首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tritium is routinely released by the Chalk River Laboratories (CRL) nuclear facilities. Three International HT release experiments have been conducted at the CRL site in the past. The site has not been disturbed since the last historical atmospheric testing in 1994 and presents an opportunity to assess the retention of tritium in soil. This study is devoted to the measurement of HTO and OBT activity concentration profiles in the subsurface 25 cm of soil.In terms of soil HTO, there is no evidence from the past HT release experiments that HTO was retained. The HTO activity concentration in the soil pore water appears similar to concentrations found in background areas in Ontario. In contrast, OBT activity concentrations in soil at the same site were significantly higher than HTO activity concentrations in soil. Elevated OBT appears to reside in the top layer of the soil (0-5 cm). In addition, OBT activity concentrations in the top soil layer did not fluctuate much with season, again, quite in contrast with soil HTO. This result suggests that OBT activity concentrations retained the signature of the historical tritium releases.  相似文献   

2.
To improve understanding of environmental tritium behaviour, the International Atomic Energy Agency (IAEA) included a Tritium and C-14 Working Group (WG) in its EMRAS (Environmental Modelling for Radiation Safety) program. One scenario considered by the WG involved the prediction of time-dependent tritium concentrations in freshwater mussels that were subjected to an abrupt increase in ambient tritium levels. The experimental data used in the scenario were obtained from a study in which freshwater Barnes mussels (Elliptio complanata) were transplanted from an area with background tritium concentrations to a small Canadian Shield lake that contains elevated tritium. The mussels were then sampled over 88 days, and concentrations of free-water tritium (HTO) and organically-bound tritium (OBT) were measured in the soft tissues to follow the build-up of tritium in the mussels over time.The HTO concentration in the mussels reached steady state with the concentration in lake water within one or two hours. Most models predicted a longer time (up to a few days) to equilibrium. All models under-predicted the OBT concentration in the mussels one hour after transplantation, but over-predicted the rate of OBT formation over the next 24 h. Subsequent dynamics were not well modelled, although all participants predicted OBT concentrations that were within a factor of three of the observation at the end of the study period. The concentration at the final time point was over-predicted by all but one of the models. The relatively low observed concentration at this time was likely due to the loss of OBT by mussels during reproduction.  相似文献   

3.
This paper describes the results of a model intercomparision exercise for predicting tritium transport through foodchains. Modellers were asked to assume that farmland was exposed for one hour to an average concentration in air of 104 MBq tritium m-3. They were given the initial soil moisture content and 30 days of hourly averaged historical weather and asked to predict HTO and OBT concentrations in foods at selected times up to 30 days later when crops were assumed to be harvested. Two fumigations were postulated, one at 10.00 h (i.e., in day-light), and the other at 24.00 h (i.e., in darkness).Predicted environmental media concentrations after the daytime exposure agreed within an order of magnitude in most cases. Important sources of differences were variations in choices of numerical values for transport parameters. The different depths of soil layers used in the models appeared to make important contributions to differences in predictions for the given scenario. Following the night-time exposure, however, greater differences in predicted concentrations appeared. These arose largely because of different ways key processes were assumed to be affected by darkness. Uptake of HTO by vegetation and the rate it is converted to OBT were prominent amongst these processes. Further research, experimental data and modelling intercomparisons are required to resolve some of these issues.  相似文献   

4.
A numerical model simulating transport of tritiated water (HTO) in atmosphere-soil-vegetation system, and, accumulation of organically bound tritium (OBT) in vegetative leaves was developed. Characteristic of the model is, for calculating tritium transport, it incorporates a dynamical atmosphere-soil-vegetation model (SOLVEG-II) that calculates transport of heat and water, and, exchange of CO2. The processes included for calculating tissue free water tritium (TFWT) in leaves are HTO exchange between canopy air and leaf cellular water, root uptake of aqueous HTO in soil, photosynthetic assimilation of TFWT into OBT, and, TFWT formation from OBT through respiration. Tritium fluxes at the last two processes are input to a carbohydrate compartment model in leaves that calculates OBT translocation from leaves and allocation in them, by using photosynthesis and respiration rate in leaves. The developed model was then validated through a simulation of an existing experiment of acute exposure of grape plants to atmospheric HTO. Calculated TFWT concentration in leaves increased soon after the start of HTO exposure, reaching to equilibrium with the atmospheric HTO within a few hours, and then rapidly decreased after the end of the exposure. Calculated non-exchangeable OBT amount in leaves linearly increased during the exposure, and after the exposure, rapidly decreased in daytime, and, moderately nighttime. These variations in the calculated TFWT concentrations and OBT amounts, each mainly controlled by HTO exchange between canopy air and leaf cellular water and by carbohydrates translocation from leaves, fairly agreed with the observations within average errors of a factor of two.  相似文献   

5.
The paper summarizes impacts of the Temelín Nuclear Power Plant (NPP) on the Vltava and Labe River basins. The study is based on the results of long-term monitoring carried out before the plant operation (1989–2000), and subsequently during the plant operation (2001–2005). In the first period, the main objective was to determine background radionuclide levels remaining in the environment after global fallout and due to the Chernobyl accident. A decrease in the concentrations of 90Sr, 134Cs and 137Cs, which was observed before the plant operation, continued also during the subsequent period. Apart from tritium, the results of the observation did not indicate any impacts of the plant on the concentrations of activation and fission products in the hydrosphere. The annual average tritium concentrations in the Vltava River were in agreement with predicted values. The maximum annual average tritium concentration (13.5 Bq L−1) was observed in 2004 downstream from the wastewater discharge in the Vltava River at Solenice. Estimated radiation doses for adults due to intakes of river water as drinking water contaminated by tritium are below 0.1 μSv y−1.  相似文献   

6.
The present study aimed at assessing the activity of natural radionuclides (3H) and hydrochemical parameters (viz., pH, EC, F, NO3, Cl, Ca2+, Mg2+) in the groundwater used for domestic and irrigation purposes in the Varahi and Markandeya river basins to understand the levels of hydrochemical parameters in terms of the relative age(s) of the groundwater contained within the study area. The recorded environmental 3H content in Varahi and Markandeya river basins varied from 1.95 ± 0.25 T.U. to 11.35 ± 0.44 T.U. and 1.49 ± 0.75 T.U. to 9.17 ± 1.13 T.U. respectively. Majority of the samples in Varahi (93.34%) and Markandeya (93.75%) river basins being pre-modern water with modern recharge, significantly influenced by precipitation and river inflowing/sea water intrusion. The EC-Tritium and Tritium-Fluoride plots confirmed the existence of higher total dissolved solids (SEC > 500 μS/cm) and high fluoride (MAC > 1.5 mg/L) in groundwater of Markandeya river basin, attributed to relatively longer residence time of groundwater interacting with rock formations and vice versa in case of Varahi river basin. The tritium-EC and tritium-chloride plots indicated shallow and deep circulating groundwater types in Markandeya river basin and only shallow circulating groundwater type in Varahi river basin. Increasing Mg relative to Ca with decreasing tritium indicated the influence of incongruent dissolution of a dolomite phase. The samples with high nitrate (MAC > 45 mg/L) are waters that are actually mixtures of fresh water (containing very high nitrate, possibly from agricultural fertilizers) and older ‘unpolluted’ waters (containing low nitrate levels), strongly influenced by surface source.  相似文献   

7.
Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m−3 in summer to about 800-1400 Bq m−3 in winter, indicating winter ventilation rates varying from 0.6 to 2.5 × 10−6 s−1. Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from −7 to −26 Bq m−3 hPa−1. This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes.  相似文献   

8.
The release of tritiated water (HTO) to the atmosphere during the winter can contribute significantly to snow contamination and to water-soil-plant contamination after the spring thaw. The dose significance of such a release depends on the persistence of tritiated water in the snowpack, which is primarily controlled by the HTO diffusion process in snow and the rate of re-emission into the atmosphere from the snowpack surface. Monitoring data collected after an acute winter release at Chalk River Laboratories and data obtained in winter over a chronically contaminated area were analyzed to estimate the diffusion coefficient of HTO in the snowpack. Under conditions of cold and dry snow, the diffusion coefficient lay in the range 1-2 × 10−10 m2 s−1, an order of magnitude lower than diffusion in water but an order of magnitude higher than self-diffusion in ice. These results confirm the theoretical predictions (Bales, 1991). Values up to six times higher were found for warmer periods and just before spring melt, when other processes contribute to profile evolution. The low diffusion rate of tritium in cold, dry snow means that tritium remains in the snowpack throughout the winter, to be released during spring thaw to potentially contaminate surface water, soil and crops.  相似文献   

9.
To simulate an acute exposure of Chinese cabbage and radish plants to airborne HTO, the potted plants were exposed to HTO vapor under semi-outdoor conditions for 1h at different times from the early to late growth stages. The plants were grown outdoors and the plant tritium was measured at the end of an exposure (h(0)) and at harvest. The leaf tissue free water tritium (TFWT) concentrations at h(0) were considerably lower than estimated equilibrium concentrations. In the leaves of Chinese cabbage, the exposure at the earlier growth stage generally ended with a higher TFWT concentration. Such a tendency was not apparent either in the leaves or roots of radish. On the other hand, the earlier stage exposure gave rise to lower TFWT concentrations at the harvest of both crops. For the OBT (organically bound tritium), however, the same occurred only in the Chinese cabbage leaves. During the period between the exposure and harvest, the TFWT concentrations reduced by factors of up to 1.1 x 10(6) for the Chinese cabbage leaves and 1.3 x 10(4) for the radish roots. Based on the activity ratios of OBT to TFWT at harvest, it is estimated that OBT mostly contributes much more to the ingestion dose than TFWT does.  相似文献   

10.
Human health burdens associated with long-term exposure to particulate matter (PM) are substantial. The metrics currently recommended by the World Health Organization for quantification of long-term health-relevant PM are the annual average PM10 and PM2.5 mass concentrations, with no low concentration threshold. However, within an annual average, there is substantial variation in the composition of PM associated with different sources. To inform effective mitigation strategies, therefore, it is necessary to quantify the conditions that contribute to annual average PM10 and PM2.5 (rather than just short-term episodic concentrations). PM10, PM2.5, and speciated water-soluble inorganic, carbonaceous, heavy metal and polycyclic aromatic hydrocarbon components are concurrently measured at the two UK European Monitoring and Evaluation Programme (EMEP) ‘supersites’ at Harwell (SE England) and Auchencorth Moss (SE Scotland). In this work, statistical analyses of these measurements are integrated with air-mass back trajectory data to characterise the ‘chemical climate’ associated with the long-term health-relevant PM metrics at these sites. Specifically, the contributions from different PM concentrations, months, components and geographic regions are detailed. The analyses at these sites provide policy-relevant conclusions on mitigation of (i) long-term health-relevant PM in the spatial domain for which these sites are representative, and (ii) the contribution of regional background PM to long-term health-relevant PM.At Harwell the mean (± 1 sd) 2010–2013 annual average concentrations were PM10 = 16.4 ± 1.4 μg m 3 and PM2.5 = 11.9 ± 1.1 μg m 3 and at Auchencorth PM10 = 7.4 ± 0.4 μg m 3 and PM2.5 = 4.1 ± 0.2 μg m 3. The chemical climate state at each site showed that frequent, moderate hourly PM10 and PM2.5 concentrations (defined as approximately 5–15 μg m 3 for PM10 and PM2.5 at Harwell and 5–10 μg m 3 for PM10 at Auchencorth) determined the magnitude of annual average PM10 and PM2.5 to a greater extent than the relatively infrequent high, episodic PM10 and PM2.5 concentrations. These moderate PM10 and PM2.5 concentrations were derived across the range of chemical components, seasons and air-mass pathways, in contrast to the highest PM concentrations which tended to associate with specific conditions. For example, the largest contribution to moderate PM10 and PM2.5 concentrations – the secondary inorganic aerosol components, specifically NO3 – were accumulated during the arrival of trajectories traversing the spectrum of marine, UK, and continental Europe areas. Mitigation of the long-term health-relevant PM impact in the regions characterised by these two sites requires multilateral action, across species (and hence source sectors), both nationally and internationally; there is no dominant determinant of the long-term PM metrics to target.  相似文献   

11.
Twenty-one years after the Chernobyl accident, lichen and moss samples were collected from the Ordu province, which was already chosen for a related study some years ago. It was observed that 137Cs activity concentration ranged from 31 to 469 Bq kg−1 in the moss and from 132 to 1508 Bq kg−1 in the lichen samples. The decrease of the activity concentrations in the present measurements (2007) relative to those in 1997 (over a period of 10 y) indicated ecological half-lives between 1.8 and 10.4 y for the moss and between 2.1 and 13.7 y for the lichen samples. It was observed that 137Cs was still eminent in the area studied. Moreover, 40K activity concentrations and K element concentrations were measured and their relationships were discussed.  相似文献   

12.
The assembling of a system for field sampling and activity concentration measurement of radon dissolved in groundwater is described. Special attention is given in presenting the calibration procedure to obtain the radon activity concentration in groundwater from the raw counting rate registered in a portable scintillation detector and in establishing the precision of the activity concentration measurements. A field procedure was established and the system tested during one year of monthly observations of 222Rn activity concentration in groundwater drawn from two wells drilled on metamorphic rocks exposed at Eastern São Paulo State, Brazil. The observed mean 222Rn activity concentrations are 374 Bq/dm3 in one well and about 1275 Bq/dm3 in the other one. In both wells the 222Rn activity concentrations showed a seasonal variation similar to variations previously reported in the literature for the same region.  相似文献   

13.
Tritium occurs in nature in trace amounts, but its concentration is changing due to natural and artificial sources. Studies focusing on natural tritium have to take into account the effect of artificial sources. Also, the impact of tritium is an important issue in environmental protection, e.g. in connection with the emissions from nuclear power plants. The present work focuses on the rain washout of tritium emitted from the Paks nuclear power plant in Hungary. Rainwater collectors were placed around the plant and after a period of precipitation, rainwater was collected and analysed for tritium content. Samples were analysed using low-level liquid scintillation counting, with some also subject to the more accurate 3He ingrowth method. The results clearly show the trace of the tritium plume emitted from the plant; however, values are only about one order of magnitude higher than environmental background levels. A washout model was devised to estimate the distribution of tritium around the plant. The model gives slightly higher concentrations than those measured in the field, but in general the agreement is satisfactory. The modelled values demonstrate that the effect of the plant on rainwater tritium levels is negligible over a distance of some kilometres.  相似文献   

14.
Tritium (3H or T) is one of the major radionuclides released by nuclear power plants (NPP) into rivers. However, tritiated water (HTO) flux from water to air is seldom considered when assessing health effects of such releases. The aim of this paper is to present the result of a research program, called LORA, conducted on the Loire River (France). To improve our understanding of HTO flux from surface water to air, three field campaigns were organised during the NPP’s radioactive releases to measure simultaneously the activity concentrations in air on the riverbank, using an innovative system, and in river water. The measurements showed that during radioactive releases, water vapour was enriched in 3H. These results were used to calibrate exchange velocities. The average of these estimated exchange velocities was more than one order of magnitude higher than those calculated in the literature from indoor experiments. The variability of these values was also larger, showing that outdoor studies cover a wide range of conditions influencing HTO flux. No correlation was observed between exchanges velocities and meteorological conditions. However, there was a significant difference between day and night with a higher value observed during the day. Two approaches used to calculate HTO evaporation from water (i.e. the approach based on water evaporation and the approach considering that HTO follows its own concentration gradient) were included in a hydrodynamic model, which was used to evaluate HTO air activity along the Loire River. In conclusion, only the approach considering that HTO follows its own gradient led to a good agreement between measurements and predictions. A one-year simulation was done to estimate the contribution of this process to the dose. Its contribution can be considered as negligible in this case compared to the other pathways such as ingestion of water or foodstuffs.  相似文献   

15.
Trihalomethanes (THMs, namely, CHCl3, CHCl2Br, CHClBr2 and CHBr3) are disinfection by-products that are present in drinking water. These toxic chemicals are also present in meat, dairy products, vegetables, baked goods, beverages and other foods, although information regarding their concentrations and origin is very limited. This study investigates sorption of THMs occurring during rinsing and cooking of foods and the significance of food as an exposure source.Initial estimates of THM uptake were measured in experiments representing rinsing with tap water at 25 C using nine types of food, and for cooking in tap water at 90 C for fourteen other foods. A subset of foods was then selected for further study over a range of THM concentrations (23.7–118.7 μg/l), temperatures (25 C and 90 C), food concentrations (0.2–1.4, food weight: water weight), and contact times (5–240 min). Data were analyzed using regression and exponential models, and diffusion models were used to help explain the trends of THM uptake.Among vegetables, sorbed THM concentrations at 25 C were 213 to 774 ng/g for CHCl3, 53 to 609 ng/g for CHCl2Br, and 150–845 ng/g for CHClBr2. Meats at 90 C tended to have higher concentrations, e.g., 870–2634 ng/g for CHCl3. Sorbed concentrations increased with contact time and THM concentration, and decreased with food concentration in rinsing tests (using spinach, iceberg-head lettuce and cauliflower) and cooking tests (using tomato, potato, beef and miso–tofu soup). For most foods, THM uptake was diffusion limited and several hours were needed to approach steady-state levels. Swelling, hydrolysis and other physical and chemical changes in the food can significantly affect sorption. Screening level estimates for CHCl3 exposures, based on experimental results and typical food consumption patterns, show that uptake via foods can dominate that due to direct tap water consumption, suggesting the importance of sorption and the need for further evaluation of THM intake due to foods.  相似文献   

16.
Varioys analytical methodologies for the monitoring of formaldehyde (CH2O) concentrations in domestic environments have been developed and evaluated. A modified CEA Instruments, Inc., analyzer has near-real-time CH3O-specific analysis capability with an 0.01 mg/m3 detection limit. A solid sorbent, 13X molecular sieve has been utilized in a pumped collection unit with a demonstrated 0.03–12.5 mg/m3 linear dynamic range using sampling periods of ≤ 15 min. The development of screening-type techniques has included (1) a semipermeable-membrane passive sampler for measurements of average CH2O concentrations over 8–24-h periods, and (2) a visual colorimetric analysis method for semiquantitative CH2O determinations using solid chemical reagents. A preliminary field evaluation has been completed. The results show excellent agreement between the new CH2O monitoring methods and a reference sampling and analysis technique. A generation apparatus for the production of CH2O vapor is also reported with a demonstrated linear dynamic range between 0.003 and 12.5 mg/m3.  相似文献   

17.
Polybrominated diphenyl ethers (PBDEs) have been produced in the south coast area of Laizhou Bay, Shandong Province in China, but little is known about the PBDE exposure level of residents to these compounds. We set out to assess potential health risks of PBDEs in the south coast area of the Laizhou Bay by determining the concentrations of PBDEs in serum and breast milk. We measured concentrations of eight PBDE congeners in serum and breast milk. The arithmetic means of Σ8PBDE in pooled serum and breast milk were 613 ng/g lipid and 81.5 ng/g lipid, respectively. The highest concentration for Σ8PBDE in all serum pools was 1830 ng/g lipid from the 41–50 year old female group. BDE-209 was the predominant congener, with the mean concentrations of 403 ng/g lipid in serum and 45.6 ng/g lipid in breast milk, respectively. BDE-209 averagely accounted for 65.8% and 54.2% of the total PBDEs, respectively. Our results suggest that high exposures to PBDEs have led to very high PBDE concentrations in serum and breast milk from the residents living in the south coast area of Laizhou Bay. High PBDE concentrations in human serum, particularly in women, pose a potential public health threat to local residents.  相似文献   

18.
Püspökszilágy Radioactive Waste Treatment and Disposal Facility (RWTDF) is a typical near-surface engineered repository designated to store low- and intermediate-level wastes from various institutes, research facilities and hospitals in Hungary. Two automatic combined 14C–tritium sampling units installed at the facility sample the air 2 m above surface. The one installed near the vaults detects tritium (T) activities two orders of magnitude higher than the far reference sampling unit. To localize the T emissions, 19 small absorption vapour samplers filled with silica gel were settled onto the ground surface. After the saturation of the silica gel, the water was recovered and its T concentration was measured with a low-background liquid scintillation counter. The absorption vapour samplers are cheap, simple and easy-to-use. We present the samplers and the T distribution map constructed from the data, which helps to localize the T emission.  相似文献   

19.
This study was performed to investigate the concentration of PM10 and PM2.5 inside trains and platforms on subway lines 1, 2, 4 and 5 in Seoul, KOREA. PM10, PM2.5, carbon dioxide (CO2) and carbon monoxide (CO) were monitored using real-time monitoring instruments in the afternoons (between 13:00 and 16:00). The concentrations of PM10 and PM2.5 inside trains were significantly higher than those measured on platforms and in ambient air reported by the Korea Ministry of Environment (Korea MOE). This study found that PM10 levels inside subway lines 1, 2 and 4 exceeded the Korea indoor air quality (Korea IAQ) standard of 150 μg/m3. The average percentage that exceeded the PM10 standard was 83.3% on line 1, 37.9% on line 2 and 63.1% on line 4, respectively. PM2.5 concentration ranged from 77.7 μg/m3 to 158.2 μg/m3, which were found to be much higher than the ambient air PM2.5 standard promulgated by United States Environmental Protection Agency (US-EPA) (24 h arithmetic mean: 65 μg/m3). The reason for interior PM10 and PM2.5 being higher than those on platforms is due to subway trains in Korea not having mechanical ventilation systems to supply fresh air inside the train. This assumption was supported by the CO2 concentration results monitored in tube of subway that ranged from 1153 ppm to 3377 ppm. The percentage of PM2.5 in PM10 was 86.2% on platforms, 81.7% inside trains, 80.2% underground and 90.2% at ground track. These results indicated that fine particles (PM2.5) accounted for most of PM10 and polluted subway air. GLM statistical analysis indicated that two factors related to monitoring locations (underground and ground or inside trains and on platforms) significantly influence PM10 (p < 0.001, R2 = 0.230) and PM2.5 concentrations (p < 0.001, R2 = 0.172). Correlation analysis indicated that PM10, PM2.5, CO2 and CO were significantly correlated at p < 0.01 although correlation coefficients were different. The highest coefficient was 0.884 for the relationship between PM10 and PM2.5.  相似文献   

20.
We simulated hydrological and biogeochemical responses to logging in a forested watershed to determine the vulnerability and/or resiliency of the forest ecosystems in the Lake Shumarinai Basin in northern Hokkaido, Japan. We used a biogeochemical model (PnET-CN) and a rainfall–runoff model (HYCYMODEL) to predict ecosystem responses. The PnET-CN model simulated well the observed NO3 concentrations in streamwater, particularly at high concentrations during snowmelt; however, the model could not simulate small increases in NO3 during the summer. By considering hydrological processes within the watershed and combining the model with the HYCYMODEL (PnET + HYCYMODEL), the seasonality of streamwater NO3 concentrations was better simulated. Using these models, the long-term effects of logging were simulated for coniferous, deciduous, and mixed forests. NO3 concentrations in streamwater increased in response to the logging disturbance in both coniferous and deciduous forests. In the coniferous forest, NO3 concentrations reached a maximum 10 years after logging, and high concentrations persisted for 30 years. In contrast, NO3 concentrations in the deciduous forest reached a maximum within 3–4 years and recovered to pre-disturbance levels after 15 years. We also used the models to determine the effects of different sizes and types (coniferous, deciduous, and mixed forest) of logging areas on Lake Shumarinai. The model results indicated that large areas of cutting require more than 100 years for complete lake recovery. Whereas the annual discharge to the lake minimally increased, the annual NO3 load greatly increased. Our simulation results elucidate the vulnerability and resiliency of forest ecosystems and provide valuable information for ecosystem management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号