首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effects of ozone (O3) exposure under different water availabilities were studied in two Mediterranean tree species: Quercus ilex and Ceratonia siliqua. Plants were exposed to different O3 concentrations in open top chambers (charcoal-filtered air (CF), non-filtered air (NF)) and non-filtered air plus 40 ppbv of O3 ((7:00–17:00 solar time) (NF+)) during 2 years, and to different water regimes (IR, sample irrigation, and WS, reduced water dose to 50%) through the last of those 2 years. AOT40 in the NF+ treatment was 59265 ppbv h (from March 1999 to August 1999) while in the NF treatment, the AOT40 was 6727 ppbv h for the same period. AOT40 was always 0 in the CF treatment. WS plants presented lower stomatal conductances and net photosynthetic rates, and higher foliar N concentrations than IR plants in both species. The irrigation treatment did not change the response trends to ozone in Q. ilex, the most sensitive species to O3 ambient concentrations, but it changed those of C. siliqua, the least sensitive species, since its ozone-fumigated WS plants did not decrease their net photosynthetic rates nor their biomass accumulation as it happened to its ozone-fumigated IR plants. These results show interspecific variations in O3 sensitivity under different water availabilities.  相似文献   

2.
Ambient aerometric data were used to predict whether ozone formation at specific times and locations in central California was limited by the availability of volatile organic compounds (VOC) or oxides of nitrogen (NOx). The predictions were compared with differences between mean weekday and weekend peak ozone values. The comparison with weekend and weekday ozone levels provided a means for empirically investigating the effects of VOC and NOx reductions on ozone formation, because the relative proportions and levels of ozone precursor species were significantly different on weekends than on weekdays. Weekend NOx levels averaged 27 percent lower than weekday levels at the time of the peak ozone hour. Daytime weekend levels of VOC species were also consistently lower than weekday values throughout the region, though the differences between weekends and weekdays were not always statistically significant (p<0.05). Site-to-site differences between weekend and weekday mean peak hourly ozone were related to whether ozone formation was VOC- or NOx-limited.  相似文献   

3.
Plant responses to enhanced ozone levels have been studied in two pairs of evergreen-deciduous species (Pistacia terebinthus vs. P. lentiscus; Viburnum lantana vs. V. tinus) in Open Top Chambers. Ozone induced widespread visible injury, significantly reduced CO2 assimilation and stomatal conductance (gs), impaired Rubisco efficiency and regeneration capacity (Vc,max,Jmax) and altered fluorescence parameters only in the deciduous species. Differences in stomatal conductance could not explain the observed differences in sensitivity. In control plants, deciduous species showed higher superoxide dismutase (SOD) activity than their evergreen counterparts, suggesting metabolic differences that could make them more prone to redox imbalances. Ozone induced increases in SOD and/or peroxidase activities in all the species, but only evergreens were able to cope with the oxidative stress. The relevancy of these results for the effective ozone flux approach and for the current ozone Critical Levels is also discussed.  相似文献   

4.
Gas exchange responses to static and variable light were tested in three species: snap bean (Phaseolus vulgaris, two cultivars), California black oak (Quercus kelloggii), and blue oak (Q. douglasii). The effects of 1-month (snap beans) and 2-month (oaks) O3 (ozone) exposure (70 ppb over 8 h per day in open-top chambers) were investigated. A delay in stomatal responses (i.e., ‘sluggish’ responses) to variable light was found to be both an effect of O3 exposure and a reason for increased O3 sensitivity in snap bean cultivars, as it implied higher O3 uptake during times of disequilibrium. Sluggishness increased the time to open (thus limiting CO2 uptake) and close stomata (thus increasing transpirational water loss) after abrupt changes in light level. Similar responses were shown by snap beans and oaks, suggesting that O3-induced stomatal sluggishness is a common trait among different plant physiognomic classes.  相似文献   

5.
We aimed to verify whether hydrogen peroxide (H2O2) accumulation and cell death are detected early in three bioindicators of ozone (O3), Nicotiana tabacum ‘Bel-W3’, Ipomoea nil ‘Scarlet O’Hara’ and Psidium guajava ‘Paluma’, and whether environmental factors also affect those microscopic markers. The three species were exposed to chronic levels of O3 in a subtropical area and a histo-cytochemical technique that combines 3,3′-diaminobenzidine (DAB) with Evans blue staining was used in the assessments. The three species accumulated H2O2, but a positive correlation with O3 concentration was only observed in N. tabacum. A positive correlation between O3 and cellular death was also observed in N. tabacum. In I. nil and P. guajava, environmental factors were responsible for symptoms at the microscopic level, especially in P. guajava. We conclude that the most appropriate and least appropriate bioindicator plant for O3 monitoring in the subtropics are N. tabacum ‘Bel-W3’ and P. guajava ‘Paluma’, respectively.  相似文献   

6.
Seven species from two contrasting wetlands, an upland bog and a lowland rich fen in North Wales, UK, were exposed to elevated ozone (150 ppb for 5 days and 20 ppb for 2 days per week) or low ozone (20 ppb) for four weeks in solardomes. The rich fen species were: Molinia caerulea, Juncus subnodulosus, Potentilla erecta and Hydrocotyle vulgaris and the bog species were: Carex echinata, Potentilla erecta and Festuca rubra. Senescence significantly increased under elevated ozone in all seven species but only Molinia caerulea showed a reduction in biomass under elevated ozone. Decomposition rates of plants exposed to elevated ozone, as measured by carbon dioxide efflux from dried plant material inoculated with peat slurry, increased for Potentilla erecta with higher hydrolytic enzyme activities. In contrast, a decrease in enzyme activities and a non-significant decrease in carbon dioxide efflux occurred in the grasses, sedge and rush species.  相似文献   

7.
Ozone (O3) is a toxic secondary pollutant able to cause an intense oxidative stress that induces visual symptoms on sensitive plant species. Controlled fumigation experiment was conducted with the aim to verify the O3 sensibility of three tropical species: Piptadenia gonoachanta (Mart.) Macbr. (Fabaceae), Astronium graveolens Jacq. (Anacardiaceae), and Croton floribundus Spreng. (Euphorbiaceae). The microscopical features involved in the oxidative stress were recognized based on specific histochemical analysis. The three species showed visual symptoms, characterized as necrosis and stippling between the veins, mostly visible on the adaxial leaf surface. All the studied species presented hypersensitive-like response (HR-like), and peroxide hydrogen accumulation (H2O2) followed by cell death and proanthocyanidin oxidation in P. gonoachanta and A. graveolens. In P. gonoachanta, a decrease in chlorophyll autofluorescence occurred on symptomatic tissues, and in A. graveolens and C. floribundus, a polyphenol compound accumulation occurred. The responses of Brazilian native species were similar to those described for sensitive species from temperate climate, and microscopical markers may be useful for the detection of ozone symptoms in future studies in the field.  相似文献   

8.
A three-dimensional global chemical tracer model and a radiation transfer model have been used to study the role of NOx emissions for radiative forcing of climate. Through production of tropospheric O3, NOx emissions lead to positive radiative forcing and warming. But by affecting the concentration of OH radicals, NOx also reduces the levels of CH4, thereby giving negative forcing and cooling. The lifetime of NOx varies from hours to days, giving large spatial variations in the levels of NOx. We have selected geographical regions representing different chemical and physical conditions, and chemical and radiative effects of reducing NOx emissions by 20% in each region are studied. Due to nonlinearities in the O3 chemistry as well as differences in convective activity, there are large geographical differences in the effect of NOx on O3 as well as variations in the annual profile of the changes. The effect of NOx emissions on methane is also found to depend on the localisation of the emissions. The calculated ozone and methane forcing are of similar magnitude but of opposite sign. The methane effect acts on a global scale with a delay of approximately a decade, while the ozone effect is of regional character and occurs during weeks.  相似文献   

9.
The effect of ozone on leaf gas diffusion was investigated by analyzing the stable oxygen isotopic signatures (δ18O) in leaves of Holcus lanatus L., Plantago lanceolata L., Ranunculus friesianus (Jord.), and Trifolium pratense L. grown in temperate, semi-natural grassland. Dried material from plants exposed to ambient or elevated ozone levels in a long-term free-air experiment was sampled in 2002 and 2003. A general increase in δ18O in elevated ozone indicated increased limitation to gas diffusion, which was strongest during the driest and warmest period in 2003. In three out of four species, the increase in δ18O paralleled an increase in δ13C measured earlier in the same samples, meaning that the dominant effect of ozone was on gas diffusion and not on CO2 fixation. Only in R. friesianus, ozone affected both processes simultaneously. It is concluded that elevated ozone not only affects productivity, but also the water status of important component species of grassland communities.  相似文献   

10.
Comparisons were made between the predictions of six photochemical air quality simulation models (PAQSMs) and three indicators of ozone response to emission reductions: the ratios of O3/NOz and O3/NOy and the extent of reaction. The values of the two indicator ratios and the extent of reaction were computed from the model-predicted mixing ratios of ozone and oxidized nitrogen species and were compared to the changes in peak 1 and 8 h ozone mixing ratios predicted by the PAQSMs. The ozone changes were determined from the ozone levels predicted for base-case emission levels and for reduced emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx). For all simulations, the model-predicted responses of peak 1 and 8 h ozone mixing ratios to VOC or NOx emission reductions were correlated with the base-case extent of reaction and ratios of O3/NOz and O3/NOy. Peak ozone values increased following NOx control in 95% (median over all simulations) of the high-ozone (>80 ppbv hourly mixing ratio in the base-case) grid cells having mean afternoon O3/NOz ratios less than 5 : 1, O3/NOy less than 4 : 1, or extent less than 0.6. Peak ozone levels decreased in response to NOx reductions in 95% (median over all simulations) of the grid cells having peak hourly ozone mixing ratios greater than 80 ppbv and where mean afternoon O3/NOz exceeded 10 : 1, O3/NOy was greater than 8 : 1, or extent exceeded 0.8. Ozone responses varied in grid cells where O3/NOz was between 5 : 1 and 10 : 1, O3/NOy was between 4 : 1 and 8 : 1, or extent was between 0.6 and 0.8. The responses in such grid cells were affected by ozone responses in upwind grid cells and by the changes in ozone levels along the upwind boundaries of the modeling domains.  相似文献   

11.
12.
We measured the soil and leaf CO2 exchange in Quercus ilex and Phillyrea latifolia seasonally throughout the year in a representative site of the Mediterranean region, a natural holm oak forest growing in the Prades Mountains in southeastern Catalonia. In the wet seasons (spring and autumn), we experimentally decreased soil moisture by 30%, by excluding rainfall and water runoff in 12 plots, 1×10 m, and left 12 further plots as controls. Our aim was to predict the response of these gas exchanges to the drought forecasted for the next decades for this region by GCM and ecophysiological models.Annual average soil CO2 exchange rate was 2.27±0.27 μmol CO2 m−2 s−1. Annual average leaf CO2 exchange rates were 8±1 and 5±1 μmol m−2 s−1 in Q. ilex and P. latifolia, respectively. Soil respiration rates in control treatments followed a seasonal pattern similar to photosynthetic activity. They reached maximum values in spring and autumn (2.5–3.8 μmol m−2 s−1 soil CO2 emission rates and 7–15 μmol m−2 s−1 net photosynthetic rates) and minimum values (almost 0 for both variables) in summer, showing that soil moisture was the most important factor driving the soil microbial activity and the photosynthetic activity of plants. In autumn, drought treatment strongly decreased net photosynthesis rates and stomatal conductance of Q. ilex by 44% and 53%, respectively. Soil respiration was also reduced by 43% under drought treatment in the wet seasons. In summer there were larger soil CO2 emissions in drought plots than in control plots, probably driven by autotrophic (roots) metabolism. The results indicate that leaf and soil CO2 exchange may be strongly reduced (by ca. 44%) by the predicted decreases of soil water availability in the next decades. Long-term studies are needed to confirm these predictions or to find out possible acclimation of those processes.  相似文献   

13.
UV-B radiation is a driving factor for the chemistry of the polluted boundary layer. It is involved in the formation of radicals and consequently influences the formation and concentration of photo-oxidants. The 3-D mesoscale photochemical Metphomod model was employed to study the effect of changes in UV-B radiation on the concentration of photo-oxidants in the boundary layer over the Swiss Plateau. The model chemistry is based on the RACM mechanism and a two-stream approximation of radiative transfer. A summer (July) and a late winter (February) episode were simulated. All simulations were replicated with relatively large changes in the prescribed total ozone. The results for an increase in UV-B radiation show increases in PAN, HNO3, and ozone at noon in NOx-rich areas and a decrease in NOx. In NOx-poor areas in summer the effect on ozone is weak and has a negative sign, the main effect being an increase in H2O2. The spatial variability of NOx concentrations in the Swiss Plateau in the summer case is such that the effect of increased UV-B radiation on ozone is spatially variable. The effect on the ozone production rate in summer is strongest positive at the surface in the NOx-rich regions in the morning and strongest negative at some altitude above ground in NOx-poor regions in the early afternoon. In the winter episode, NOx-rich conditions are found almost everywhere on the Swiss Plateau, the effect of increased UV-B radiation on the ozone production rate is positive all day long and is largest at 300 m above ground at noon. In this case, in contrast to the summer case, the increase in ozone is carried over to the next day. The model results for ozone are in good agreement with results from a case study and a time series analysis of surface ozone measurements. We estimate the effect of day-to-day changes in total ozone on surface ozone peaks to range from 4 to 6 ppb at most.  相似文献   

14.
We studied the responses of micropropagated, northern provenances of downy, mountain and silver birches to elevated ozone (O3) and changing climate using open-top chambers (OTCs). Contrary to our hypothesis, northern birches were sensitive to O3, i.e. O3 levels of 31-36 ppb reduced the leaf and root biomasses by −10%, whereas wood biomass was affected to a lesser extent. The warmer and drier OTC climate enhanced growth in general, though there were differences among the species and clones, e.g. in bud burst and biomass production. Inter- and intra-specific responses to O3 and changing climate relate to traits such as allocation patterns between the above- and belowground parts (i.e. root/shoot ratio), which further relate to nutrient and water economy. Our experiments may have mimicked future conditions quite well, but only long-term field studies can yield the information needed to forecast responses at both tree and ecosystem levels.  相似文献   

15.
Red clover (Trifolium pratense L.), an important feed crop in many parts of the world, is exposed to elevated ozone over large areas. Plants can limit ozone-induced damages by various defence mechanisms. In this work, changes in the concentrations of antioxidant phenolic compounds induced by slightly elevated levels of ozone were determined in red clover leaves by high-performance liquid chromatography and mass spectrometry. 31 different phenolics were identified and the most abundant isoflavones and flavonoids were biochanin A glycoside malonate (G-M), formononetin-G-M and quercetin-G-M. Elevated ozone (mean 32.4 ppb) increased the total phenolic content of leaves and also had minor effects on the concentrations of individual compounds. Elevated ozone increased the net photosynthesis rate of red clover leaves before visible injuries by 21-23%. This study thus suggests that the concentrations of phenolics in red clover leaves change in response to slightly elevated ozone levels.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) were determined by the GC-MS chromatography in the leaves of Quercus ilex L., an evergreen Mediterranean oak, to monitor the degree of pollution in the urban area of Naples compared to remote areas. Leaf samples were collected in July 1998 from four urban parks, six roadsides and two sites in remote areas. The total PAH contents in Q. ilex leaves ranged from 106.6 in a control site to 4607.5 ng/g d.w. along a road with a high traffic flow. The mean concentration factors (urban/control) were 3.8 for the parks and 15 for the roads. The contribution of carcinogenic PAHs (benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene, indeno[1,2,3-c,d]pyrene) was higher in urban area and differed according to the site, ranging from 6.7% to 21.3%. The total PAH burden in control sites was dominated by the low molecular weight PAHs, whilst along the urban roads fluoranthene, pyrene and benz[a]anthracene among the measured PAHs showed the highest values. PAHs were positively correlated (P<0.01) to trace metals measured in a previous study.  相似文献   

17.
Modelling ozone (O3) deposition for impact risk assessment is still poorly developed for herbaceous vegetation, particularly for Mediterranean annual pastures. High inter-annual climatic variability in the Mediterranean area makes it difficult to develop models characterizing gas exchange behaviour and air pollutant absorption suitable for risk assessment. This paper presents a new model to estimate stomatal conductance (gs) of Trifolium subterraneum, a characteristic species of dehesa pastures. The MEDPAS (MEDiterranean PAStures) model couples 3 modules estimating soil water content (SWC), vegetation growth and gs. The gs module is a reparameterized version of the stomatal component of the EMEP DO3SE O3 deposition model. The MEDPAS model was applied to two contrasting years representing typical dry and humid springs respectively and with different O3 exposures. The MEDPAS model reproduced realistically the gs seasonal and inter-annual variations observed in the field. SWC was identified as the major driver of differences across years. Despite the higher O3 exposure in the dry year, meteorological conditions favoured 2.1 times higher gs and 56 day longer growing season in the humid year compared to the dry year. This resulted in higher ozone fluxes absorbed by T. subterraneum in the humid year. High inter-family variability was found in gas exchange rates, therefore limiting the relevance of single species O3 deposition flux modelling for dehesa pastures. Stomatal conductance dynamics at the canopy level need to be considered for more accurate O3 flux modelling for present and future climate scenarios in the Mediterranean area.  相似文献   

18.
The effect of nitrogen on biomass production, shoot elongation and relative density of the mosses Pleurozium schreberi, Hylocomium splendens and Dicranum polysetum was studied in a chamber experiment. Monocultures were exposed to 10 N levels ranging from 0.02 to 7.35 g N m−2 during a 90-day period. All the growth responses were unimodal, but the species showed differences in the shape parameters of the curves. Hylocomium and Pleurozium achieved optimum biomass production at a lower N level than Dicranum. Pleurozium had the highest biomass production per tissue N concentration. Tolerance to N was the widest in Dicranum, whereas Hylocomium had the narrowest tolerance. Dicranum retained N less efficiently from precipitation than the other two species, which explained its deviating response. All species translocated some N from parent to new shoots. The results emphasize that the individual responses of bryophytes to N should be known when species are used as bioindicators.  相似文献   

19.
We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (gwv), foliar injury, and leaf nitrogen concentration (NL) to tropospheric ozone (O3) on Prunus serotina seedlings grown in open-plots (AA) and open-top chambers, supplied with either carbon-filtered or non-filtered air. We found significant variation in A, gwv, foliar injury, and NL (P < 0.05) among O3 treatments. Seedlings in AA showed the highest A and gwv due to relatively low vapor pressure deficit (VPD). Older leaves showed significantly lower A, gwv, NL, and higher foliar injury (P < 0.001) than younger leaves. Leaf age affected the response of A, gwv, and foliar injury to O3. Both VPD and NL had a strong influence on leaf gas exchange. Foliar O3-induced injury appeared when cumulative O3 uptake reached 8-12 mmol m−2, depending on soil water availability. The mechanistic assessment of O3-induced injury is a valuable approach for a biologically relevant O3 risk assessment for forest trees.  相似文献   

20.
This study aimed to predict monthly columnar ozone (O3) in Peninsular Malaysia by using data on the concentration of environmental pollutants. Data (2003–2008) on five atmospheric pollutant gases (CO2, O3, CH4, NO2, and H2O vapor) retrieved from the satellite Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) were employed to develop a model that predicts columnar ozone through multiple linear regression. In the entire period, the pollutants were highly correlated (R?=?0.811 for the southwest monsoon, R?=?0.803 for the northeast monsoon) with predicted columnar ozone. The results of the validation of columnar ozone with column ozone from SCIAMACHY showed a high correlation coefficient (R?=?0.752–0.802), indicating the model’s accuracy and efficiency. Statistical analysis was utilized to determine the effects of each atmospheric pollutant on columnar ozone. A model that can retrieve columnar ozone in Peninsular Malaysia was developed to provide air quality information. These results are encouraging and accurate and can be used in early warning of the population to comply with air quality standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号