首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
森林生态系统蒸散作为生态系统中的重要生态过程,联系着生态系统的水分平衡和能量平衡,并与养分循环密切相关.以雷州半岛桉树人工林纪家、河头林场为研究样地,在样地调查的基础上,对林地有关气象因子、土壤水文生态因子作了近4 a的定位观测.选取TURC公式、Penman-Monteith方程(PM)和周国逸公式作为代表,三者分别以温度为指标、以辐射与能量转换为驱动因子和以物理过程为主导的蒸散量理论计算方法.并将理论计算结果同水量平衡法估算结果进行比较.结果表明,尽管各种计算方法的结果均存在一定的波动性,但是其波动的原因是不一样的.对于PM方程而言,结果对所选参数有一定的依赖性.对于周国逸公式来说,在计算较小时间尺度(≤1 a)蒸散量时可能会出现一定的波动,波动的原因可能在于参数的时间尺度匹配问题.对于TURC公式,计算结果波动的根本原因在于其公式的经验局限性.理论计算值同水量平衡估算结果比较说明,三者均可以在一定程度上反映系统的年蒸散量.比较而言,周国逸公式计算结果的波动性范围较小,较适用于热带、亚热带森林生态系统蒸散量的计算.  相似文献   

2.
基于MOD16 遥感数据集,在ERDAS IMAGINE 2013 遥感图像处理系统的支持下,通过空间建模,计算蒸散多年年平均值和月平均值,并生成图像;结合陕西省矢量边界图、土地利用矢量图,统计不同时间尺度统计行政区域和不同土地利用类型的蒸散值.在ARCGIS 10 系统中,制作陕西省2000-2013 年年、月平均蒸散分布图.利用线性回归进行蒸散时间趋势分析,采用相关系数的统计检验方法进行显著性趋势检验.进而研究了陕西省2000-2013 年蒸散量的空间分布特征和时间变化规律,分析了不同类型下蒸散量的差异性变化特征.结果表明:(1)全省年蒸散量在波动中缓慢上升,波动范围为448.0~533.3 mm·a^-1,年平均值493.3 mm·a^-1.各月蒸散量的年际变化具有季节分异特征,秋末至仲春的月蒸散具有减少的趋势,春末至仲秋的蒸散具有增加的趋势.年内蒸散量呈单峰型分布,季节性变化特征明显,蒸散主要集中在5-9 月份,最高、最低值分别出现在8 月和11 月.(2)多年平均蒸散空间格局呈现北低南高的分布规律,高植被覆盖区蒸散量较大.蒸散变化趋势不明显的面积占77.2%,蒸散显著、极显著增加的像元主要分布在陕北地区、关中地区西部和陕南丘陵浅山区,蒸散显著和极显著减少的像元主要分布在关中城市群.(3)土地利用特点影响着陕西省蒸散量的分布状况,蒸散强度大小按类型排序依次为森林〉草地〉农田〉荒漠.研究结果对于陕西有限水资源的合理利用以及水资源短缺问题的解决、旱涝监测和预警等研究具有重要意义.  相似文献   

3.
基于黄土高原1961—2008年月平均气温、最高气温、最低气温、相对湿度、降水量、风速和日照百分率等气候要素资料,应用修订的Penman-Monteith(P-M)模型计算了最大可能蒸散量,分析其时空分布、异常分布特征和次区域时间演变特征。结果表明:1961—2008年间,黄土高原最大可能蒸散量多年平均在400~800 mm之间,大部分区域650~750 mm之间。一致性异常分布是黄土高原最大可能蒸散量的最主要空间模态。黄土高原最大可能蒸散量的异常空间分布可分为以下3个关键区:高原西北部区、高原东北部区和高原东南部区。高原西北部区域最大可能蒸散量呈显著增加趋势,且发生了突变现象;高原东北部区域最大可能蒸散量呈显著下降的趋势,也发生了突变;而高原东南部区域下降趋势不显著,未发生突变。黄土高原最大可能蒸散量的3个空间分区中,3 a的周期振荡表现得比较显著。  相似文献   

4.
基于黄土高原1961—2008年月平均气温、最高气温、最低气温、相对湿度、降水量、风速和日照百分率等气候要素资料,应用修订的Penman-Monteith(P-M)模型计算了最大可能蒸散量,分析其时空分布、异常分布特征和次区域时间演变特征。结果表明:1961—2008年间,黄土高原最大可能蒸散量多年平均在400~800 mm之间,大部分区域650~750 mm之间。一致性异常分布是黄土高原最大可能蒸散量的最主要空间模态。黄土高原最大可能蒸散量的异常空间分布可分为以下3个关键区:高原西北部区、高原东北部区和高原东南部区。高原西北部区域最大可能蒸散量呈显著增加趋势,且发生了突变现象;高原东北部区域最大可能蒸散量呈显著下降的趋势,也发生了突变;而高原东南部区域下降趋势不显著,未发生突变。黄土高原最大可能蒸散量的3个空间分区中,3 a的周期振荡表现得比较显著。  相似文献   

5.
蒸散量是热量平衡和水量平衡的重要分量.利用TM遥感影像和地表热量平衡模型估算静宁县水土保持世行贷款项目区的蒸散量,并结合地面实测资料进行检验,分析蒸散的分布规律,研究蒸散量与土地利用、地表参数、地形参数的关系.结果表明:研究区日蒸散量介于0.70~9.05 mm之间,平均5.31 mm,分布上呈现由西北向东南递增的趋势;不同下垫面的蒸散能力有一定差别,其中水域和林地的日蒸散量最大;日蒸散量与归一化植被指数(INDV)呈线性正相关,而与地表温度呈线性负相关.  相似文献   

6.
根据系统实测资料,利用根层土壤水的变化量,按水量平衡公式反算求得观测年、季及旱月的土壤蒸散量.以三年平均及旱年土壤吸入水量减去蒸散量的结果显示,两个观测试区0~100cm土层蒸散量大于吸入水量;若以月平均计,则每月蒸散量大于土壤吸入水量3.84~8.60mm,土壤水的吸入略小于消耗,一年内土壤水量接近平衡.  相似文献   

7.
基于涡度相关系统测量值和小气候观测资料,比较分析了Penman、FAO Penman-Monteith和Priestley-Taylor3个模型对三江平原大豆田蒸散量的模拟效果。结果表明:3个模型参数采用常数时模拟值均大于测量值,尤以Penman模型最为明显,平均高估174.6%。Penman和FAO Penman-Monteith模型模拟效率均小于0,表明其模拟效果较差,不能用于估算大豆田间蒸散量。Penman和FAO Penman-Monteith模型的作物系数K c值与叶面积指数之间呈显著正相关关系,与饱和水汽压差之间呈显著负相关关系;Priestley-Taylor模型α值与叶面积指数和风速之间均呈显著正相关关系,与饱和水汽压差之间呈显著负相关关系。依据多元线性回归方程修正K c或α值后,Penman、FAO Penman-Monteith和Priestley-Taylor模型估算精度均明显提高,平均偏差变化范围为-0.10~0.00 mm·d-1,均方根误差均为0.67 mm·d-1,模拟效率均为0.61。方差分析进一步表明3个模型模拟结果没有显著性差异,但相对而言,Priestley-Taylor模型的截距、斜率和平均偏差略优于其他2个模型,因此Priestley-Taylor模型修正式是估算三江平原大豆田实际蒸散量的最优模型。  相似文献   

8.
基于MOD16产品的三江平原蒸散量时空分布特征分析   总被引:2,自引:0,他引:2  
借助Arc GIS 10.2和ENVI 4.5/ID软件平台,利用MOD16遥感数据集,统计分析了三江平原2000─2014年地表蒸散量的年际和年内时空变化状况,探讨了不同地表类型下蒸散量的差异性变化特征。首先将原始的MOD16产品进行投影转换、数据拼接和重采样等操作,在此基础上计算三江平原地区蒸散多年年均值和月均值,并分析了三江平原蒸散的变化趋势。利用三江平原的矢量边界和土地利用分类数据统计了不同时间尺度序列下各种土地利用类型的蒸散平均值,进而分析不同地物类型下蒸散量的年纪变化和季节变化特征。研究表明,(1)三江平原年蒸散量总体上呈缓慢上升趋势,波动范围为447~521mm·a~(-1),年平均值为497 mm·a~(-1)。(2)年内蒸散量呈单峰型分布,季节性变化特征明显,蒸散主要集中在5─9月份,最高、最低值分别出现在8月和1月。(3)多年平均蒸散空间格局呈现北低南高的分布规律,高植被覆盖区蒸散量较大。2000─2014年蒸散变化趋势不明显的面积占88%,蒸散显著、极显著增加(8.74%)的像元主要分布在集贤市区域和双鸭山山区,蒸散显著、极显著减少的像元主要分布在河道以及城市群附近。(4)土地利用特点影响着三江平原蒸散量的分布状况,蒸散强度大小按类型排序依次为森林(46.6 mm)草地(34.7 mm)农田(38.38 mm)荒漠(27.11 mm)。研究结果对于加强三江平原水资源管理与水分高效利用具有重要意义。  相似文献   

9.
安徽省近40年参考作物蒸散量的敏感性分析   总被引:3,自引:0,他引:3  
利用安徽省79个站点1971—2010年逐日气象资料,采用FAO Penman-Monteith公式计算了近40年安徽省参考作物蒸散量(ET0)以及ET0对日照时数、相对湿度、风速、温度等气象因子的敏感系数,并对ET0的时空分布和4个气象因子敏感系数的时空变化特征进行了分析。结果表明:近40年来安徽省年平均参考作物蒸散量为862 mm,自1971年以来,年平均参考作物蒸散量总体上呈现波动下降趋势;空间分布上,基本呈自北向南、自低向高递减趋势;ET0与平均温度、日照时数、相对湿度和风速的敏感性方面,ET0对相对湿度的变化最为敏感,其次是日照时数、风速,对平均温度的敏感性最低。从近40年各气象因子敏感系数的多年变化特征来看,平均温度、日照时数和风速的敏感系数以平稳波动为主,年际间变化不是很明显,而相对湿度敏感系数则呈现明显的上升趋势(通过0.01的显著性检验),其绝对值有明显的减小趋势,表明相对湿度对参考作物蒸散的敏感性在减弱。在年内变化特征方面,总体来说,相对湿度敏感系数年内变化表现为明显的双峰型变化特征,而平均温度、日照时数和风速年内变化特征为单峰型。在这4个气象要素对ET0的贡献率方面,贡献率最大的是相对湿度,四个影响ET0的气象要素对ET0变化的总贡献为-1.33%。综合敏感性和贡献率两方面因素分析,日照时数和风速的变化趋势在很大程度上解释了ET0呈下降趋势的原因。  相似文献   

10.
为了揭示森林植被与流域径流量关系的空间分异规律,用生物物理/动态植被模式SSiB4/TRIFFID与流域水文模型TOPMODEL的耦合模式SSiB4T/TRIFFID进行青弋江流域和西南亚高山区的梭磨河流域各种气候情景的植被演替和碳水循环模拟。根据模拟结果并结合森林集水区试验结果,分析森林植被对流域径流量的影响。模拟结果表明,不存在水分胁迫时,在草地、灌木和森林3种植被类型中,森林蒸腾、冠层截留蒸发、蒸散和叶面积指数对温度变化最敏感;存在水分胁迫时,森林蒸腾、冠层截留蒸发、蒸散和叶面积指数对降水的变化最敏感。控制试验结果表明,青弋江流域阔叶林在植被向平衡态演替过程中取得支配地位,森林、灌木和草地蒸散分别为742.2、588.6和546.2 mm·a~(-1),森林蒸散明显大于灌木和草地,森林减小了径流量。梭磨河流域针叶林在植被向平衡态演替过程中取得支配地位,森林、苔原灌木和草地蒸散分别为387.8、444.3和387.5 mm·a~(-1),森林蒸散低于苔原灌木,森林增加了径流量。但随着温度增加,由于森林蒸散增加幅度明显大于苔原灌木和C3草地,森林蒸散逐渐大于苔原灌木,森林从增加径流量转变为减小径流量。对于湿润地区,随着温度增加,森林从增加径流量转变为对径流量没有明显影响和减小径流量。对于半湿润和半干旱地区,随着降水的减小,森林蒸散减小幅度明显大于灌木和草地,森林对径流量的影响随着降水量的减小而减小。气候的垂直地带性和水平地带性分布对森林植被与流域径流量关系的空间变化起着重要的控制作用。  相似文献   

11.
农田蒸散量是作物蒸腾量和土壤蒸发量的总和,准确估算农田蒸散量对制定合理的灌溉计划至关重要,进而对农作物的增产保收具有重要的意义.研究作物系数及蒸散量估算模型已成为一个热点科学问题.淮河流域是中国主要的农业生产基地,而夏玉米是淮河流域最主要的粮食作物之一.为研究夏玉米全生育期蒸散估算模型,反映夏玉米逐日作物系数及蒸散量的...  相似文献   

12.
若尔盖高原实际蒸散量变化规律研究   总被引:1,自引:0,他引:1  
蒸散发是若尔盖高原湿地重要的水文过程,但目前缺乏对若尔盖地区实际蒸散发量的相关研究结果。为计算若尔盖高原实际蒸散量,利用1967—2011年若尔盖高原地区红原、玛曲和若尔盖3个地面气象站的逐日气象资料,应用FAO56推荐的Penman-Monteith(P-M)公式,依据单作物系数法计算若尔盖地区实际蒸散量,利用累积距平、Mann-Kendall趋势检验、回归分析等方法分析其变化规律。结果表明,草地蒸散量是若尔盖高原实际蒸散量的主要构成部分,草地蒸散量达362.3mm·a-1,占74.28%。湿地蒸散量为116.6 mm·a-1,占23.85%;近45年来若尔盖高原3个气象站的ET_c显著相关,ET_c平均值为488.6 mm·a~(-1)。ET_c的变化并不明显,呈缓慢增加趋势,绝对变率为12.75 mm,相对变率为2.62%。若尔盖高原ET_c变化与植被生长周期密切相关,高强度蒸散过程集中在短暂的夏季,7月份平均值达3.73 mm·d~(-1)。4、10月份气温低于0℃,ET_c为1.5~2.0 mm·d~(-1);通过回归分析得出ET_c与气象因子间的关系式,相关系数r0.9,P0.05,相对误差均低于0.6%;年ET_c与年均气温相关性达到0.01的显著性水平,年ET_c与年降水量、相对湿度呈负相关性;1968—1971年ET_c增加36.09 mm,相对降水量增加5.82%;1971—1981、1981—2005年ET_c分别减少12.22 mm和16.34 mm;2005—2011年ET_c增加41.75 mm,相对降水量增加6.41%。该地区水文过程中蒸散发相对于水分补给变化较小。  相似文献   

13.
殷红  郭瑞  殷萍萍  胡涛  郭范顺 《生态环境》2010,19(2):394-397
选择辽河中下游流域为研究对象,通过调查流域内各月及多年年降水量、蒸散量及水分收支基本情况,应用区域蒸散互补关系模型估算辽河流域实际蒸散量,实现各年实际降水量、蒸散量的空间化。从多个层次分析1956—2000、1970—2000年及1980—2000年3个时间序列降水、蒸散量和水分收支的变化趋势及特点。结果表明:20a系列年平均降水量与45a系列比较分析发现,降水量减少的区域占流域面积的23.08%,降水量增加区域占流域面积的76.92%;辽河中下游流域实际蒸散大部分在600~850mm之间,其分布主要呈现由北向南、由西向东逐渐降低的趋势。辽河中下游流域水分收支不平衡,营口—辽阳—铁岭一线地区水分收支相当,此线以西北地区水分收支是负值,占总流域面积的59.73%,这种变化将会使西部干旱地区的旱情进一步增大。此线以东南地区水分收支是正值,占总流域面积的40.37%,当地的湿润程度会进一步增加。  相似文献   

14.
为了揭示气候变化对西南亚高山区流域碳水平衡的影响,应用生物物理/动态植被模式SSi B4/TRIFFID与流域水文模型TOPMODEL的耦合模式SSi B4T/TRIFFID进行西南亚高山区的梭磨河流域不同气候情景下[背景条件(控制试验)、增温2℃(T+2)、增温5℃+增雨40%(T+5,(1+40%) P)]植被与碳水平衡的动态模拟。控制试验结果显示,流域蒸散在流域为苔原灌木覆盖时达到最大而径流深最小;T+5,(1+40%) P试验流域蒸散在流域为森林覆盖时达到最大而径流深最小。随着温度增加,由于森林、苔原灌木和C3草地3种植被类型中森林蒸散增加幅度最大,导致森林从控制试验的增加径流量变为减小径流量。从控制试验到T+5,(1+40%) P试验,森林蒸散从388.1 mm·a-1增加到802.9 mm·a-1,径流深从298.0 mm·a-1减小到157.9 mm·a-1,径流系数从0.43减小到0.16;森林净初级生产力NPP从1 025.5 g·m-2·a-1增加到1 199.5 g·m-2·a-1,净生态系统生产力NEP从476.8g·m-2·a-1增加到650.8g·m-2·a-1。NPP和NEP增加幅度低于蒸散增加的幅度,表征碳水耦合关系的水分利用效率WUE随温度增加而明显减小。WUE和森林-径流关系随海拔高度变化,西南山区气候的垂直地带性分布控制了水分利用效率和森林-径流关系的空间变化。  相似文献   

15.
由于城市森林及其生态系统是一项重要的绿化基础设施,是城市中人与自然关系的纽带与桥梁,因此,大力加强城市森林生态系统建设是历史发展的必然.以此为依据,阐述了城市森林及其生态系统的概念、研究方法与内容、发展概况,提出了城市森林生态系统建设的5项原则,最后,探讨了城市森林生态系统建设的未来两大发展趋势.  相似文献   

16.
森林生态系统的水文调节功能及生态学机制研究进展   总被引:2,自引:2,他引:2  
森林水文调节功能是森林所实现的重要服务功能之一,可是由于森林资源被无节制的开采利用,导致人们不断遭受森林破环所带来的洪旱灾害。因此关于森林生态水文功能研究已成为生态学和水文学的研究重点之一。近年来,国内外对森林水文调节过程及其生态学机制进行了广泛深入的研究,所以文章从森林的水文过程出发,对林冠截留、树干流、凋落物层截留、林地水分涵养和蒸发蒸腾及其影响因子的国内外研究现状进行了归纳分析,研究认为林地各冠层均能够截留降雨,降低雨水动能,从而减少地表径流的产生和对地表的冲击;凋落物层能蓄留水分、抑制蒸散、减缓地表径流;而树干流改变降雨水平空间格局,影响水分入渗以及土壤水源涵养。森林结构复杂,明显改变了降雨分配过程,而森林水文过程及调节功能又受到森林结构的制约,因此定量定性探讨森林生态系统的结构、过程与水文调节功能之间关系,是未来森林生态水文功能研究的重点。  相似文献   

17.
中国森林植被与土壤碳储量估算研究进展   总被引:1,自引:0,他引:1  
森林生态系统碳储量在陆地生态系统碳循环研究中占有十分重要的地位,对全球气候变化产生重要影响.基于植被和土壤碳储量两方面,总结概述了中国森林生态系统碳储量的研究现状和发展趋势,同时对碳储量估算方法进行了系统分析,以期为森林碳汇研究提供参考,为国家参与应对气候变化政策和行动提供技术支撑.  相似文献   

18.
以鼎湖山3个南亚热带森林演替典型阶段生态系统为对象,采用我国《森林生态系统服务功能评估规范》(LY/T 1721—2008)标准化计算公式与服务价格,量化揭示南亚热带森林生态系统演替过程中生态系统服务功能价值动态。结果表明:随着演替的进行,南亚热带森林生态系统服务功能总价值不断增大;但各分项服务功能价值则表现出不同的动态规律与变化幅度,从而使得森林生态系统服务结构呈现非线性演化特征。在南亚热带森林生态系统演替的早期阶段,生态系统服务价值的最大组分是涵养水源的功能价值,而中、后期则是保育土壤。人工林营造可以有效增强区域生态系统的水源涵养能力,而保育演替中、后期森林则对于大气CO2收和土壤保育而言尤为重要。  相似文献   

19.
鼎湖山南亚热带森林生态系统服务价值动态   总被引:1,自引:0,他引:1  
刘树华  李浩  陆宏芳 《生态环境》2011,(6):1042-1047
以鼎湖山3个南亚热带森林演替典型阶段生态系统为对象,采用我国《森林生态系统服务功能评估规范》(LY/T 1721—2008)标准化计算公式与服务价格,量化揭示南亚热带森林生态系统演替过程中生态系统服务功能价值动态。结果表明:随着演替的进行,南亚热带森林生态系统服务功能总价值不断增大;但各分项服务功能价值则表现出不同的动态规律与变化幅度,从而使得森林生态系统服务结构呈现非线性演化特征。在南亚热带森林生态系统演替的早期阶段,生态系统服务价值的最大组分是涵养水源的功能价值,而中、后期则是保育土壤。人工林营造可以有效增强区域生态系统的水源涵养能力,而保育演替中、后期森林则对于大气CO2收和土壤保育而言尤为重要。  相似文献   

20.
水量平衡是森林生态系统的重要研究内容,但桉树人工林水量平衡研究的数据积累不足。以广西南宁桉树林生态系统定位观测研究站为平台,于2013年7月—2016年5月利用自动气象观测系统、集水区测流堰的定位观测数据,应用水量平衡方程计算各分量并分析其时间序列动态,以了解南亚热带尾巨桉(Eucalyptus urophylla×E. grandis)人工林生态系统的水量平衡特征,为桉树人工林培育的水分利用和区域森林水分植被承载力研究奠定理论基础。结果表明:南宁地区的降水特征符合整个华南地区降水量变化特征,南宁桉树生态站2013年7月—2014年6月、2014年7月—2015年6月、2015年7月—2016年5月的降水特征符合南宁地区和整个华南的降水特征,年均降水量处于枯水年(1 156 mm)与丰水年(1 352 mm)之间,属平水年。观测期间(历时24个月),尾巨桉人工林生态系统土壤储水量变化在较小时间尺度上有波动,但2014年和2015年全年的变化量都接近为0。2014年1月—2015年12月径流总量为51 mm,径流系数为1.9%,期间多数月份没有产生径流,只有当降水量较大时才可能产生径流,其中2015年9月的径流量最大,为20 mm,径流系数为9.5%。2014年1月—2015年12月,生态系统蒸散总量为2 669 mm,占降水量的98%,是尾巨桉中龄林生态系统的主要水分支出项。蒸散总量与降水量呈极显著线性正相关,但径流量不完全受降水量的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号