首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
The activity concentrations of Beryllium-7 (7Be), a naturally occurring radioisotope produced in the atmosphere, were measured in leaves of birch-trees, above-ground parts of grass, soil and rainwater in the mountain massive Kralicky Sneznik (the northeast of the Czech Republic, altitude about 750 m) in the years of 2005, 2006 and 2007. Dried and ground samples of the plants and soils, and water samples from wet deposition were used to determine the 7Be content using a semiconductor gamma spectrometer. The 7Be values ranged from 147.0 to 279.6 Bq kg−1, from 48.7 to 740.8 Bq kg−1, from 2.1 to 8.7 Bq kg−1, and from 0.6 to 1.9 Bq kg−1 in birch-tree leaves, grass samples, soils, and rainwater, respectively. Insignificant inter-annual variations but significant increase in the 7Be activity concentrations during the spring and summer months were observed in birch-tree leaves and grass samples. The seasonal variation of the 7Be concentrations in grass samples correlated (R2 = 0.4663 and 0.6489) with precipitation. No similar correlation was found for 7Be in birch-tree leaves. Beryllium-7 content in birch-tree leaves and in aerial parts of grass was mainly caused by direct transport of 7Be from wet deposition into aerial parts of the observed plants.  相似文献   

3.
The evaluation and assessment of monitoring data generated over a period of 1983-2007 (25 years) of a nuclear facility is presented. Time trends of particulate radioactivity, correlation between 137Cs in discharge canal seawater and station discharged activity and correlation of 137Cs, 60Co, and 131I in marine species such as sponge and Nerita (gastropod) and corresponding discharged activity are discussed. The concentration of 137Cs and 131I in seawater versus biota are discussed. A good correlation between 137Cs in seawater and 137Cs in liquid waste discharged was observed (R2 = 0.8, p < 0.001). Similarly, correlation was good for Nerita and discharged concentration of 137Cs, 131I and 60Co (R2 = 0.55-0.73 and p < 0.001). The measurements over the years indicated that there is no accumulation of radionuclides in either the terrestrial or aquatic environments. The mean 137Cs decreased from the pre-operational levels: 7.0-3.6 Bq kg−1 in soil, 0.91-0.016 Bq L−1 in milk and 0.28-0.036 Bq kg−1 in vegetation. Similarly, the mean 90Sr in these matrixes decreased from 3.9 to 0.26 Bq kg−1; 0.37-0.011 Bq L−1 and 0.34-0.022 Bq kg−1 respectively. Cesium-137 of about 700 μBq m−3 was measured in the air filter disks during 1986 and there was a decrease of three orders of magnitude in concentration over the 25 years. The evaluation of environmental data indicated that the radionuclide concentrations and potential impacts, in terms of effective dose to the members of public, have significantly reduced since 1969.  相似文献   

4.
Radioiodine (131I) in air and rainwater as high as 497 μBq m−3 and 0.7 Bq L−1, respectively, as well as 137Cs and 134Cs in air as high as 145 μBq m−3 and 126 μBq m−3, respectively were recorded in Thessaloniki, Northern Greece (40°38′N, 22°58′E) from March 24, 2011 through April 09, 2011, after a nuclear accident occurred at Fukushima, Japan (37°45′N, 140°28′E) on March 11, 2011.  相似文献   

5.
The gross alpha and gross beta activity concentrations were measured in human tooth taken from 3 to 6 age-groups to 40 and over ones. Accumulated teeth samples are investigated in two groups as under and above 18 years. The gross alpha and beta radioactivity of human tooth samples was measured by using a gas-flow proportional counter (PIC-MPC 9604-α/β counter). In tooth samples, for female age-groups, the obtained results show that the mean gross alpha and gross beta activity concentrations varied between 0.534-0.203 and 0.010-0.453 Bq g−1 and the same concentrations for male age-groups varied between 0.009-1.168 and 0.071-0.204 Bq g−1, respectively.  相似文献   

6.
Radon and gamma dose rate measurements were performed in 512 schools in 8 of the 13 regions of Greece. The distribution of radon concentration was well described by a lognormal distribution. Most (86%) of the radon concentrations were between 60 and 250 Bq m−3 with a most probable value of 135 Bq m−3. The arithmetic and geometric means of the radon concentration are 149 Bq m−3 and 126 Bq m−3 respectively. The maximum measured radon gas concentration was 958 Bq m−3. As expected, no correlation between radon gas concentration and indoor gamma dose rate was observed. However, if only mean values for each region are considered, a linear correlation between radon gas concentration and gamma dose rate is apparent. Despite the fact that the results of radon concentration in schools cannot be applied directly for the estimation of radon concentration in homes, the results of the present survey indicate that it is desirable to perform an extended survey of indoor radon in homes for at least one region in Northern Greece.  相似文献   

7.
One of the essential parameters influencing of the dose conversion factor is the ratio of unattached short-lived radon progeny. This may differ from the value identified for indoor conditions when considering special workplaces such as mines. Inevitably, application of the dose conversion factors used in surface workplaces considerably reduces the reliability of dose estimation in the case of mines.This paper surveyed the concentration of radon and its short-lived radon progeny and identified the unattached fraction of short-lived radon progeny. As well equilibrium factor during the month of August was calculated simultaneously at two extraction faces in a manganese ore mine.During working hours the average radon concentrations were 220 Bq m−3 and 530 Bq m−3 at Faces 1 and 2; the average short-lived progeny concentration was 90 Bq m−3 and 190 Bq m−3, the average equilibrium factors were 0.46 and 0.36, and the average unattached fractions were 0.21 and 0.17, respectively. The calculated dose conversion factor was between 9 and 27 mSv WLM−1, but higher values could also be possible.  相似文献   

8.
Radon-222 was measured in groundwater sources of Extremadura (Spain), analyzing 350 samples from private and public springs, wells, and spas by liquid scintillation counting (LSC) and gamma spectrometry. The 222Rn activity concentrations ranged from 0.24 to 1168 Bq L−1. The statistical analysis showed a log-normal distribution with a mean of (111 ± 7) Bq L−1 and a median of (36 ± 3) Bq L−1. A hydrogeological study revealed correlations between the activity concentration and the aquifer material's characteristics. A map of 222Rn in groundwater was elaborated and compared with the natural gamma radiation map for this region. About 35% of the samples showed 222Rn activity concentrations above the Euratom recommended limit of 100 Bq L−1. Three uranium series radionuclides (238U, 234U, and 226Ra) were also assayed by alpha-particle spectrometry, estimating the annual effective dose due to the presence of these natural radionuclides in drinking water.  相似文献   

9.
Between 1960 and 1968 low-level radioactive waste was buried in a series of shallow trenches near the Lucas Heights facility, south of Sydney, Australia. Groundwater monitoring carried out since the mid 1970s indicates that with the exception of tritium, no radioactivity above typical background levels has been detected outside the immediate vicinity of the trenches. The maximum tritium level detected in groundwater was 390 kBq/L and the median value was 5400 Bq/L, decay corrected to the time of disposal. Since 1968, a plume of tritiated water has migrated from the disposal trenches and extends at least 100 m from the source area. Tritium in rainfall is negligible, however leachate from an adjacent landfill represents a significant additional tritium source. Study data indicate variation in concentration levels and plume distribution in response to wet and dry climatic periods and have been used to determine pathways for tritium migration through the subsurface.  相似文献   

10.
In Finland the deposition of strontium-89 (90Sr) and strontium-90 (90Sr) has been monitored since the early 1960s. The measured cumulative 90Sr deposition in 1963-2005 is on average 1200 Bq m−2, of which 150 Bq m−2 originates from the Chernobyl accident. Adding to this the deposition in 1945-1962 produces a value of 2040 Bq m−2 for the cumulative deposition in Finland. The nuclear explosion-derived deposition up to 1985 obtained in this study, 1850 Bq m−2, is in good agreement with the zonal 90Sr deposition of 1740 Bq m−2 in the 60°N-70°N latitude band estimated by UNSCEAR. The regional deposition patterns of 89Sr and 90Sr following the Chernobyl accident resemble those of the refractory nuclides such as 239,240Pu and 95Zr. The total deposition of Chernobyl-derived 90Sr in Finland was about 5.3 × 1013 Bq. This activity corresponds to 0.027% of the reactor core inventory and 0.66% of the atmospheric emissions from the accident. The corresponding figures for 89Sr are 4.5 × 1014 Bq, 0.023% and 0.56%, respectively.  相似文献   

11.
Health hazard from natural radioactivity in Brazilian granites, covering the walls and floor in a typical dwelling room, was assessed by indirect methods to predict external gamma-ray dose rates and radon concentrations. The gamma-ray dose rate was estimated by a Monte Carlo simulation method and validated by in-situ measurements with a NaI spectrometer. Activity concentrations of 232Th, 226Ra, and 40K in an extensive selection of Brazilian commercial granite samples measured by using gamma-ray spectrometry were found to be 4.5-450 Bq kg−1, 4.9-160 Bq kg−1 and 190-2029 Bq kg−1, respectively. The maximum external gamma-ray dose rate from floor and walls covered with the Brazilian granites in the typical dwelling room (5.0 m × 4.0 m area, 2.8 m height) was found to be 120 nGy h−1, which is comparable with the average worldwide exposure to external terrestrial radiation of 80 nGy h−1 due to natural sources, proposed by United Nations Scientific Committee on the Effects of Atomic Radiation. Radon concentrations in the room were also estimated by a simple mass balance equation and exhalation rates calculated from the measured values of 226Ra concentrations and the material properties. The results showed that the radon concentration in the room ventilated adequately (0.5 h−1) will be lower than 100 Bq m−3, value recommended as a reference level by the World Health Organization.  相似文献   

12.
Concentration factors for Cs-137 and Ra-226 transfer from seawater, and dried sediment or mud with detritus, have been determined for whole, fresh weight, Chelon labrosus individuals and selected organs. Cesium was detected in 5 of 22 fish individuals, and its activity ranged from 1.0 to 1.6 Bq kg−1. Radium was detected in all fish, and ranged from 0.4 to 2.1 Bq kg−1, with an arithmetic mean of 1.0 Bq kg−1. In regards to fish organs, cesium activity concentration was highest in muscles (maximum - 3.7 Bq kg−1), while radium was highest in skeletons (maximum - 25 Bq kg−1). Among cesium concentration factors, those for muscles were the highest (from seawater - an average of 47, from sediment - an average of 3.3, from mud with detritus - an average of 0.8). Radium concentration factors were the highest for skeleton (from seawater - an average of 130, from sediment - an average of 1.8, from mud with detritus - an average of 1.5). Additionally, annual intake of cesium and radium by human adults consuming muscles of this fish species has been estimated to provide, in aggregate, an effective dose of about 4.1 μSv y−1.  相似文献   

13.
The subject of the study covered volatile ashes created during hard coal burning process in ash furnaces, in power plants operating in the Upper Silesian Industrial Region, Southern Poland. Coal-fired power plants are furnished with dust extracting devices, electro precipitators, with 99-99.6% combustion gas extracting efficiency. Activity concentrations ofTh-232, Ra-226, K-40, Ac-228, U-235 and U-238 were measured with gamma-ray spectrometer. Concentrations of selected rare soil elements (La, Ce, Nd, Sm, Y, Gd, Th, U) were analysed by means of instrumental neutron activation analysis (INAA). Mineral phases of individual ash particles were identified with the use of scanning electron microscope equipped with EDS attachment. Laser granulometric analyses were executed with the use of Analyssette analyser. The activity of the investigated fly-ash samples is several times higher than that of the bituminous coal samples; in the coal, the activities are: 226Ra - 85.4 Bq kg−1, 40 K-689 Bq kg−1, 232Th - 100.8 Bq kg−1, 235U-13.5 Bq kg−1, 238U-50 Bq kg−1 and 228Ac - 82.4 Bq kg−1.  相似文献   

14.
In the framework of a 222Rn screening campaign that was carried out in 58 public secondary schools in Galicia (NW Spain), the largest radon-prone area in the Iberian Peninsula, a positive correlation between indoor 222Rn concentration and outdoor gamma exposure rate was obtained. A new approach to the data acquisition in screening surveys was tested, improving the performances of this type of study and gathering useful data for future remedial actions. Using short-period detectors (charcoal canisters) firstly, in order to detect places showing 222Rn concentrations over 400 Bq m−3, the number of locations to be measured with long-period detectors (etched track detectors) is reduced. In this screening campaign, 34% of the schools surveyed presented at least one site exceeding the 400 Bq m−3 recommended action level established by the EU, and 15% had at least one site with 222Rn values over 800 Bq m−3. The maximum value recorded was 2084 ± 63 Bq m−3. These results are discussed and compared with data obtained in schools of several countries with similar geology. Seven schools were also studied for seasonal variations of 222Rn activity concentration. The results were not conclusive, and no significant correlation between season and 222Rn concentration was established. Finally, a continuous 222Rn concentration monitor was placed in the secondary school exhibiting a mean value of the 222Rn concentration very close to 400 Bq m−3. Maximum 222Rn concentration values were found to occur at times when the school was unoccupied.  相似文献   

15.
Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m−3 in summer to about 800-1400 Bq m−3 in winter, indicating winter ventilation rates varying from 0.6 to 2.5 × 10−6 s−1. Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from −7 to −26 Bq m−3 hPa−1. This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes.  相似文献   

16.
This paper describes a quantitative radioactivity analysis method especially suitable for environmental samples with low-level activity. The method, consisting of a multi-group approximation based on total absorption and Compton spectra of gamma rays, is coherently formalized and a computer algorithm thereof designed to analyze low-level activity NaI(Tl) gamma ray spectra of environmental samples. Milk powder from 1988 was used as the example case. Included is a special analysis on the uncertainty estimation. Gamma sensitiveness is defined and numerically evaluated. The results reproduced the calibration data well, attesting to the reliability of the method. The special analysis shows that the uncertainty of the assessed activity is tied to that of the calibration activity data. More than 77% of measured 1461-keV photons of 40K were counted in the range of clearly lower energies. Pile-up of single line photons (137Cs) looks negligible compared to that of a two-line cascade (134Cs). The detection limit varies with radionuclide and spectrum region and is related to the gamma sensitiveness of the detection system. The best detection limit always lies in a spectrum region holding a line of the radionuclide and the highest sensitiveness. The most radioactive milk powder sample showed a activity concentration of 21 ± 1 Bq g−1for 137Cs, 323 ± 13 Bq g−1 for 40K and no 134Cs.  相似文献   

17.
Least squares (LS), Theil’s (TS) and weighted total least squares (WTLS) regression analysis methods are used to develop empirical relationships between radium in the ground, radon in soil and radon in dwellings to assist in the post-closure assessment of indoor radon related to near-surface radioactive waste disposal at the Low Level Waste Repository in England. The data sets used are (i) estimated 226Ra in the <2 mm fraction of topsoils (eRa226) derived from equivalent uranium (eU) from airborne gamma spectrometry data, (ii) eRa226 derived from measurements of uranium in soil geochemical samples, (iii) soil gas radon and (iv) indoor radon data. For models comparing indoor radon and (i) eRa226 derived from airborne eU data and (ii) soil gas radon data, some of the geological groupings have significant slopes. For these groupings there is reasonable agreement in slope and intercept between the three regression analysis methods (LS, TS and WTLS). Relationships between radon in dwellings and radium in the ground or radon in soil differ depending on the characteristics of the underlying geological units, with more permeable units having steeper slopes and higher indoor radon concentrations for a given radium or soil gas radon concentration in the ground. The regression models comparing indoor radon with soil gas radon have intercepts close to 5 Bq m−3 whilst the intercepts for those comparing indoor radon with eRa226 from airborne eU vary from about 20 Bq m−3 for a moderately permeable geological unit to about 40 Bq m−3 for highly permeable limestone, implying unrealistically high contributions to indoor radon from sources other than the ground. An intercept value of 5 Bq m−3 is assumed as an appropriate mean value for the UK for sources of indoor radon other than radon from the ground, based on examination of UK data. Comparison with published data used to derive an average indoor radon: soil 226Ra ratio shows that whereas the published data are generally clustered with no obvious correlation, the data from this study have substantially different relationships depending largely on the permeability of the underlying geology. Models for the relatively impermeable geological units plot parallel to the average indoor radon: soil 226Ra model but with lower indoor radon: soil 226Ra ratios, whilst the models for the permeable geological units plot parallel to the average indoor radon: soil 226Ra model but with higher than average indoor radon: soil 226Ra ratios.  相似文献   

18.
Twenty-one years after the Chernobyl accident, lichen and moss samples were collected from the Ordu province, which was already chosen for a related study some years ago. It was observed that 137Cs activity concentration ranged from 31 to 469 Bq kg−1 in the moss and from 132 to 1508 Bq kg−1 in the lichen samples. The decrease of the activity concentrations in the present measurements (2007) relative to those in 1997 (over a period of 10 y) indicated ecological half-lives between 1.8 and 10.4 y for the moss and between 2.1 and 13.7 y for the lichen samples. It was observed that 137Cs was still eminent in the area studied. Moreover, 40K activity concentrations and K element concentrations were measured and their relationships were discussed.  相似文献   

19.
Radionuclide analyses were performed in tissue samples including muscle, gonad, liver, mammary gland, and bone of marine mammals stranded on the Portuguese west coast during January-July 2006. Tissues were collected from seven dolphins (Delphinus delphis and Stenella coeruleoalba) and one pilot whale (Globicephala sp.). Samples were analyzed for 210Po and 210Pb by alpha spectrometry and for 137Cs and 40K by gamma spectrometry. Po-210 concentrations in common dolphin’s muscle (D. delphis) averaged 56 ± 32 Bq kg−1 wet weight (w.w.), while 210Pb averaged 0.17 ± 0.07 Bq kg−1 w.w., 137Cs averaged 0.29 ± 0.28 Bq kg−1 w.w., and 40K 129 ± 48 Bq kg−1 w.w. Absorbed radiation doses due to these radionuclides for the internal organs of common dolphins were computed and attained a 1.50 μGy h−1 on a whole body basis. 210Po was the main contributor to the weighted absorbed dose, accounting for 97% of the dose from internally accumulated radionuclides. These computed radiation doses in dolphins are compared to radiation doses from 210Po and other radionuclides reported for human tissues. Due to the high 210Po activity concentration in dolphins, the internal radiation dose in these marine mammals is about three orders of magnitude higher than in man.  相似文献   

20.
A shallow-land radioactive waste repository operated in boggy forest environment from 1963 to 1989. During the operation period, a considerable amount of technogenic radionuclides, in solidified state, was disposed into the vault established in the geological structure at the depth of up to 3 m. Environmental monitoring activities started after the closure of the repository in 1989. Recent investigations revealed transfer of radiocarbon and plutonium to the groundwater in the prevailing flow direction. Activity concentration of 239,240Pu in non-filtered fraction of the groundwater from observation well no. 4 determined by alpha-spectrometry was 6.4 × 10−5 Bq l−1 in 2005, and 3.2 × 10−4 Bq l−1 in 2006. Further analysis of colloid-facilitated transport of plutonium is planned. Variation of 14C activity concentration in the same well was monitored in 2006. It varied from 0.2 ± 0.1 Bq l−1 in October to 2.8 ± 0.6 Bq l−1 in June and July. Results imply further research into radiocarbon transfer to atmosphere and selected plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号