首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retention of estrogenic steroid hormones by selected New Zealand soils   总被引:1,自引:0,他引:1  
We performed batch sorption experiments for 17beta-estradiol (E2) and 17alpha-ethynylestradiol (EE2) on selected soils collected from dairy farming regions of New Zealand. Isotherms were constructed by measuring the liquid phase concentration and extracting the solid phase with dichloromethane, followed by an exchange step, and analysis by HPLC and UV detection. The corresponding metabolite estrone, (E1) formed during equilibration of E2 with soil was taken into account to estimate the total percentage recoveries for the compounds, which ranged from 47-105% (E2 and E1) and 83-102% (EE2). Measured isotherms were linear, although some deviation from linearity was observed in a few soils, which was attributed to the finer textured particles and/or the allophanic nature of the soils having high surface area. There was a marked difference in K(d)(eff) (effective distribution coefficient) values for E2 and EE2 among the soils, consistent with the soils organic carbon content and ranged from 14-170 L kg(-1) (E2), and 12-40 L kg(-1) (EE2) in the soils common for both compounds. The sorption affinity of hormones in the soils followed an order: EE2相似文献   

2.
Previous work has demonstrated that plant uptake of radiocaesium (RCs) is related to the activity concentration of RCs in soil solution, which is linked to the soil/soil solution distribution coefficient, K(D). The solid-liquid distribution of RCs is generally studied in soil suspensions in the laboratory and there are few reported measurements for in situ soil solutions. From a data set of 53 different soils (contaminated with either 134CsCl or 137CsCl) used in pot trials to investigate grass uptake of RCs, we analysed the variation of in situ K(D) with measured soil properties. The soils differed widely in % clay (0.5-58%), organic matter content (1.9-96%) and pH (2.4-7.0, CaCl2). The K(D) varied between 29 and 375,000 L kg-' (median 1460 L kg(-1)). Stepwise multiple regression analysis showed a significant correlation between the log K(D) and pH (p < 0.001), log %clay (p < 0.01) and log exchangeable K (p < 0.001) (overall R2 = 0.70). The in situ K(D) values were further compared to K(D)S predicted using an existing model, which assumes that RCs sorption occurs on specific sites and regular ion-exchange sites on the soil solid phase. Sorption of RCs on specific sites was quantified from the radiocaesium interception potential (RIP) measured for each soil and the soil solution concentrations of K+ and NH4+. The in situ log K(D) correlated well with the predicted K(D) (R2 = 0.85 before plant growth, R2 = 0.83 after plant growth). However, the observations were fivefold to eightfold higher than the predictions, particularly for the mineral soils. We attribute the under-prediction to the long contact times (minimum 4 weeks) between the RCs tracers and our experimental soils relative to the short (24 h) contact times used in RIP measurements. We conclude that our data confirmed the model but that ageing of RCs in soil is a factor that needs to be considered to better predict in situ KD values.  相似文献   

3.
4.
The dynamics of Cs and Sr sorption by soils, especially in the subtropics and tropics, as influenced by soil components are not fully understood. The rates and capacities of Cs and Sr sorption by selected subtropical and tropical soils in Taiwan were investigated to facilitate our understanding of the transformation and dynamics of Cs and Sr in soils developed under highly weathering intensity. The Langmuir isotherms and kinetic rates of Cs and Sr sorption on the Ap1 and Bt1 horizons of the Long-Tan (Lt) and the A and Bt1 horizons of the Kuan-Shan (Kt), Mao-Lin (Tml) and Chi-Lo (Cl) soils were selected for this study. Air-dried soil (<2 mm) samples were reacted with of 7.5 × 10−5 to 1.88 × 10−3 M of CsCl (pH 4.0) or 1.14 × 10−4 to 2.85 × 10−3 M of SrCl2 (pH 4.0) solutions at 25 °C. The sorption maximum capacity (qm) of Cs by the Ap1 and Bt1 horizons of the Lt soil (62.24 and 70.70 mmol Cs kg−1 soil) were significantly (p < 0.05) higher than those by the A and Bt1 horizons of the Kt and Cl soils (26.46 and 27.49 mmol Cs kg−1 soil in Kt soil and 34.83 and 29.96 mmol Cs kg−1 soil in Cl soil, respectively), however, the sorption maximum capacity values of the Lt and Tml soils did not show significant differences. The amounts of pyrophosphate extractable Fe (Fep) were correlated significantly with the Cs and Sr sorption capacities (for Cs sorption, r2 = 0.97, p < 1.0 × 10−4; for Sr sorption, r2 = 0.82, p < 2.0 × 10−3). The partition coefficient of radiocesium sorbed on soil showed the following order: Cl soil ? Kt soil > Tml soil > Lt soil. It was due to clay minerals. The second-order kinetic model was applied to the Cs and Sr sorption data. The rate constant of Cs or Sr sorption on the four soils was substantiality increased with increasing temperature. This is attributable to the availability of more energy for bond breaking and bond formation brought about by the higher temperatures. The rate constant of Cs sorption at 308 K was 1.39-2.09 times higher than that at 278 K in the four soils. The activation energy of Cs and Sr sorbed by the four soils ranged from 7.2 to 16.7 kJ mol−1 and from 15.2 to 22.4 kJ mol−1, respectively. Therefore, the limiting step of the Cs+ or Sr2+ sorption on the soils was diffusion-controlled processes. The reactive components, which are significantly correlated with the Langmuir sorption maxima of Cs and Sr by these soils, substantially influenced their kinetic rates of Cs and Sr sorption. The data indicate that among components of the subtropical and tropical soils studied, short-range ordered sesquioxides especially Al- and Fe-oxides complexed with organics play important roles in influencing their capacity and dynamics of Cs and Sr sorption.  相似文献   

5.
Sorption behavior of tin (Sn) in Japanese agricultural soils was studied. Soil-soil solution distribution coefficient (K(d)) of Sn (K(d)-Sn) for 142 soil samples ranged between 128 and 1,590,000 L kg(-1) with the geometric mean of 12 400 L kg(-1). The K(d)-Sn values for Andosol tended to be higher than those of the other soil groups. Among the relationships between K(d)-Sn values and soil properties, a high correlation was observed for soil active-Al (Al-(hydr)oxide and Al-humus complex) amount and K(d)-Sn. The pH effect on Sn sorption was also investigated. The results suggested that the low pH condition enhanced the Sn sorption in soils. The soil-sorbed Sn fractions in each type of soil material were also evaluated with selective extraction methods. The results showed that most of the soil-sorbed Sn was as organic matter bound or Al/Fe-(hydr)oxide-bound forms.  相似文献   

6.
Between 1960 and 1968 low-level radioactive waste was buried in a series of shallow trenches near the Lucas Heights facility, south of Sydney, Australia. Groundwater monitoring carried out since the mid 1970s indicates that with the exception of tritium, no radioactivity above typical background levels has been detected outside the immediate vicinity of the trenches. The maximum tritium level detected in groundwater was 390 kBq/L and the median value was 5400 Bq/L, decay corrected to the time of disposal. Since 1968, a plume of tritiated water has migrated from the disposal trenches and extends at least 100 m from the source area. Tritium in rainfall is negligible, however leachate from an adjacent landfill represents a significant additional tritium source. Study data indicate variation in concentration levels and plume distribution in response to wet and dry climatic periods and have been used to determine pathways for tritium migration through the subsurface.  相似文献   

7.
This study aimed to (i) evaluate whether the K(d) value of selenium is dependent upon the soil microbial activity and (ii) define the limitation of the use of the K(d) concept to describe selenium behaviour in soils when assessing the long-term radiological waste disposal risk. K(d) coefficients, as well as information on selenite speciation in the soil-solution, were derived from short- and long-term batch experiments with a calcareous silty clay soil in various microbial states. Soil microbial activity induced (i) an increase of the K(d) value from 16 l kg(-1) in sterile conditions to 130 l kg(-1) when the soil was amended with glucose and nitrate, and (ii) changes in selenium speciation both in the solution (presence of seleno-species other than free Se(IV)) and in the solid phase (Se linked to microorganisms). Although the K(d) coefficient adequately reflects the initial fractionation between soil-solid and soil-solution, it does not allow for speciation and microbial processes, which could affect reversibility, mobility and the long-term accumulation and uptake into crops.  相似文献   

8.
New methods are being employed on the Department of Energy's Savannah River Site to deal with the disposal of tritium, including the irrigation of a hardwood/pine forest with tritiated water from an intercepted contaminant plume to reduce concentrations of tritium outcropping into Fourmile Branch, a tributary of the Savannah River. The use of this system has proven to be an effective means of tritium disposal. To evaluate the impact of this activity on terrestrial biota, rodent species were captured on the tritium disposal site and a control site during two trapping seasons in order to assess tritium exposure resulting from the forest irrigation. Control site mice had background levels of tritium, 0.02 Bq/mL, with disposal site mice having significantly higher tritium concentrations, mean=34.86 Bq/mL. Whole body tritium concentrations of the mice captured at the disposal site were positively correlated with tritium application and negatively correlated with precipitation at the site.  相似文献   

9.
Heavy metals present in soils constitute serious environmental hazards from the point of view of polluting the soils and adjoining streams and rivers. The distribution of heavy metals in a sandy Ultisol (Arenic Kandiustult) in south eastern Nigeria subjected to 40 years disposal of sewage wastes (sludge and effluents) was studied using two profile pits (S/NSK/1 and S/NSK/2) sited in the sewage disposal area and one profile pit (NS/NSK) sited in the non-sewage disposal area. Soil samples were collected in duplicate from these soil horizons and analyzed for their heavy metal contents. The mean concentrations of Zn, Cu, Cd and Pb in the top- and sub-soil horizons of sewage soil were 79.3, 32, 0.29 and 1.15 mg/kg, respectively. These levels were high enough to constitute health and phytotoxic risks. All the metal levels were much higher in the AB horizon in the sewage than in the non-sewage soil profile, but Pb and Cu contents were also high down to the Bt1 horizon, indicating their apparent relatively high mobility in this soil. There was a significant correlation between organic matter (OM) and Zn (r=0.818**), and between OM and Cd (0.864**) in the sewage soil. The high OM status of the sewage sludge, together with its corresponding low pH, might have favoured metal-OM complexation that could reduce heavy metal mobility and phytotoxicity in this soil.  相似文献   

10.
Measurements of soil-to-plant transfer of (134)Cs, (85)Sr and (65)Zn from two tropical red earth soils ('Blain' and 'Tippera') to sorghum and mung crops have been undertaken in the north of Australia. The aim of the study was to identify factors that control bioaccumulation of these radionuclides in tropical regions, for which few previous data are available. Batch sorption experiments were conducted to determine the distribution coefficient (K(d)) of the selected radionuclides at pH values similar to natural pH values, which ranged from about 5.5 to 6.7. In addition, K(d) values were obtained at one pH unit above and below the soil-water equilibrium pH values to determine the effect of pH. The adsorption of Cs showed no pH dependence, but the K(d) values for the Tippera soils (2300-4100 ml/g) exceeded those for the Blain soils (800-1200 ml/g) at equilibrium pH. This was related to the greater clay content of the Tippera soil. Both Sr and Zn were more strongly adsorbed at higher pH values, but the K(d) values showed less dependence on the soil type. Strontium K(d)s were 30-60 ml/g whilst Zn ranged from 160 to 1630 ml/g for the two soils at equilibrium pH. With the possible exception of Sr, there was no evidence for downward movement of radionuclides through the soils during the course of the growing season. There was some evidence of surface movement of labelled soil particles. Soil-to-plant transfer factors varied slightly between the soils. The average results for sorghum were 0.1-0.3 g/g for Cs, 0.4-0.8 g/g for Sr and 18-26 g/g for Zn (dry weight) with the initial values relating to Blain and the following values to Tippera. Similar values were observed for the mung bean samples. The transfer factors for Cs and Sr were not substantially different from the typical values observed in temperate studies. However, Zn transfer factors for plants grown on both these tropical soils were greater than for soils in temperate climates (by more than an order of magnitude). This may be related to trace nutrient deficiency and/or the growth of fungal populations in these soils. The results indicate that transfer factors depend on climatic region together with soil type and chemistry and underline the value of specific bioaccumulation data for radionuclides in tropical soils.  相似文献   

11.
Trace elements and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in soils from rural and light-industrialized sites (n=168) of Province of Pavia (Northern Italy). Most of the trace element values fit in typical ranges of concentrations in soils and are similar to the ones reported for rural sites in Italy or sites with no direct anthropogenic impact. Total concentrations of 2,3,7,8 chlorine substituted PCDD/Fs in superficial soils ranged between 24.4 and 1287 pg g(-1) dw (0.5-28.9 pg WHO(98)-TEQ g(-1) dw). The North Eastern part of the Province presented significantly higher levels (p<0.001) than the rest of the Province for As, Cd, Hg, Pb, Zn and PCDD/Fs. While the existence of a defined heavy metal polluting source for this specific site has been suggested, in the case of PCDD/Fs, profiles were not linked to any specific emission source fingerprint. In the whole extension of Pavia Province, OCDD/F dominated the 2,3,7,8 chlorine substituted congener soil pattern, followed by the 1,2,3,4,6,7,8 hepta-CDD/F congener. Principal Component Analysis (PCA) showed that this profile could not be associated to any described PCDD/F emission source fingerprint and was relatively similar to the baseline deposition of sites with no direct impact of PCDD/F emission sources independently of land use.  相似文献   

12.
The significance of exchange sites on organic matter in the retention of radiocaesium in highly organic soils remains unclear. To quantify this retention, we measured the binding of 134Cs to a humic acid isolated from a British upland peat soil, under a range of chemical conditions. We interpreted our results using Humic Ion Binding Model V, a model of humic substance chemistry which simulates ion exchange by non-specific accumulation of cations adjacent to the humic molecules. Model V could simulate the humic acid-solution partitioning of Cs under all the solution conditions used. The model was used to estimate the contribution of organic matter to Cs sorption by the whole soil composite. An estimate of Cs sorption by illite frayed edge sites was also made. These simulations show that organic matter may play only a minor role in binding Cs. even in highly organic soils.  相似文献   

13.
We obtained the sorption isotherms of Cd, Cu, Pb and Zn from seven soils with contrasting properties, including mineral and organic soils. The distribution coefficients (Kd) were determined from batch tests in a solution that simulated the soil solution cationic composition. The Kd values of the target metals varied greatly depending on soil type and initial metal concentration. Sorption isotherms were fitted to Freundlich and Langmuir models, and derived parameters were correlated to soil properties through the construction of a correlation matrix and application of Principal Component Analysis. The batch Kd showed a satisfactory agreement with the Kd obtained from field-contaminated soils. The sorption tests were complemented with the estimation of the reversibility of metal sorption by the application of an extraction test. The extraction yields, which did not relate to the initial metal concentration, depended on the metal-soil combination, and showed no correlation to batch Kd values. The risk derived from a contamination event was estimated through the quantification of a Retention Factor, defined as the ratio of the Kd versus the extraction yield. Results showed that this was an excellent index to highlight which metal and soil represent the most vulnerable scenarios after a contamination event.  相似文献   

14.
Distribution of cesium (134Cs and 137Cs) and strontium (Sr-II) between soil/water phases depends on many factors such as concentration of these ions between phases, the cation exchange capacity (CEC) of the soil as well as its clay content, chemical composition (especially Na, K, Ca, and Mg ions), grain size distribution, calcite, iron oxide content, and organic coatings. Distribution coefficients (Kd) of cesium (labeled with 137Cs) and strontium were measured on the grain size distributions ≥32 μm of four soil samples. These soils were obtained from four different locations within Inshas site in Egypt and three groundwater samples were obtained from the same site locations. X-ray diffraction showed that the soil samples consisted mainly of quartz mixed with the minor amounts of kaolonite and clay minerals. Sorption experiments were carried out at strontium aqueous concentrations range 10−7 to 10−4 mol l−1. The CEC and Kds for cesium and strontium were measured at the same metal concentrations range. Distribution coefficients of cesium were found to be influenced by the composition of the soil, while the distribution coefficients of strontium were found to depend on calcium concentrations in the soil/groundwater system. The aim of this study was to determine the safety assessment of disposal 137Cs radionuclide and Sr(II) in the aquifer regions inside the Inshas site. Sequential extraction tests showed that, strontium was associated with the carbonate fractions and majority of cesium was sorbed on the iron oxides and the residue.  相似文献   

15.
129I is a potentially important radionuclide in safety assessments of proposed deep geological radioactive waste repositories due to its radiotoxicity, high mobility and long physical half-life (15.7 million years). In soils, iodine is present both in an inorganic form and in organohalide complexes, some of which are volatile under natural environmental conditions.This study has examined volatilisation, sorption and the effect of freezing on sorption and loss of (125)I (physical half-life 60.2 days), as a surrogate for (129)I, within coniferous forest and grassland soils. The results do not suggest that volatilisation from these soils is a significant pathway for the transport of (129)I. Strong and specific sorption of iodine to humic substances has been demonstrated, which is reduced at freezing temperatures. It is hypothesised that rapid sorption to soil humic substances can significantly reduce volatilisation rates. The effect of freezing conditions on iodine extractability from soils suggests a microbially mediated sorption process.  相似文献   

16.
The contamination and depth distribution of 137Cs in soil due to the fallout from atmospheric weapons' tests were measured at 29 sites in the 9th and 10th administrative regions in Chile located in the 40 degrees latitude in the southern hemisphere. The depth distribution in most of the sites follows no systematic pattern in the upper few centimetres, but below this depth an exponential decline could be deduced. The calculated relaxation depth appears to be a good indicator for estimating the long-term 137Cs distribution in these soil profiles. It ranges from 4.4 +/- 1.9 cm in Palehumults to 8.4 +/- 4.4 and 9.7 +/- 5.1 cm in Hapludands and Psamments, respectively. For these soil types the value for the relaxation depth tends to increase with decreasing clay content and increasing volume of coarse pores. 137Cs activity densities at the selected sites ranged from 450 to 5410 Bq m(-2) and correlate significantly (r = 0.791) with the mean annual rainfall rate of the sampling sites. 137Cs concentration ratios of prairie plants/soil were found to be in the range 0.008-2.3 and could be related to relaxation depths in undisturbed soils.  相似文献   

17.
18.
Long-term irrigation with sewage water adds large amounts of carbon, major and micro- nutrients to the soil. We compared the spatial distribution of N, P, K and other micronutrients and toxic elements in the top 0.6 m of an alluvial soil along with their associated effects on the composition of crops and ground waters after about three decades of irrigation with domestic sewage effluent as a function of distance from the disposal point. Use of sewage for irrigation in various proportions improved the organic matter to 1.24-1.78% and fertility status of soils especially down to a distance of 1 km along the disposal channel. Build up in total N was up to 2908 kg ha(-1), available P (58 kg ha(-1)), total P (2115 kg ha(-1)), available K (305 kg ha(-1)) and total K (4712 kg ha(-1)) in surface 0.15 m soil. Vertical distribution of these parameters also varied, with most accumulations occurring in surface 0.3 m. Traces of NO3-N (up to 2.8 mg l(-1)), Pb (up to 0.35 mg l(-1)) and Mn (up to 0.23 mg l(-1)) could also be observed in well waters near the disposal point thus indicating initiation of ground water contamination. However, the contents of heavy metals in crops sampled from the area were below the permissible critical levels. Though the study confirms that the domestic sewage can effectively increase water resource for irrigation but there is a need for continuous monitoring of the concentrations of potentially toxic elements in soil, plants and ground water.  相似文献   

19.
通过挑选绵阳市有代表性的点位土壤柱,应用GC MS分析土壤柱垂直剖面中多环芳烃的含量水平,得出其垂直剖面分布特征。结果表明:5~20 cm深度中的PAHs含量最高,40 cm以下则含量锐减。由于表层(0~5 cm)土壤与大气之间的土气交换频繁,PAHs含量相对较低,而5~20 cm处土壤受到表层土壤的遮盖,PAHs富集较高,含量达到整个土壤柱最高值。多环芳烃总体垂直剖面分布特征表现出随深度增加含量减少的趋势。PAHs总含量以江油市点位(33024 ng/g)最高,其次是三台县点位(29989 ng/g),最低是游仙区点位(11274 ng/g)。研究区主要污染物为Nap、Phe和Chr/y。其中不同的土质、种植物都能影响PAHs的富集和迁移速率,导致含量在不同深度上产生变化。此外,参照有关环境质量标准,发现PAHs总量上江油市点位与三台县点位属于轻微污染、游仙区点位则属于无污染。  相似文献   

20.
An overview of BORIS: Bioavailability of Radionuclides in Soils   总被引:1,自引:0,他引:1  
The ability to predict the consequences of an accidental release of radionuclides relies mainly on the level of understanding of the mechanisms involved in radionuclide interactions with different components of agricultural and natural ecosystems and their formalisation into predictive models. Numerous studies and databases on contaminated agricultural and natural areas have been obtained, but their use to enhance our prediction ability has been largely limited by their unresolved variability. Such variability seems to stem from incomplete knowledge about radionuclide interactions with the soil matrix, soil moisture, and biological elements in the soil and additional pollutants, which may be found in such soils. In the 5th European Framework Programme entitled Bioavailability of Radionuclides in Soils (BORIS), we investigated the role of the abiotic (soil components and soil structure) and biological elements (organic compounds, plants, mycorrhiza, and microbes) in radionuclide sorption/desorption in soils and radionuclide uptake/release by plants. Because of the importance of their radioisotopes, the bioavailability of three elements, caesium, strontium, and technetium has been followed. The role of one additional non-radioactive pollutant (copper) has been scrutinised in some cases. Role of microorganisms (e.g., K(d) for caesium and strontium in organic soils is much greater in the presence of microorganisms than in their absence), plant physiology (e.g., changes in plant physiology affect radionuclide uptake by plants), and the presence of mycorrhizal fungi (e.g., interferes with the uptake of radionuclides by plants) have been demonstrated. Knowledge acquired from these experiments has been incorporated into two mechanistic models CHEMFAST and BIORUR, specifically modelling radionuclide sorption/desorption from soil matrices and radionuclide uptake by/release from plants. These mechanistic models have been incorporated into an assessment model to enhance its prediction ability by introducing the concept of bioavailability factor for radionuclides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号