首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Trend and concentrations of legacy lead (Pb) in highway runoff   总被引:2,自引:0,他引:2  
This study presents the results of lead (Pb) concentrations from both highway runoff and contaminated soil along 32 and 23 highway sites, respectively. In general, the Pb concentration on topsoil (0-15 cm) along highways was much higher than the Pb concentration in subsurface soil (15-60 cm). The Pb deposited on soil appears to be anthropogenic and a strong correlation was found between the Pb concentration in surface soil and highway runoff in urban areas. The concentration of Pb measured during 1980s from highways runoff throughout the world was up to 11 times higher than the measured values in mid 1990 s and 2000s. The current Pb deposited on soil near highways appears to be a mixture of paint, tire weight balance and old leaded gasoline combustion. Overall, the Pb phase-out regulation reduced the Pb deposits in the environment and consequently lowered Pb loading into receiving waters.  相似文献   

2.
Assessment of soil lead exposure in children in Shenyang, China   总被引:1,自引:0,他引:1  
Soil lead pollution is serious in Shenyang, China. The paper brings together the soil work, the bioaccessibility, and the blood lead data to assess the soil lead exposure in children in Shenyang, China. Approximately 15.25% of the samples were above China Environment Protection Agency guideline concentration for soil Pb to protect human from health risk (350 mgkg(-1)). Pb concentrations varied among use scenarios. The main lead contamination sources are industry emission and automobile exhaust. Bioaccessibility also varied among use scenarios. Children, who ingested soil from industrial area, public parks, kindergarten playground, and commercial area, are more susceptible to soil lead toxicity. The industrial area soil samples presented higher bioaccessibility compared to the other use scenario soil samples contaminated by automobile exhaust. The result also suggested a most significant linear relationship between the level of Pb contamination and the amount of Pb mobilized from soil into ingestion juice. Soil pH seemed to have insignificant influence on bioaccessibility in the present study. Bioaccessibility was mainly controlled by other factors that are not investigated in this study. A linear relationship between children blood lead and soil intestinal bioaccessibility was present in the study. Children who are 4-5 years old are more likely to demonstrate the significant relationship between soil lead bioaccessibility and blood lead as their behaviors place them at greatest risk of soil lead toxicity, and their blood lead levels are more likely to represent recent exposure.  相似文献   

3.
We reviewed the published evidence of lead (Pb) contamination of urban soils, soil Pb risk to children through hand-to-mouth activity, reduction of soil Pb bioavailability due to soil amendments, and methods to assess bioaccessibility which correlate with bioavailability of soil Pb. Feeding tests have shown that urban soils may have much lower Pb bioavailability than previously assumed. Hence bioavailability of soil Pb is the important measure for protection of public health, not total soil Pb. Chemical extraction tests (Pb bioaccessibility) have been developed which are well correlated with the results of bioavailability tests; application of these tests can save money and time compared with feeding tests. Recent findings have revealed that fractional bioaccessibility (bioaccessible compared to total) of Pb in urban soils is only 5-10% of total soil Pb, far lower than the 60% as bioavailable as food-Pb presumed by U.S.-EPA (30% absolute bioavailability used in IEUBK model).  相似文献   

4.
The relationship between the concentrations or elemental carbon (EC) and lead (Pb) in urban aerosols from the two countries was investigated. The cities in the United States (U.S.) and France (FR), selected for study based on similarities in their populations and general industry, were: Senonches, FR and Clemson, SC; Clermont-Ferrand, FR and Akron, OH; Strasbourg, FR and Norfolk, VA; Paris, FR and Chicago, IL; and Orleans, FR. The data show that both species in each country are semi-logarithmically related to population. However, in the largest cities, the French aerosol contained significantly higher levels of both EC and Pb. The mean EC concentrations in rural towns, small cities and large urban areas were approximately 1.2−1.7; 2.4−3.0; and 4.6−7.9 μg m−3. Mean Pb concentrations were 0.005−0.006; 0.03−0.07; and 0.06−0.44 μg m−3 for the same cities.  相似文献   

5.
Chan LY  Kwok WS  Chan CY 《Chemosphere》2000,41(1-2):93-99
The aim of this study is to evaluate the particulate air pollution in selected roadside microenvironments of Hong Kong through an intensive field study dated from January 1997 to February 1997. The study employed the microenvironment monitoring technique to access the exposure of pedestrians to respirable suspended particulate and airborne lead (Pb) at heavily trafficked roadsides. A total of 62 roadside sites in 14 districts covering the most urbanized and densely populated areas were selected. It was found that pedestrians were exposed to a 24 h average of respirable suspended particulate, PM10, and airborne Pb (APb), typically ranged from 25.56 to 337.40 microg/m3 and 70.71 to 285.71 ng/m3, respectively. The average PM10 concentrations at different roadside microenvironments corresponding to urban residential, urban commercial, urban industrial and new town areas were 91.84, 129.08, 83.83, and 118.89 microg/m3 respectively. The corresponding values for APb were 130.01, 143.40, 127.40 and 173.17 ng/m3, respectively. It was found that measurement at EPD nearby rooftop monitoring stations might not reflect the actual roadside PM10 exposure. Most APb field study data was significantly higher than the nearby fixed station data.  相似文献   

6.
Internationally agreed standard protocols for assessing chemical toxicity of contaminants in soil to worms assume that the test soil does not need to equilibrate with the chemical to be tested prior to the addition of the test organisms and that the chemical will exert any toxic effect upon the test organism within 28 days. Three experiments were carried out to investigate these assumptions. The first experiment was a standard toxicity test where lead nitrate was added to a soil in solution to give a range of concentrations. The mortality of the worms and the concentration of lead in the survivors were determined. The LC50s for 14 and 28 days were 5311 and 5395 microgPb g(-1)soil respectively. The second experiment was a timed lead accumulation study with worms cultivated in soil containing either 3000 or 5000 microgPb g(-1)soil. The concentration of lead in the worms was determined at various sampling times. Uptake at both concentrations was linear with time. Worms in the 5000 microg g(-1) soil accumulated lead at a faster rate (3.16 microg Pb g(-1)tissue day(-1)) than those in the 3000 microg g(-1) soil (2.21 microg Pb g(-1)tissue day(-1)). The third experiment was a timed experiment with worms cultivated in soil containing 7000 microgPb g(-1)soil. Soil and lead nitrate solution were mixed and stored at 20 degrees C. Worms were added at various times over a 35-day period. The time to death increased from 23 h, when worms were added directly after the lead was added to the soil, to 67 h when worms were added after the soil had equilibrated with the lead for 35 days. In artificially Pb-amended soils the worms accumulate Pb over the duration of their exposure to the Pb. Thus time limited toxicity tests may be terminated before worm body load has reached a toxic level. This could result in under-estimates of the toxicity of Pb to worms. As the equilibration time of artificially amended Pb-bearing soils increases the bioavailability of Pb decreases. Thus addition of worms shortly after addition of Pb to soils may result in the over-estimate of Pb toxicity to worms. The current OECD acute worm toxicity test fails to take these two phenomena into account thereby reducing the environmental relevance of the contaminant toxicities it is used to calculate.  相似文献   

7.
In the absence of local industrial sources of lead, leaded gasoline has been suggested as the major source of lead in the urban atmosphere of Rohtak town, situated near Delhi metropolitan city and with a high vehicular density. Blood lead levels were measured in 42 male volunteers from within the Rohtak area with varying degrees of exposure to vehicular exhaust. The occupationally exposed group with a daily exposure of 10-12 h in automobile workshops was found to have the highest levels of blood lead (mean value 21.26 microg dl(-1)) followed by roadside population (mean value 14.91 microg/dl(-1)). This group of people had a daily exposure of 8-10 h in their business establishments, situated at a distance of less than 5 to about 10 ft (< 1.5-c. 3.0 m) from the road with an average traffic density of 8000 vehicles day(-1). Urban residents were found to have higher blood lead levels (mean value 9.85 microg/dl(-1)) than the rural ones (mean value 3.34 microg/dl(-1)). The values were found to increase correspondingly with the increase in age and smoking habits within the particular categories of volunteers. The levels found in the present study are comparable to those reported from other major cities of India, but well within the tolerable limits as recommended by the European Economic Community.  相似文献   

8.
Background Aims, and Scope. Lead (Pb) is a naturally occurring element that poses environmental hazards when present at elevated concentration. It is being released into the environment because of industrial uses and from the combustion of fossil fuels. Hence, Pb is ubiquitous throughout global ecosystems. The existence of potentially harmful concentrations of Pb in the environment must be given full attention. Emissions from vehicles are major source of environmental contamination by Pb. Thus, it becomes imperative that concentrations of Pb and other hazardous materials in the environment not only in the Philippines, but elsewhere in the world be adequately examined in order that development of regulations and standards to minimize risk associated with these materials in urban areas is continued. The objectives of this study were: (1) to determine the levels of Pb in soil from selected urbanized cities in central region of the Philippines; (2) to identify areas with soil Pb concentration values that exceed estimated natural concentrations and allowable limits; and (3) to determine the possible sources that contribute to elevated soil Pb concentration (if any) in the study area. Methods This study was limited to the determination of Pb levels in soils of selected urbanized cities located in central region in the Philippines, namely: Site 1 – Tarlac City in Tarlac; Site 2 – Cabanatuan City in Nueva Ecija; Site 3 – Malolos City in Bulacan; Site 4 – San Fernando City in Pampanga; Site 5 – Balanga City in Bataan; and Site 6 – Olongapo City in Zambales. Soil samples were collected from areas along major thoroughfares regularly traversed by tricycles, passenger jeepneys, cars, vans, trucks, buses, and other motor vehicles. Soil samples were collected from five sampling sites in each of the study areas. Samples from the selected sampling sites were obtained approximately 2 to 3 meters from the road. Analysis of the soil samples for Pb content was conducted using an atomic absorption spectrophotometer. This study was conducted from 2003 to 2004. Since this study assumed that vehicular emission is the major source of Pb contamination in urban soil, other information which the researchers deemed to have bearing on the study were obtained such as relative quantity of each gasoline type disposed of in each city within a given period and volume of traffic in each sampling site. A survey questionnaire for gasoline station managers was prepared to determine the relative quantity of each fuel type (diesel, regular gasoline, premium gasoline, and unleaded gasoline) disposed of or sold within a given period in each study area. Results and Discussion Analysis of soil samples for Pb content showed the presence of Pb in all the soil samples collected from the 30 sampling sites in the six cities at varying concentrations ranging from 1.5 to 251 mg kg–1. Elevated levels of Pb in soil (i.e. greater than 25 mg kg–1 Pb) were detected in five out of the six cities investigated. Site 4 recorded the highest Pb concentration (73.9 ± 94.4 mg kg–1), followed by Site 6 (56.3 ± 17.1 mg kg–1), Site 3 (52.0 ± 33.1 mg kg–1), Site 5 (39.3 ± 19.0 mg kg–1), and Site 2 (38.4 ± 33.2 mg kg–1). Soil Pb concentration in Site 1 (16.8 ± 12.2 mg kg–1) was found to be within the estimated natural concentration range of 5 to 25 mg kg–1. Site 1 registered the least Pb concentration. Nonetheless, the average Pb concentration in the soil samples from the six cities studied were all found to be below the maximum tolerable limit according to World Health Organization (WHO) standards. The high Pb concentration in Site 4 may be attributed mainly to vehicular emission. Although Site 4 only ranked 3rd in total volume of vehicles, it has the greatest number of Type B and Type C vehicles combined. Included in these categories are diesel trucks, buses, and jeepneys which are considered the largest contributors of TSP (total suspended particles) and PM10 (particulate matter less than 10 microns) emissions. Conclusion Only one (San Juan in Site 4) of the thirty sampling sites recorded a Pb concentration beyond the WHO permissible limit of 100 mg kg–1. San Juan in Site 4 had a Pb concentration of >250 mg kg–1. On the average, elevated Pb concentration was evident in the soil samples from San Fernando, Olongapo, Malolos, Balanga, and Cabanatuan. The average soil Pb concentrations in these cities exceeded the maximum estimated natural soil Pb concentration of 25 mg kg–1. Average soil Pb concentration in Site 1 (16.8 mg kg–1) was well within the estimated natural concentration range of 5 to 25 mg kg–1. Data gathered from the study areas showed that elevated levels of Pb in soil were due primarily to vehicular emissions and partly to igneous activity. Recommendation and Outlook The findings of this study presented a preliminary survey on the extent of Pb contamination of soils in urban cities in central region of Philippines Island. With this kind of information on hand, government should develop a comprehensive environmental management strategy to address vehicular air pollution in urban areas, which shows as one of the most pressing environmental problems in the country. Basic to this is the continuous monitoring of Pb levels and other pollutants in air, soil, and water. Further studies should be conducted to monitor soil Pb levels in the six cities studied particularly in areas with elevated Pb concentration. The potential for harm from Pb exposure cannot be understated. Of particular concern are children who are more predisposed to Pb toxicity than adults. Phytoremediation of Pb-contaminated sites is strongly recommended to reduce Pb concentration in soil. Several studies have confirmed that plants are capable of absorbing extra Pb from soil and that some plants, grass species in particular, and can naturally absorb far more Pb than others.  相似文献   

9.
The feasibility of reducing children's exposure to lead (Pb) polluted soil in New Orleans is tested. Childcare centers (median = 48 children) are often located in former residences. The extent of soil Pb was determined by selecting centers in both the core and outlying areas. The initial 558 mg/kg median soil Pb (range 14-3692 mg/kg) decreased to median 4.1 mg/kg (range 2.2-26.1 mg/kg) after intervention with geotextile covered by 15 cm of river alluvium. Pb loading decreased from a median of 4887 μg/m(2) (454 μg/ft(2)) range 603-56650 μg/m(2) (56-5263 μg/ft(2)) to a median of 398 μg/m(2) (37 μg/ft(2)) range 86-980 μg/m(2) (8-91 μg/ft(2)). Multi-Response Permutation Procedures indicate similar (P-values = 0.160-0.231) soil Pb at childcare centers compared to soil Pb of nearby residential communities. At ~$100 per child, soil Pb and surface loading were reduced within hours, advancing an upstream intervention conceptualization about Pb exposure prevention.  相似文献   

10.
Few studies are made on the potential soil Pb burden for a small city in rural environment. Data obtained by atomic absorption spectrophotometry suggest a somewhat weak significant positive relationship (r=0.27) between increased traffic volume and roadside soil Pb content. Median soil Pb levels along the most heavily travelled roads are 320 microg g(-1) while background concentrations are 200 microg g(-1). No significant relationship is found between predominant wind direction and soil Pb content. Zones where cars idle have only slightly elevated Pb levels. Older homes have soil Pb values exceeding 1000 microg g(-1); a significant positive relationship (r=0.59) exists between increasing soil Pb and home age. Schools, which are mainly located away from heavily travelled roads and typically of brick construction, have soil Pb concentrations at background levels. In general, the small city Pb burden is lower than in major urban areas. However, soils around older homes and in special locales, such as salvage yards, have Pb levels comparable to major urban areas.  相似文献   

11.
The influence of organic ligands on the retention of lead in soil   总被引:1,自引:0,他引:1  
Schwab AP  He Y  Banks MK 《Chemosphere》2005,61(6):856-866
Organic acids are commonly produced and exuded by plant roots and soil microorganisms. Some of these organic compounds are effective chelating agents and have the potential to enhance metal mobility. The effect of citrate and salicylate on the leaching of lead in soil was investigated in a laboratory experiment. In short-term batch experiments, adsorption of lead to soil was slightly enhanced with increasing salicylate concentration (500-5000 microM) but decreased significantly in the presence of citrate. These observations suggested that citrate may enhance Pb leaching, but this was not observed in the column study. Soluble Pb in the presence and absence citrate or salicylate (up to 5000 microM) was added to soil columns at a moderate flow rate, but no Pb was observed to emerge from the soil in any of the soil columns. Rapid biodegradation of citrate in soil eliminated potential complexing ability. Breakthrough of Pb from soil was noted only when using small columns at high flow rates (>20 pore volumes per day). Under these conditions of physical and chemical non-equilibrium, citrate was not degraded and significantly enhanced Pb mobility. As in the batch adsorption experiments, the presence of salicylate reduced Pb leaching. Considering the extreme conditions required to induce Pb leaching, it is likely that Pb will remain relatively immobile in soil even in the presence of a strong complexing agent such as citrate.  相似文献   

12.
The root uptake of lead (Pb) by trees and the transfer of Pb by leaf litter deposition to the forest floor were investigated through a pot experiment with Norway spruce. Natural Pb and radio isotopic lead (210Pb) were determined in needles and twigs and in the pot soil spiked with 210Pb. Calculations of the specific activity in plant material and in the supporting pot soil showed that less than 2% of the Pb content of needles and twigs originates from root uptake and approximately 98% are deposited from the atmosphere. Atmospheric Pb has declined by a factor of 7 from 1980 to 2007 but is still a major pathway of Pb to vegetation and topsoils. The conclusion from the experiment is that the internal circulation of Pb through root uptake, translocation and litterfall, gives an insignificant input of Pb to the forest floor compared to atmospheric deposition.  相似文献   

13.
Synchrotron X-ray fluorescence has been used to study the distribution of lead in a hair sample collected from a lead smelter worker. A mathematical model was used to imitate the transverse scan signal based on the analysis volume and concentration profiles. The results suggest that the Pb originates both from ingestion and environmental exposure, however direct deposition from the environment is the more important source of hair lead. The model could apply equally to any other analysis involving a thin cylindrical sample.  相似文献   

14.
Lead phosphate formation in soils   总被引:5,自引:0,他引:5  
Pyromorphite (Pb5(PO4)3Cl) is one of the most thermodynamically stable lead minerals under the geochemical conditions prevailing in the surface environment. It is therefore expected to form in soils contaminated with Pb if sufficient phosphorus is available. Pyromorphite has previously been identified in mine-waste and industrially contaminated soils but has not previously been identified in urban soils. This paper reports on the presence of a Pb phosphate in urban and roadside soils. This phase has formed in the soil as a weathering product of Pb-bearing grains. Quantitative EDX analyses indicated that the Pb phosphate phase is pyromorphite with Ca frequently substituting for Pb between 21-31 atomic percent. However, positive identification of this phase by XRD was hindered by the deviation from pure end-member and possibly also by the poorly crystalline nature of the phase. Pyromorphite accounted for less than 2% of the total Pb in these soils. However, phosphate amendments to the soil could induce further formation of pyromorphite. As pyromorphite is a highly insoluble mineral, this may be effective in reducing the bioavailability of Pb in urban soils.  相似文献   

15.
Sequential extraction (modified BCR procedure) combined with isotope analysis has been investigated as a tool for assessing mobilisation of lead into streams at an upland catchment in NE Scotland. The maximum lead concentrations (up to 110 mg kg(-1) in air-dried soil) occurred not at the surface but at about 10 cm depth. The lowest (206)Pb/(207)Pb ratios in any profile occurred, with one exception, at 2.5-5 cm depth. In the one exception, closest to the only road in the area, significantly lower (206)Pb/(207)Pb ratios in the surface soil together with much increased chloride concentrations (in comparison to other surface waters) indicated the possible mobilisation of roadside lead and transfer to the stream. The (206)Pb/(207)Pb ratios in extractable fractions tended at depth towards the ratio measured in the residual phase but the ratios in the oxidizable fraction increased to a value higher than that of the residual phase.  相似文献   

16.
The number of species and individuals, and the total biomass of earthworms decreased with decreasing distance from a lead smelter in southern Finland, as the Pb load of the soil increased. In soils highly polluted with Pb significant interspecific differences were found in the Pb concentration and the Pb concentration factor of lumbricids, whereas in slightly Pb polluted 'control' soils there were no significant interspecific differences. Near the smelter, the Pb concentration of the endogeic Aporrectodea caliginosa was higher than in the epigeic Lumbricus rubellus and L. casteneus. Pb concentration factors of these three species were lower in the highly polluted soil than in the 'control' soil, indicating that they were able to regulate their Pb accumulation. Contradicting these field observations, of the worms from the 'control' soil but reared in highly Pb polluted soil for up to 70 days, the epigeic L. castaneus, L. rubellus and Dendrodrilus rubidus took up more Pb than did the endogeic A. caliginosa and A. rosea. They also accumulated more Pb during the rearing periods than their counterparts permanently living in the highly Pb polluted soil, indicating that besides interspecific differences in Pb accumulation there seem to be intraspecific differences as well. Acclimatization and/or genotype differences can underlie earthworms' adaptation to Pb polluted soil, where they may have dissimilar physiological pathways to cope with high soil Pb concentrations. The amount of Pb rendered available to a local food chain by a population of earthworms will depend on the ability of the worms to accumulate Pb in their tissues, which in turn, is a function of the population's history of Pb exposure. Species such as A. caligonosa, which accumulate and continuously withstand high Pb concentrations in their tissues, are most appropriate for biomonitoring.  相似文献   

17.
18.
As part of an investigation determining the trophically available fraction of metals in a model terrestrial food web, i.e., invertebrate prey to Western fence lizards (Sceloporus occidentalis), we evaluated the ability of several invertebrate prey to bioaccumulate lead and to form metals-rich granules, which are hypothesized to be non-available to predators. Crickets (Acheta domestica), tenebroid beetle larvae (Tenebrio molitor), and isopods (Porcellio scaber) were selected as model prey organisms. Lack of standard exposure methodologies for these species has presented a barrier to trophic transfer evaluations, as each species has particular requirements that create challenges for designing exposure conditions. We were able to devise exposure conditions for all three species that allow long-term exposure studies. All prey organisms accumulated lead from contaminated food, and for all species the majority of the accumulated Pb was associated with the exoskeleton (>50%), with metals-rich granules accounting for most of the remaining accumulated lead.  相似文献   

19.
Excessive application of lead arsenate pesticides in apple orchards during the early 1900s has led to the accumulation of lead and arsenic in these soils. Lead and arsenic bound to soil humic acids (HA) and soil arsenic species in a western Massachusetts apple orchard was investigated. The metal-humate binding profiles of Pb and As were analyzed with size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS). It was observed that both Pb and As bind "tightly" to soil HA molar mass fractions. The surface soils of the apple orchard contained a ratio of about 14:1 of water soluble As (V) to As (III), while mono-methyl (MMA) and di-methyl arsenic (DMA) were not detectable. The control soil contained comparatively very low levels of As (III) and As (V). The analysis of soil core samples demonstrated that As (III) and As (V) species are confined to the top 20 cm of the soil.  相似文献   

20.
Zeng LS  Liao M  Chen CL  Huang CY 《Chemosphere》2006,65(4):567-574
The effect of lead (Pb) treatment on the soil microbial activities (soil microbial biomass and soil basal respiration) and rice physiological indices were studied by greenhouse pot experiment. Pb was applied as lead acetate at six different levels in two different paddy soils, namely 0 (control), 100, 300, 500, 700, 900 mg kg-1 soil. The results showed that the application of Pb at lower level (<300 mg kg-1) as lead acetate resulted in a slight increase in soil microbial activities compared with the control, and had an inhibitory influence at high concentration (>500 mg Pb kg-1 soil), which might be the critical concentration of Pb causing a significant decline in the soil microbial activities. However, the degree of influence on soil microbial activities by Pb was related to the clay and organic matter contents of the soils. On the other hand, when the level of Pb treatments increased to 500 mg kg-1, there was ecological risk for both soil microbial activities and plants. The results also revealed that there was a consistent trend that the chlorophyll contents increased initially, and then decreased gradually with increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. In a word, soil microbial activities and rice physiological indices, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-rice system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号