

15.
In the Red Sea, the zooxanthellate sponge Cliona vastifica (Hancock) is mainly present at >15 m depth or in shaded areas. To test whether its scarcity in unshaded areas of shallower waters is linked to the functional inefficiency of its photosymbionts at high irradiances, sponges were transferred from 30 m to a six times higher light regime at 12 m depth, and then returned to their original location. During this time, photosynthetic responses to irradiance were measured as rapid light curves (RLCs) in situ by pulse amplitude modulated (PAM) fluorometry using a portable underwater device, and samples were taken for microscopic determinations of zooxanthellar abundance. The zooxanthellae harboured by this sponge adapted to the higher irradiance at 12 m by increasing both their light saturation points and relative photosynthetic electron transport rates (ETRs). The ETRs at light saturation increased almost fourfold within 15–20 days of transfer to the shallower water, and decreased back to almost their original values after the sponges were returned to 30 m depth. This, as well as the fact that the photosynthetic light responses within an individual sponge were in accordance with the irradiance incident to specific surfaces, shows that these photosymbionts are highly adaptable to various irradiances. There was no significant change in the number of zooxanthellae per sponge area throughout these experiments, and the different photosynthetic responses were likely due to adaptations of the photosynthetic apparatus within each zooxanthella. In conclusion, it seems that parameters other than the hypothesised inability of the photosymbionts to adapt adequately to high light conditions are the cause of C. vastifica's rareness in unshaded shallow areas of the Red Sea. Received: 25 April 2000 / Accepted: 13 October 2000  相似文献   

16.
A regional benthic survey was conducted in 1994, and the data were used to assess the relationship among three habitat factors (depth, sediment grain size, and latitude) and the distribution of benthic infaunal assemblages on the southern California coastal shelf. Benthic samples were collected with a 0.1 m2 Van Veen grab from 251 sites on the continental shelf (10–200 m deep) from Point Conception, California, to the United States–Mexico international border. The relationship between habitat and assemblages was investigated by conducting a Q-mode cluster analysis to define groups of stations with similar species composition and then examining whether differences were present in physical habitat attributes among those groups of stations. Analysis of data from 175 uncontaminated sites yielded four habitat-related benthic infaunal assemblages along the southern California coastal shelf: a shallow-water assemblage from 10–32 m, a mid-depth assemblage between 32 and 115 m, and two deep-water (115–200 m) assemblages, one in fine and one in coarse sediments. These empirically defined points in the depth and sediment grain size gradients can be used to define reference habitats for the development of biocriteria. Benthic abundance and diversity were greatest in the mid-depth assemblage, conforming to predictions for benthic assemblages in regions of upwelling. Within the 500 km of coastline examined, latitude was not an important factor in defining assemblages. Received: 3 December 1999 / Accepted: 9 October 2000  相似文献   

17.
 The European fanworm Sabella spallanzanii (Gmelin, 1791) was recently introduced to Port Phillip Bay and is now a conspicuous component of most benthic communities. Reproduction of the worm was investigated in a population at Queenscliff over a 2 yr period (October 1995 to October 1997) using gonadal histology. The worms are dioecious (sex ratio 1:1, n=250), and attained sexual maturity at ∼50 mm body length. Reproductive periodicity followed a distinct annual cycle, and spawning proceeded through an extended autumn/winter period. Spawning was broadly synchronous between sexes, and coincided with falling seawater temperatures and shorter day-lengths. The females were highly fecund, and >50 000 eggs were probably shed from large females (>300 mm body length) during the annual spawning period. Breeding cycles of S. spallanzanii in Port Phillip Bay are ∼6 mo out of phase with endemic populations located at similar latitudes in the northern hemisphere. The spread of S. spallanzanii within Port Phillip Bay has been monitored by divers on an annual basis since 1994. The most recent dive survey (1998) indicates that S. spallanzanii has extended its range through out the entire 2000 km2 embayment, and has invaded most subtidal habitats. Quantitative estimates of S. spallanzanii abundances were highest on pier pylons (12.5 individuals m−2, 0.5 to 7 m depths). On sediments, estimates were highest at shallow sites (0.3 m−2, 7 m depth), but numbers declined significantly with depth (0.1 m−2, 17 to 22 m depth). Mean worm lengths and biomass were, by contrast, significantly higher at intermediate depths (12 to 17 m) than in shallower (7 m) or deeper (22 m) locations. S. spallanzanii demonstrates a clear preference for growth in sheltered, nutrient-enriched waters, so it may not spread from Port Phillip Bay into the adjacent oceanic waters of Bass Strait; however, in view of S. spallanzanii's current high abundance, fecundity and extended spawning periodicity, there is a high risk of future range expansions, mediated by shipping, into other temperate-water ports. Received: 17 November 1998 / Accepted: 6 January 2000  相似文献   

18.
Experiments were performed to determine how ultraviolet radiation (UVR) in the environmentally relevant range affects development of the sea urchin Strongylocentrotus droebachiensis (Müller) and whether mycosporine-like amino acids (MAAs), present in the early life stages, reduce UV-induced damage. Eggs, embryos, and larvae contained five MAAs having absorption maxima ranging from 320 to 334 nm. Eggs contained principally shinorine and porphyra-334, which absorb maximally at 334 nm and half-maximally at 312 and 348 nm, spanning much of the environmental range of biologically effective UVR. Concentrations of MAAs remained constant in unirradiated embryos through the gastrula stage, but decreased significantly in two-armed pluteus larvae. Daily exposure to combined photosynthetically active radiation (PAR, 400–700 nm) and UVR did not affect the concentration of MAAs in these embryos up to the two-armed pluteus stage. Prism larvae of sea urchins and the sand dollar Echinarachnius parma (Lamarck) did not accumulate shinorine from the surrounding seawater. Daily exposure of embryos to UVA (320–400 nm) and UVB (295–320 nm) radiation in the presence of PAR induced delays and abnormalities during development, and removing UVB eliminated this effect. Abnormalities in embryos included thickening of the blastoderm wall, filling of the blastocoel by abnormal cells, exogastrulation, and formation of abnormal spicules. The percentage of embryos that developed normally was lower in batches of embryos exposed to PAR + UVA + UVB, except in embryos from urchins maintained on MAA-rich diets. In all cases, the percentage of PAR + UVA + UVB-exposed embryos that developed normally was positively related to the concentration of MAAs in eggs from which the embryos developed. Thus, the MAAs found in S. droebachiensis embryos protect them against UVB-induced abnormalities during their development to at least the four-armed pluteus larval stage. Received: 8 May 2000 / Accepted: 29 September 2000  相似文献   

19.
 Relative and absolute growth were studied in 17 species of deep-water decapod crustaceans, spanning nine families of six different infra-orders, in the Northwestern Mediterranean Sea. The overall maximum abundance of these species lay between 200 m and 750 m (i.e. upper- and mid-slope species). Relative and absolute growth rates were compared by contrasting the slopes of the size–weight relationships for the different species and calculating the von Bertalanffy growth-equation parameters asymptotic length (L ) and growth rate (k). The size–weight relationships differed significantly as function of the species' life habits. The results revealed a significant decrease in weight relative to size in mesopelagic species (which carry out diel vertical migrations), an almost isometric relationship between size and weight in the less mobile nektobenthic species, and a significant increase in weight relative to size in strictly benthic species. The mean allometric coefficient for each group increased significantly from mesopelagic to benthic species. However, no general trend was observed in the growth-performance index, Φ (an index used to compare absolute growth rates between species, as a function of habit and depth of maximum abundance for all species combined), suggesting that the deep-water decapod crustaceans studied have similar absolute growth rates. Nevertheless, comparison of growth-parameter and growth-performance index values within families did reveal differences. Mesopelagic species of the families Sergestoidae and Pasiphaeidae showed slightly increased growth rates with increasing depth of distribution. Nektobenthic species of the genus Plesionika followed a trend opposite to that shown by mesopelagic species, with a higher growth rate for the shallowest-dwelling species (P. heterocarpus) than the deepest-dwelling species (P. acanthonotus). Taking growth as one of the major components of an organism's energy budget, the growth rates for the decapod crustacean species in this study were significantly lower than those reported in the literature for shallow-water penaeid crustacean species (which are distributed in higher-temperature habitats than deep-water Mediterranean crustaceans) and higher than those reported for mesopelagic myctophid fish species. Hence, the well-defined growth trends shown by deep-water decapod crustacean species in the Northwestern Mediterranean Sea, compared to the less well-defined trends in the other taxa, is discussed in the framework of the overall dynamics of their ecosystem. Received: 25 May 1998 / Accepted: 27 September 1999  相似文献   

20.
Six Pacific bluefin tuna were tracked with ultrasonic telemetry and two with pop-up satellite archival tags (PSATs) in the eastern Pacific Ocean in 1997, 1998, and 1999. Both pressure and temperature ultrasonic transmitters were used to examine the behavior of the 2- to 4-year-old bluefin tuna. The bluefin spent over 80% of their time in the top 40 m of the water column and made occasional dives into deeper, cooler water. The mean slow-oxidative muscle temperatures of three fish instrumented with pressure and temperature transmitters were 22.0–26.1 °C in water temperatures that averaged 15.7–17.5 °C. The thermal excesses in slow-oxidative muscle averaged 6.2–8.6 °C. Variation in the temperature of the slow-oxidative muscle in the bluefin was not correlated with water temperature or swimming speeds. For comparison with the acoustic tracking data we examined the depth and ambient temperature of two Pacific bluefin tagged with pop-up satellite archival tags for 24 and 52 days. The PSAT data sets show depth and temperature distributions of the bluefin tuna similar to the acoustic data set. Swimming speeds calculated from horizontal distances with the acoustic data indicate the fish mean speeds were 1.1–1.4 fork lengths/s (FL s−1). These Pacific bluefin spent the majority of their time in the top parts of the water column in the eastern Pacific Ocean in a pattern similar to that observed for yellowfin tuna. Received: 4 April 2000 / Accepted: 25 October 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号