首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Dispersal in coral reef fishes occurs predominantly during the larval planktonic stage of their life cycle. With relatively brief larval stages, damselfishes (Pomacentridae) are likely to exhibit limited dispersal. This study evaluates gene flow at three spatial scales in one species of coral reef damselfish, Dascyllus trimaculatus. Samples were collected at seven locations at Moorea, Society Islands, French Polynesia. Phylogenetic relationships and gene flow based on mitochondrial control region DNA sequences between these locations were evaluated (first spatial scale). Although spatial structure was not found, molecular markers showed clear temporal structure, which may be because pulses of settling larvae have distinct genetic composition. Moorea samples were then compared with individuals from a distant island (750 km), Rangiroa, Tuamotu Archipelago, French Polynesia (second spatial scale). Post-recruitment events (selection) and gene flow were probably responsible for the lack of structure observed between populations from Moorea and Rangiroa. Finally, samples from six Indo-West Pacific locations, Zanzibar, Indonesia, Japan, Christmas Island, Hawaii, and French Polynesia were compared (third spatial scale). Strong population structure was observed between Indo-West Pacific populations. Received: 26 May 2000 / Accepted: 10 October 2000  相似文献   

2.
Escolar (Lepidocybium flavobrunneum) is a large, mesopelagic fish that inhabits tropical and temperate seas throughout the world, and is a common bycatch in pelagic longline fisheries that target tuna and swordfish. Few studies have explored the biology and natural history of escolar, and little is known regarding its population structure. To evaluate the genetic basis of population structure of escolar throughout their range, we surveyed genetic variation over an 806 base pair fragment of the mitochondrial control region. In total, 225 individuals from six geographically distant locations throughout the Atlantic (Gulf of Mexico, Brazil, South Africa) and Pacific (Ecuador, Hawaii, Australia) were analyzed. A neighbor-joining tree of haplotypes based on maximum likelihood distances revealed two highly divergent clades (δ = 4.85%) that were predominantly restricted to the Atlantic and Indo-Pacific ocean basins. All Atlantic clade individuals occurred in the Atlantic Ocean and all but four Pacific clade individuals were found in the Pacific Ocean. The four Atlantic escolar with Pacific clade haplotypes were found in the South Africa collection. The nuclear ITS-1 gene region of these four individuals was subsequently analyzed and compared to the ITS-1 gene region of four individuals from the South Africa collection with Atlantic clade haplotypes as well as four representative individuals each from the Atlantic and Pacific collections. The four South Africa escolar with Pacific mitochondrial control region haplotypes all had ITS-1 gene region sequences that clustered with the Pacific escolar, suggesting that they were recent migrants from the Indo-Pacific. Due to the high divergence and geographic separation of the Atlantic and Pacific clades, as well as reported morphological differences between Atlantic and Indo-Pacific specimens, consideration of the Atlantic and Indo-Pacific populations as separate species or subspecies may be warranted, though further study is necessary.  相似文献   

3.
The genetic structure and phylogeography of the brown seaweed Sargassum horneri/filicinum complex in Japan were studied based on the mitochondrial cox3 haplotype. The cox3 haplotypes found were divided into three clades in a statistical parsimony network, among which there were large numbers of steps. Contrary to the reported large amount of drifting S. horneri along the Japanese coast, the three clades were dividedly distributed on the Japanese coast: the northern Pacific, the central Pacific, and western Japan. The western Japan S. horneri had haplotypes that were phylogenetically closer to those of S. filicinum than to the northern and central Pacific S. horneri populations. The S. filicinum populations were included within the western Japan clade and grouped together with the S. horneri samples from western Japan. Taken together with the unstable morphological diagnosis, this result suggests that S. filicinum should be reduced into a synonymy of S. horneri. The TMRCA analysis suggested that the divergence time of each clade may go back to the last interglacial period and a skyline plot suggested that the last glacial maximum had only a small effect on the population size of S. horneri. The geographic subdivision of the three groups, in spite of a large amount of drifting mats, suggests a limited contribution of drifting mats to gene flow on a large geographic scale. On a small geographic scale, a small number of haplotypes were shared between S. horneri-type and S. filicinum-type populations. This result suggests that populations of these two types are partially, though not completely, isolated from each other, possibly by selfing in S. filicinum-type populations or by a difference in peak reproduction.  相似文献   

4.
Large discoidal soritid foraminiferans (Soritinae) are abundant in coral reef ecosystems. As with the many cnidarian invertebrates that inhabit these systems, they also depend on symbiotic dinoflagellates (Symbiodinium) for their growth and survival. Several particular Symbiodinium sub-genera or clades inhabit these soritids. One of these groups, referred to as clade C, dominates corals and their relatives throughout the tropical Indo-Pacific. In contrast, the distributions of Symbiodinium spp. from clades A, B, and C are more evenly apportioned across Caribbean invertebrate communities. To explore the possibility that a similar biogeographic break exists in the symbionts harbored by soritids, we surveyed the Symbiodinium spp. from the soritid genus Sorites, collected from the Pacific and Caribbean coasts of Panama as well as from Florida. Characterization of Symbiodinium obtained from foraminiferal and cnidarian samples was conducted using restriction fragment length polymorphism and phylogenetic analyses of the nuclear internal transcribed spacer region 2 (ITS 2) and a portion of the large subunit ribosomal DNA sequences. A distinctive biogeographic break between the kinds of symbionts found in Sorites from the East Pacific and Caribbean was clearly evident. Differences between cnidarian and foraminferan symbioses in each ocean may be explained by the subjection of Caribbean communities to severer environmental conditions during the early Quarternary. Caribbean Sorites spp. harbored symbionts described from clade F (specifically sub-clade Fr4) and clade H (formally referred to as Fr1), while Sorites spp. from the eastern Pacific were dominated by a single Symbiodinium haplotype in clade C. An ITS 2 phylogeny determined that most clade C types recovered from Indo-Pacific soritids form a monophyletic sub-lineage with other clade C symbionts typically found in Pacific corals from the genus Porites. The existence of multiple Symbiodinium lineages at various taxonomic levels associated specifically with soritids indicates that symbioses with these hosts are important in driving Symbiodinium spp. evolution.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

5.
The population genetics and historical demography of the swimming crab Callinectes bellicosus from the eastern Pacific were assessed using mitochondrial DNA (mtDNA) sequences from portions of the cytochrome c oxidase subunit I (COI) and cytochrome b (Cytb) genes. Analysis of molecular variance of sequence data from crabs collected from nine localities, ranging from the upper to lower Gulf of California and the outer coast of the Baja California peninsula, revealed an absence of population structure, suggesting a high level of gene flow over a wide geographic area. Maximum-likelihood estimates of long-term effective population size obtained with the program FLUCTUATE, in addition to highly significant values obtained from neutrality tests (Tajimas D, Fu and Lis D, and Fus FS) and mismatch analysis, are consistent with a population expansion dating to the Pleistocene epoch. Phylogenetic analysis of C. bellicosus sequences using both neighbor-joining and Bayesian methods revealed a widely distributed subclade (clade II) cryptically embedded at low frequency in the main (clade I) population. Although sequence divergence between the two clades was low (1.1% COI; 0.6% Cytb), statistical support for the split was high. The Kimura-2-parameter genetic distance between C. bellicosus and the sympatric and morphologically similar C. arcuatus was high (d=0.17) and similar to the genetic distance between C. bellicosus and the allopatric C. sapidus from the western Atlantic (d=0.18), suggesting an ancient (Miocene) divergence of C. bellicosus and C. arcuatus.Communicated by P.W. Sammarco, Chauvin  相似文献   

6.
Marine invertebrates with high larval dispersal capacity typically exhibit low degrees of population differentiation, which reflects both contemporary and historical processes. We sampled 346 individuals from seven populations of the lined shore crab, Pachygrapsus crassipes Randall, along the northeastern Pacific Coast and Korea during summer 2003. DNA sequence analysis of 613 bp of the mitochondrial COI gene showed that overall gene diversity (h) was high (0.92±0.01), whereas overall nucleotide diversity (π) was low (0.009±0.005). A total of 154 mtDNA haplotypes were identified; however, 114 were present in only one individual. Analysis of molecular variance revealed significant genetic structuring at Point Conception, CA, USA, that is likely due to the oceanographic circulation patterns, which result in asymmetrical migration of haplotypes. However, genetic variation among eastern Pacific populations was generally low, probably because of high contemporary gene flow and recent common ancestry of haplotypes. Mismatch analysis and nested clade analysis suggested that the population history of this region is characterized by two contiguous northwards range expansions, which are congruent with Late Pleistocene glacial cycles. Highly significant genetic differentiation was detected between eastern Pacific populations and Korea, indicating transpacific gene flow is restricted. Time of divergence between the two transpacific lineages was estimated between 0.8 and 1.2 Myrs ago. The small, recently founded population of P. crassipes at Bamfield, BC, Canada, did not appear to have undergone a founder effect.  相似文献   

7.
Discrete estuary subpopulations of the mud crab Hemigrapsus oregonensis (Dana, 1851) are connected via larval dispersal. Sequence variation at the mtDNA COI locus was examined in eight populations sampled in 2001–2002 from central California through northern Oregon in the northeast Pacific (36.6–45.8°N) to infer patterns of dispersal and historical connectivity in the region. Strong evidence for persistence since the mid-Pleistocene, with no range truncation resulting from southward shifting temperature isoclines, was provided by a phylogeographic pattern of haplotypes of an older clade distributed throughout the sampled range. A recently derived clade became widespread only north of Cape Blanco after the last glacial maximum. Its clear pattern of restriction to the northern area, in the absence of similarly restricted southern clades, suggests that contemporary dispersal around Cape Blanco is rare (population F ST = 0.192). Low pairwise differentiation within Oregon and within central California, as well as contrasts between northern and southern groups in the shape of the pairwise mismatch distribution, nucleotide diversity, and Tajima’s D suggest that these regions reflect different demographic histories. Potential mechanisms explaining this latitudinal break include contemporary coastal circulation patterns, selection, and ancient patterns of larval dispersal in the California Current.  相似文献   

8.
Sleeper sharks are a poorly studied group of deep-sea sharks. The subgenus, Somniosus, contains three morphologically similar species: S. microcephalus found in the Arctic and North Atlantic; S. pacificus in the North Pacific; and S. antarcticus in the Southern Ocean. These sharks have been reported mainly in temperate to polar waters and occasionally in subtropical locations. They have not been recorded in tropical waters. This study investigates the relationships among the accepted species of Somniosus through analysis of mitochondrial cytochrome b sequence variation. Seventy-five samples were examined from four sampling locations in the North Pacific, Southern Ocean and North Atlantic. Twenty-one haplotypes were found. A minimum spanning parsimony network separated these haplotypes into two divergent clades, an S. microcephalus and an S. pacificus/antarcticus clade, strongly supporting the distinction of S. microcephalus as a separate species from the Pacific sleeper shark species. Analysis of genetic structure within the S. pacificus/antarcticus clade (analysis of molecular variance, allele frequency comparisons, and a nested clade analysis) showed limited or no differences amongst three populations. Further examination of genetic variation at more variable mtDNA and nuclear markers is needed to examine the species status of S. pacificus and S. antarcticus.  相似文献   

9.
The Patagonian squid, Loligo gahi DOrbigny, has been described as having temporally and spatially identifiable spawning aggregations. Variation at six microsatellite loci was used to assess whether seasonal and geographical spawning groups around the Falkland Islands represent distinct sub-populations. Genetic variation at these loci is high in this species (mean expected heterozygosity=0.87; mean number of alleles=14.7). No evidence of significantly different allele frequencies was found, either between samples from putative spawning cohorts or geographical areas, indicating that L.gahi around the Falkland Islands comprise a single genetically homogeneous population. Age structure analysis of samples (from statolith growth increments) indicated substantial spread in hatching dates among individuals of similar size and maturity status, suggesting the potential for extensive interbreeding between seasonal cohorts. A sample of L.gahi from the SE Pacific (Peru) displayed distinctly different gene frequencies (and allele size distribution at one locus) from SW Atlantic samples, supporting the suggestion that SE Pacific and SW Atlantic populations may represent distinct subspecies.Contributed by J.P. Thorpe, Port Erin  相似文献   

10.
Mitochondrial d-loop sequences were analyzed to characterize the phylogeographic and population genetic structure of the northern clingfish (Gobbiesox maeandricus Girard). Sequence analysis of 378 bp from 111 individuals sampled in 14 localities along the northeast Pacific coast and within the Strait of Georgia from 1996 to 1999 revealed marked genetic differentiation (Φct=0.247) among regional population groupings. The gene genealogy distinguished two major clades of haplotypes separated by at least 1.1% sequence divergence. One clade with very low haplotype diversity (h=0.2095, n=18) occurred only within the recently unglaciated Strait of Georgia. The other clade had high haplotype diversity (h=0.8808, n=93) and was found in all populations. High haplotype diversity was found in open coastal populations, both north and south of the maximum extant of the Wisconsin ice sheet, suggesting that the clingfish range was not pushed to a southern refugium during the last glacial maximum. A nested clade analysis also did not detect a large northward expansion from a single southern refugium. The level of sequence divergence and coalescent-based analyses suggest that the observed patterns of polymorphism are the result of Pleistocene diversification within multiple refugia, followed by population expansion and asymmetrical lineage introgression. Received: 5 February 2000 / Accepted: 31 August 2000  相似文献   

11.
Genetic structure and phylogeography of the harbour porpoise Phocoena phocoena in the North Pacific were examined using 358 bps sequences from the 5′ end of the mitochondrial DNA control region including those reported previously and newly obtained from the west Pacific. AMOVA and pairwise population φ st estimates clearly revealed genetic differentiation between an east/south and a north/northwest group with the break along the Pacific Rim at British Columbia. In addition, nested clade phylogeographical analysis, neutrality tests, mismatch distribution analysis, genetic diversities and Mantel test, suggested that the observed genetic structure might have been influenced by contiguous range expansion with restricted gene flow in the direction from south to north along the North American coasts and east to west along the Pacific Rim in the middle to late Pleistocene.  相似文献   

12.
Scleractinian coral species harbour communities of photosynthetic taxa of the genus Symbiodinium. As many as eight genetic clades (A, B, C, D, E, F, G and H) of Symbiodinium have been discovered using molecular biology. These clades may differ from each other in their physiology, and thus influence the ecological distribution and resilience of their host corals to environmental stresses. Corals of the Persian Gulf are normally subject to extreme environmental conditions including high salinity and seasonal variation in temperature. This study is the first to use molecular techniques to identify the Symbiodinium of the Iranian coral reefs to the level of phylogenetic clades. Samples of eight coral species were collected at two different depths from the eastern part of Kish Island in the northern Persian Gulf, and Larak Island in the Strait of Hormuz. Partial 28S nuclear ribosomal (nr) DNA of Symbiodinium (D1/D2 domains) were amplified by polymerase chain reaction (PCR). PCR products were analyzed using single stranded conformational polymorphism and phylogenetic analyses of the LSU DNA sequences from a subset of the samples. The results showed that Symbiodinium populations were generally uniform among and within the populations of eight coral species studied, and there are at least two clades of Symbiodinium from Kish and Larak islands. Clade D was detected from eight of the coral species while clade C was found in two of species only (one species hosted two clades simultaneously). The dominance of clade D might be explained by high temperatures or the extreme temperature variation, typical of the Persian Gulf. Publication of this article was held up owing to technical problems. The publisher apologizes sincerely for this lengthy delay.  相似文献   

13.
Phragmatopoma spp. are marine, reef-building polychaetes that inhabit the intertidal and shallow subtidal zones of both coasts of the Americas. Phragmatopoma californica is found in the Pacific Ocean along the California coast south to Mexico, while Phragmatopoma caudata inhabits the Caribbean islands and Atlantic Ocean from the Florida coast south to Brazil. Although apparently geographically isolated, P. californica and P. caudata have been found to interbreed (Pawlik 1988a) and thus their specific taxonomic relationship has been unclear. In this study, two genes, cytochrome c oxidase subunit I (COI) and the first internal transcribed spacer region (ITS-1), were sequenced to assess the specific status of P. californica and P. caudata as well as Phragmatopoma virgini. Comparison of sequences revealed that samples of P. californica shared no COI haplotypes or ITS-1 sequences with P. caudata. Phylogenetic analyses, including maximum parsimony and Bayesian methods, clustered each species in separate, well-supported clades with genetic distances between them being greater than between either contested species or the uncontested, valid species, P. virgini. Thus, the molecular data support that P. californica and P. caudata are separate species. However, the sample of individuals of P. virgini included one genetically divergent individual, whose morphology was found to match that of a species formerly recognized as P. moerchi but since synonymized with P. virgini. Divergences among lineages were dated using the COI sequences, after adjustment for non-clock-like behavior. Consequently, we suggest that P. virgini and P. caudata are sister taxons and that P. californica diverged from the P. virgini/P. caudata clade ∼5.7 mya with P. virgini diverging from P. caudata ∼3 mya.  相似文献   

14.
The high-latitude coral communities of southern Africa suffered minimal impacts during past mass bleaching events. Recent reports indicate an increase in bleaching frequency during the last decade, yet the actual levels of thermal stress and contributing factors in these bleaching events, and the degree of acclimatisation or adaptation on these reefs are poorly understood. During the 2005 warm-water anomaly in the southern Indian Ocean we conducted bleaching surveys and collected samples for genotyping of the algal symbiont communities at 21 sites in southern Mozambique and South Africa. Coral bleaching reached unprecedented levels and was negatively correlated with both latitude and water depths. Stylophora pistillata and Montipora were the most susceptible taxa, whereas three common branching corals had significantly different bleaching responses (Stylophora > Acropora > Pocillopora). Temperature records indicated that localised strong upwelling events coupled with persistent above-average seawater temperatures may result in accumulated thermal stress leading to bleaching. Symbiodinium in 139 scleractinian corals belonged almost exclusively to clade C, with clade D symbionts present in only 3% of the colonies. Two atypical C subclades were present in Stylophora and Pocillopora colonies and these were more abundant in shallow than deeper sites. Taxon-specific differences in bleaching responses were unrelated to different clades of algal symbionts and suggest that Symbiodinium C subtypes with diverse thermal tolerance, coupled with acclimatisation and morphology of the host colony influence the bleaching response. Additionally, the predominance of putatively thermal-sensitive Symbiodinium in southern African corals may reflect a limited experience of bleaching and emphasises the vulnerability of these reefs to moderate levels of thermal stress.  相似文献   

15.
The existence of “free-living” Symbiodinium that can form symbioses with hosts is implied by the presence of hosts that produce Symbiodinium-free gametes and expulsion and/or expelled symbiotic algae from host. However, it is still unclear if potentially symbiotic Symbiodinium are found “free-living” in the coral reef environment. Sixteen Symbiodinium strains were established from samples taken from three sampling locations of coral reef sand in Okinawa, Japan. Phylogenetic analyses of the partial large subunit ribosomal DNA (28S-rDNA) and the internal transcribed spacer of ribosomal DNA (ITS-rDNA) conclusively showed that all 16 isolates belonged to Symbiodinium clade A sensu Rowan and Powers (1991). The lack of other Symbiodinium clades besides clade A in this study may be due to other clades not being readily culturable under culture conditions used here. The new isolates could be phylogenetically divided into four groups, though no sequences were identical to previously reported Symbiodinium. Two of the four groups were closely related to symbiotic Symbiodinium clade A isolated from a variety of host species. One isolate group formed a highly supported monophyly with Symbiodinium types that have previously been characterized as “free-living”. The remaining isolate group, although within clade A, was quite divergent from other clade A Symbiodinium. These results indicate that novel diversity of free-living Symbiodinium exists in coral sand.  相似文献   

16.
Habitat destruction leading to increased fragmentation is detrimental to species by reducing population size and genetic diversity and by restraining population connectivity. However, little is known about the effects of naturally fragmented habitats on wild populations, especially when it comes to marine benthic invertebrates with long pelagic larval duration. In this framework, we investigated the connectivity and genetic diversity variation among nine wild populations of the black-lipped pearl oyster, Pinctada margaritifera, throughout French Polynesia using ten microsatellite DNA markers. Despite the naturally fragmented habitat (South Pacific oceanic islands), we found high values of genetic diversity and population admixture, indicating connectivity at small and large spatial scales within sampled sites of the Tuamotu, and between the Society and Tuamotu Archipelagos. In the meantime, habitat geomorphology increased genetic drift in populations occurring in small, closed lagoons. Significant genetic structure not correlated to geographic distance was detected mainly between closed and open lagoons. The Marquesas Islands hosted the most divergent populations, likely a result of vicariance. Our results also highlight that migration patterns among lagoons are not symmetrical. Altogether, the general pattern of gene flow, nonsymmetrical migration rates among populations, absence of isolation by distance and absence of recent extinction events found in our study strongly suggest that P. margaritifera populations of French Polynesia follow an asymmetrical island model of dispersal.  相似文献   

17.
The pelagic copepod Calanus pacificus ranges nearly continuously across temperate-boreal regions of the North Pacific Ocean and is currently divided into three subspecies—C. pacificus oceanicus, C. pacificus californicus, C. pacificus pacificus—based on subtle morphological differences and geographic location. The relation between geography and genetic differentiation was examined for 398 C. pacificus individuals sampled from six widely distributed locations across the North Pacific, including an open ocean site and coastal sites on both sides of the North Pacific basin. For each individual copepod, the DNA sequence was determined for a 421-bp region of the mitochondrial coxI gene (mtCOI). A total of sixty-three different mtCOI sequences, or haplotypes, were detected, with a sequence divergence between haplotypes of 0.2–3.1%. The number and distribution of haplotypes varied with sampling location; 12 haplotypes were distributed across multiple sampling locations, and 51 occurred at only one location. Five genetically distinct populations were detected based on F ST values. Haplotype minimum spanning networks, nucleotide divergence and F ST values indicated that individuals from coastal sites in the North Pacific Ocean were more closely related to each other than to individuals from the open ocean site at Station P. These results provide genetic support for the designation of two subspecies—a coastal subspecies that consists of what is currently referred to as C. p. pacificus and C. p. californicus and an open ocean subspecies C. p. oceanicus. This work also indicates that planktonic copepods with potentially high dispersal capacity can develop genetically structured populations in the absence of obvious geographic barriers between proximate locales within an ocean basin.  相似文献   

18.
The genetic relationships within and among congeneric species of marine fish from the Atlantic and the Mediterranean are poorly known. Relationships among all five species of the wrasse genus Thalassoma present in the Atlantic and the Mediterranean were examined using sequence data from the mitochondrial control region. Sampling was focused on the mid-Atlantic T. sanctaehelenae (Valenciennes, 1839) and T. ascensionis (Quoy & Gaimard, 1834), the eastern Atlantic T. newtoni (Osório, 1891) from Sao Tome, and the eastern Atlantic/Mediterranean T. pavo (Linnaeus, 1758). Two western Atlantic species T. bifasciatum (Bloch, 1791) from the Caribbean and T. noronhanum (Boulenger, 1890) from Brazil served as outgroups. Tissues from a total of 132 individuals were sequenced. T. newtoni from Sao Tome preferentially grouped with the central Atlantic T. sanctaehelenae and T. ascensionis. T. pavo exhibits two distinct coloration patterns, one in the Cape Verde Islands and one in the eastern Atlantic Islands and Mediterranean. However, no genetic discontinuities between the Cape Verde Islands and the remaining samples or between Atlantic and Mediterranean individuals were found. Within Mediterranean populations of T. pavo, our data suggested the presence of a genetic break between eastern and western regions.Communicated by J.P. Grassle, New Brunswick  相似文献   

19.
Species boundaries in the starfish genus Linckia   总被引:3,自引:0,他引:3  
 The genetic basis for species boundaries in the starfish genus Linckia was examined using variation observed in 613 base pairs (bp) of sequence from the cytochrome oxidase I gene of mtDNA and 16 allozyme loci. Five groups within Linckia were clearly genetically differentiated; L. columbiae, L. bouvieri, two clades within L. guildingi, and one clade with two sub-clades consisting of both L. laevigata and L. multifora. Genetic divergence among these groups is consistent with interspecific variation. The two clades within L. guildingi suggest the presence of a cryptic, partially sympatric, species. Genetic divergence between these two clades implies that they have been genetically distinct from each other for at least one million years. In contrast, genetic data suggest that L. laevigata and L. multifora are a single species, despite the fact that live individuals can be distinguished by their colour and colour pattern, number of madreporites and ratio of arm length to breadth. There are probably three closely related groups within the L. laevigata/L. multifora clade –L. multifora, and two groups in L. laevigata defined by biogeographic province. It is difficult to determine boundaries for these three entities, since genetic and morphological differences are complicated by phenotypic differences arising from both environmental variation and population genetic structure. The difficulties encountered in defining species boundaries in Linckia, particularly with respect to variation arising from the overlap of Indian and Pacific biogeographic provinces, may be a general issue for many marine organisms from this region. Received: 24 May 1999 / Accepted: 6 October 1999  相似文献   

20.
Diplosoma virens is a colonial ascidian hosting prokaryotic algae Prochloron sp. in the common cloacal cavity of the colonies and is sometimes parasitized by notodelphyid copepods. In ascidian–Prochloron symbiosis, it is generally known that the host larvae acquire the algal symbionts from their mother colonies to maintain the symbiosis. A histological study of the sexually mature colonies of D. virens showed that the algal symbionts attach to pre-hatching larvae on the rastrum (plant rake) projected from the postero-dorsal part of the larval trunk, and then the rastrum is packed in the posterior half of the larval trunk that will become a cloacal cavity after metamorphosis. This process is the same as that of D. simile. Monthly sampling of D. virens colonies showed that they have embryos in summer in Ryukyus, situated near the northern-most limit of the coral reefs in the West Pacific. While the frequencies of copepod parasitism were variable among the populations, the colonies from a highly parasitized population had a significantly smaller number of eggs/embryos per zooid than the colonies from the less parasitized populations. The parasites probably have an inhibitory impact on the sexual reproduction of the host colonies.Communicated by T. Ikeda, Hakodate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号