首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
南京市大气颗粒物中有机碳和元素碳粒径分布特征   总被引:8,自引:7,他引:1  
采用Model 2001A热/光碳分析仪测定了南京市区和工业区不同粒径颗粒物中OC、EC的含量,分析了OC、EC粒径分布特征.结果表明,市区和工业区四季OC、EC在<0.43μm粒径段中平均质量浓度最高,市区四季OC所占比例分别为20.9%、21.9%、29.6%、27.9%,EC比例分别为24.0%、23.5%、31.4%、22.6%;工业区四季OC比例分别为18.6%、45.8%、26.6%、25.9%,EC比例分别为16.7%、60.9%、26.3%、24.3%;两地OC、EC主要存在于细粒子中且市区细粒子中OC、EC在夏季所占比例最高,而工业区无明显季节变化规律.市区和工业区细粒子中SOC污染严重且在夏季达到高值,粗粒子SOC季节变化规律不明显,可能与各污染源贡献率及气象因素有关.相关性和OC/EC分析表明,南京地区细粒子中OC、EC主要来自尾气排放和燃煤,粗粒子中OC、EC还与生物质燃烧及烹调排放关联.  相似文献   

2.
采用安德森撞击式分级采样器采集2008-06-01~2008-09-30不同粒径的大气颗粒物样品,并用美国沙漠所DRI(desert research institute)的Model 2001A热光碳分析仪对其中的元素碳和有机碳进行了分析.结果表明,平均有56%、55%和73%的PM、OC和EC富集于粒径<2.1 μ...  相似文献   

3.
黄山夏季大气颗粒物中碳粒径分布特征及其输送潜在源区   总被引:2,自引:0,他引:2  
采用Anderson 9级撞击式采样器和DRI Model 2001A 热/光碳分析仪对2014年6月30日~7月27日期间黄山光明顶大气气溶胶中有机碳(OC)和元素碳(EC)的质量浓度进行分析,并结合二次离子和后向轨迹讨论其潜在来源.结果表明,黄山光明顶OC、EC的平均质量浓度在PM1.1中分别为(2.89±1.40),(0.14±0.19)μg/m3,在PM2.1中分别为(3.76±2.05),(0.17±0.24)μg/m3,在PM9.0中分别为(5.60±2.96),(0.18± 0.25)μg/m3.OC和EC主要富集在£0.43μm段,占PM9.0中OC、EC质量浓度的25.97%和51.10%.观测期间EC来自外部输送,OC既存在外部输送也存在局地贡献.根据后向轨迹模式,观测期间碳质颗粒的外部输送主要来源为东部城市群以及西北地区和武汉一带.  相似文献   

4.
分析了上海市嘉定区不同粒径大气颗粒物(0.49、0.49~0.95、0.95~1.50、1.50~3.00、3.00~7.20、7.20μm)中OC和EC质量浓度的粒径分布特征;讨论了不同粒径大气颗粒物中二次有机碳EC示踪法中(OC/EC)pri的选定方法,用改进后的EC示踪法估算出上海市嘉定区大气颗粒物中的二次有机碳(SOC)质量浓度的粒径分布;通过OC和EC的相关性定性分析了上海市嘉定区大气颗粒物的主要来源.上海市嘉定区大气颗粒物中OC和SOC的质量浓度呈双峰分布,峰值出现在0.49μm与3.00μm的粒径段,EC出现双峰或三峰分布,与OC相比,更集中在0.49μm的粒径段.细颗粒(3.00μm)中OC和EC分别占总OC和EC质量浓度的59.8%~80.0%和58.1%~82.4%,OC和EC的质量浓度主要集中在3.00μm的颗粒物中.不同粒径颗粒物中SOC占相应粒径段内OC浓度的15.7%~79.1%,其中细颗粒物(3.00μm)和粗颗粒物(3.00μm)中SOC质量浓度占相应粒径段中OC的41.4%和43.5%.OC、EC和SOC的粒径分布显现出明显的时间依存性.OC和EC的相关性分析表明,上海嘉定区大气颗粒物的污染源主要以轻型汽油车尾气为主.  相似文献   

5.
南京北郊夏季大气颗粒物中有机碳和元素碳的污染特征   总被引:4,自引:4,他引:4  
段卿  安俊琳  王红磊  缪青 《环境科学》2014,35(7):2460-2467
采用DRI Model 2001A热/光碳分析仪对2013年5~7月期间南京北郊大气气溶胶9级惯性撞击式分级Andersen采样器膜采样样品中有机碳(OC)和元素碳(EC)的质量浓度进行了分析.结果表明,南京北郊夏季EC、OC的平均浓度,在PM2.1(空气动力学直径≤2.1μm)中分别为(2.6±1.1)μg·m-3、(13.0±5.2)μg·m-3,在PM9.0(空气动力学直径≤9.0μm)中,分别为(3.4±1.7)μg·m-3、(20.3±7.3)μg·m-3.EC主要富集在超细颗粒物中,OC主要存在于细颗粒物中,EC的PM1.1/PM9.0比值和OC的PM2.1/PM9.0比值分别为0.62和0.64.EC和OC浓度的平均最高值都出现在≤0.43μm粒径段中,分别占PM9.0中的总元素碳的33.4%和总有机碳的21.1%.南京北郊夏季PM1.1、PM2.1和PM9.0中EC、OC的相关性较好,说明存在共同的一次污染源.通过OC/EC特征物比值的方法得到南京夏季碳质颗粒物的主要来源有机动车尾气排放、燃煤排放和地面扬尘排放.  相似文献   

6.
鼎湖山大气颗粒物中OC与EC的浓度特征及粒径分布   总被引:1,自引:1,他引:0  
李安娜  温天雪  华维  杨员  孟泽  胡波  辛金元 《环境科学》2020,41(9):3908-3917
为了解华南背景区域鼎湖山站碳质气溶胶的浓度水平与来源,采用DRI Model 2001A热/光碳分析仪测定了鼎湖山站大气颗粒物分级样品中的有机碳(OC)与元素碳(EC)浓度水平,并分析了碳质组分的浓度特征和粒径分布.结果表明,在PM1.1、 PM2.1和PM9.0中,鼎湖山OC的平均质量浓度分别为(5.6±2.0)、(7.3±2.4)和(12.8±4.0)μg·m-3, EC的平均质量浓度分别为(2.3±1.4)、(2.7±1.6)和(3.4±1.7)μg·m-3. PM1.1和PM2.1中OC分别占PM9.0中OC的43.8%和57.0%, EC占67.6%和79.4%. OC和EC主要富集在细粒子中. PM1.1和PM2.1中OC和EC在秋季最高,OC在冬季最低,EC在夏季最低. PM9.0中OC夏季最高.鼎湖山中碳质气溶胶以OC2、 EC1、...  相似文献   

7.
张毓秀  于兴娜  刘偲嘉  安俊琳  张程 《环境科学》2020,41(11):4803-4812
为探究南京江北新区大气颗粒物化学组分的污染特征,于2013~2014年进行了分级颗粒物样品的采集,开展了颗粒物化学组分的粒径分布和季节变化研究.结果表明,细粒径段的9种水溶性离子总浓度在秋冬季高于春夏季,而粗粒径段冬季最高.冬季颗粒物中[NO-3]/[SO42-]在粗粒径段最低;春、夏和秋季其粒径分布趋势一致.水溶性离子均呈双峰型分布, 4个季节的NO-3均在0.65~1.1μm出现峰值;夏秋季细粒径段的SO42-于0.43~0.65μm出现峰值,冬季峰值位置向更粗粒子的方向移动;而Na+和Cl-主要存在于粗粒子中.由阴阳离子电荷当量表明,大气粗、细粒子分别呈碱性和弱碱性.有机碳(OC)和元素碳(EC)主要存在于细粒径段,均呈双峰型分布;秋冬季细粒径段中的二次有机碳(SOC)远高于春夏季.由比值判断法进一步表明,南京江北新区颗粒物中的碳质组分主要来源于燃煤和生物质燃烧排...  相似文献   

8.
上海市郊大气含碳颗粒物污染特征   总被引:2,自引:0,他引:2  
利用STAPLEX六级采样器(<0.49,0.49 ~0.95,0.95 ~1.50,1.50 ~3.00,3.00~7.20,>7.20 μm)结合美国DRI碳分析仪分析了上海市嘉定区2008年4月至2010年10月大气颗粒物中EC和OC的含量和粒径分布,用EC示踪法估算POC和SOC的含量及粒径分布,并结合颗粒物中水溶性钾定量分析了上海市嘉定区大气颗粒物中EC和OC来自生物质燃烧排放的分担率.结果显示,上海市嘉定区大气颗粒物中EC与OC的含量分别为(3.54±1.46) μg·m-3和(19.35±9.38) μg·m-3,占颗粒物质量的2.8%±1.1%和14.8%±4.0%.嘉定区PM3.0中的OC与北京、杭州和武汉等城市的夏季以及珠江三角洲和上海市市区PM2.5中的OC相当,而EC含量偏小,反映了嘉定区EC受机动车尾气排放影响小.上海市嘉定区大气颗粒物中EC、OC、POC和SOC均呈双模态分布,其中EC、POC的分布峰位于<0.49μm和>3.00 μm的粒径段,OC的分布峰位于<0.95.Μm和>3.00μm的粒径段,SOC的分布峰位于0.49~0.95.Μm和3.0~7.2 μm的粒径段.各粒径段OC中SOC的比重分别为:36.64%±20.66%、74.92%±22.74%、54.80%±23.52%、56.30%±23.00%、66.89%±23.37%和47.22%±23.65%,说明嘉定区SOC的污染严重.基于OC、EC与K+的线性回归分析,大气颗粒物中生物质燃烧排放的OC和EC分担率分别为40%和32%,且各粒径段的分担率也有差别,最大的OC和EC分担率为76%和50%,对应于0.49~0.95μm粒径段.  相似文献   

9.
为探讨采暖季和非采暖季大气颗粒物中有机标识组分的粒径分布特征,识别其来源,于2018年5月至2019年4月在天津采集分粒径颗粒物,利用GC-MS对9个粒径段颗粒物中17种多环芳烃(PAHs)、20种正构烷烃(n-Alkanes)和7种藿烷(hopanes)进行分析,并通过有机标识物及特征比值的方法探讨其主要来源.结果表明:非采暖季的四环多环芳烃Pyr、Ba A、Chr和五环多环芳烃BbF、Ba P呈3峰分布,其余PAHs呈双峰分布,采暖季的低环PAHs呈双峰分布,中高环PAHs近似单峰分布.根据PAHs特征比值发现,非采暖季的燃煤源和交通源是PAHs的主要贡献源,采暖季PAHs受燃煤源的影响更显著.非采暖季的正构烷烃中C29呈单峰分布,C27、C31、C32和C33近似单峰分布,其余正构烷烃呈双峰分布,采暖季的正构烷烃均呈双峰分布.根据正构烷烃碳优势指数(CPI)和主碳峰数(Cmax)发现,人为源是正构烷烃的主要来源,非采暖季受自然源的影响大于采暖季,自然源排放的正构烷烃倾向于富集在粗颗粒物上,人为源排放的正构烷烃则更倾向于富集在细颗粒物上.藿烷在粗粒径段和细粒径...  相似文献   

10.
于2021年3月30日至2021年4月17日利用超高分辨率气溶胶飞行时间质谱(Long-ToF-AMS),对深圳城市大气中的颗粒态有机硝酸酯(pON)开展高精度分析.基于两种估算pON的方法,计算得出pON对有机气溶胶(OA)的贡献占比为5.08%~11.00%.pON的日变化特征显示,其高值主要出现在夜间时段(19:...  相似文献   

11.
春节期间西安城区碳气溶胶污染特征研究   总被引:11,自引:4,他引:11  
采用美国R&P公司TEOM-1400a大气颗粒物监测仪器及其8通道采样系统(ACCU),在2011年春节期间实时监测和分8个时段采集了西安城区的PM2.5样品.研究了春节期间西安城区大气中PM2.5的碳气溶胶污染特征.目的是阐明2011年春节期间燃放烟花爆竹时,西安城区大气中细颗粒PM2.5的质量浓度、元素碳(EC)、有机碳(OC)及水溶性有机碳(WSOC)的浓度分布特征,探讨了其污染来源.结果表明,除夕00:00~02:59为污染浓度最大时段,PM2.530 min平均浓度在01:00时刻达到最大值1 514.8μg·m-3,其碳组分OC、EC、WSOC、非水溶性有机碳(WIOC)分别为123.3、18.6、66.7和56.6μg·m-3,高于春节期间的其他正常时段1.7倍、1.2倍、1.4倍和2.2倍.碳气溶胶组分WSOC与OC、EC相关性分析表明春节烟火期间含碳物质更多的来自于烟花爆竹燃放,但其对烟火时段的气溶胶的贡献较小,仅为9.4%.  相似文献   

12.
唐山市大气颗粒物OC/EC浓度谱分布观测研究   总被引:1,自引:2,他引:1  
华北重工业城市唐山大气颗粒物污染严重,2009~2011年PM1.1、PM2.1、PM9.0及TSP年均值分别为(75±43)、(106±63)、(221±100)和(272±113)μg.m-3;碳质气溶胶在各粒径段均占较大比重,其中,元素碳(EC)在PM1.1、PM2.1、PM9.0及TSP各粒径段的年均比重分别约为9%、9%、6%和4%,有机碳(OC)年均比重分别为25%、24%、16%和14%.颗粒物浓度谱分布及碳质气溶胶富集量呈显著季节变化,秋冬季节细颗粒物中EC和OC浓度可高达(9±4)、(11±5)和(19±7)、(28±10)μg.m-3,分别占PM2.1的11%、10%和26%、25%;春夏季节EC和OC在粗细粒子中的富集量基本相当,分别为(5±2)、(5±1)和(15±3)、(15±1)μg.m-3,分别约占颗粒物总量的7%、6%和26%、18%.  相似文献   

13.
针对天津市大气颗粒物PM10中碳组分的垂直分布特征开展研究,结果显示天津市含碳组分垂直分布特征明显,OC和EC浓度随高度升高而减少.各高度中,近地面10 m处大气OC和EC浓度最高,碳颗粒污染最重,近地面SOC污染亦较重,与机动车尾气排放有较大关系;40 m高度处OC和EC的相关系数最小,该高度处碳颗粒来源较复杂,近地面机动车和高架源燃煤排放等源均对碳颗粒有贡献;120 m处OC和EC的相关性最高,碳组分同源性较高,与该高度处碳颗粒主要受高架源排放影响有关;220 m处OC与EC相关性较低,OC含量最高,OC/EC比值较高,可能与220 m处区域输送燃烧的碳颗粒较多有关.  相似文献   

14.
为了研究重庆市北碚城区大气碳质气溶胶组分的污染特征,于2014年3月~2015年2月采用安德森采样器采集大气颗粒物样品,用DRI Model 2001 A热光碳分析仪测定其中有机碳(OC)和元素碳(EC)的质量浓度.结果表明,北碚城区PM_(2.1)和PM_(9.0)中OC和EC的年平均浓度分别为(16.3±7.6)、(1.8±0.7)和(25.0±9.7)、(3.2±1.3)μg·m-3.在PM_(2.1)中,OC和EC均呈现出冬春季大于夏秋季的季节变化特征,而PM_(9.0)中OC呈现出夏春季大于冬秋季,EC呈现出冬春季大于夏秋季的季节变化特征.对全年OC和EC的粒径进行分析,发现OC在整个粒径上呈现"双峰型"分布,其中细粒子段峰值位于0.43~0.65μm粒径段,粗粒子段峰值位于4.7~5.8μm粒径段;EC呈现出"三峰型"分布,其中细粒子段峰值位于0.43~0.65μm粒径段,粗粒子段峰值位于4.7~5.8μm粒径段,同时2.1~3.3μm粒径段也出现一个明显峰值.对OC和EC进行相关性分析并对PM_(2.1)中的SOC进行估算,发现北碚城区全年SOC浓度为(6.3±5.9)μg·m-3,占全年OC的33.5%±22.6%,且OC和EC显著相关.最后对北碚城区大气气溶胶的污染来源进行分析,发现污染主要来源于汽油车尾气、生物质燃烧和燃煤排放.  相似文献   

15.
为研究盘锦市秋冬季节大气PM_(2.5)中碳组分的污染特征和来源,于2016年10月和2017年1月采集盘锦市3个点位PM_(2.5)样品,通过OC/EC比值法,EC示踪法以及主成分分析法对PM_(2.5)中碳组分进行污染特征分析及来源解析.结果表明,盘锦市秋冬季节PM_(2.5)浓度均超过环境空气质量标准(GB 3095-2012)二级标准,秋季OC和EC的平均浓度为10.02μg·m~(-3)和3.91μg·m~(-3),冬季为16.04μg·m~(-3)和5.62μg·m~(-3);采样期间秋冬季节OC/EC均大于2.0,说明各采样点位在秋冬季均可能存在二次污染,Spearman相关分析及线性拟合可知开发区OC与EC来源复杂,第二中学及文化公园OC和EC可能具有同源性;通过EC示踪法对SOC进行定量估算,得出秋季SOC浓度为7.21μg·m~(-3),冬季为23.07μg·m~(-3),对结果进行不确定性分析,可知秋冬季节SOC不确定性的绝对误差和相对误差均在可接受范围内;通过主成分分析得出盘锦市秋冬季节PM_(2.5)中碳组分主要来源于煤烟尘,生物质燃烧以及机动车尾气.  相似文献   

16.
为研究郴州市PM2.5中碳组分的污染特征及来源,于2016年7月-2017年4月分4个季度典型时段采集郴州市环境大气中的PM2.5,测定了样品中OC(有机碳)和EC(元素碳)的质量浓度,对碳气溶胶污染水平、时空分布、SOC(二次有机碳)以及OC和EC相关性等特征进行了分析,并分析了碳组分的来源.结果表明:郴州市ρ(PM2.5)年均值为(40.2±19.0)μg/m3,ρ(OC)、ρ(EC)占比分别为15.7%和7.2%;ρ(OC)与ρ(EC)相关性分析显示二者来源较为一致,但春季、夏季差异相对较大;ρ(SOC)全年估算值为1.84 μg/m3,占ρ(OC)的29.11%,夏季较高的温度和较低的相对湿度导致夏季ρ(SOC)的估算偏低.结合碳组分丰度分析、PCA(主成分分析)和PMF(正矩阵因子分解分析)结果发现,燃煤/道路尘、机动车排放和生物质燃烧对PM2.5中TC(总碳)的影响最为明显,贡献率分别为49.25%~56.71%、19.79%~25.36%和9.35%~13.69%.反向轨迹聚类结果显示,广东珠三角区域的汽油车排放、道路尘和生物质燃烧对郴州市PM2.5中碳组分有较大的影响,而燃煤和柴油车的贡献主要来源于本地.研究显示,郴州市PM2.5中碳组分污染较为严重,应重点加强本地燃煤和柴油车的控制.   相似文献   

17.
焦炉顶和厂区环境中有机碳和元素碳的粒径分布   总被引:1,自引:0,他引:1  
刘效峰  彭林  白慧玲  牟玲  宋翀芳 《环境科学》2013,34(8):2955-2960
为了明确焦炉顶和厂区环境空气颗粒物中有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)的污染特征,利用美国Staplex234大流量采样器(粒径:≤1.4μm、1.4~2.1μm、2.1~4.2μm、4.2~10.2μm、≥10.2μm)采集焦炉顶和厂区的环境空气颗粒物样品,并用德国Elementar Analysensysteme GmbH vario EL cube分析其中的OC和EC组分.结果表明,焦炉顶TSP中ρ(OC)和ρ(EC)分别为291.6μg·m-3、255.1μg·m-3,厂区ρ(OC)和ρ(EC)分别为377.8μg·m-3、151.7μg·m-3;厂区≤1.4μm颗粒物中二次有机碳(secondary organic carbon,SOC)的质量浓度为147.3μg·m-3;焦炉顶≤2.1μm颗粒物中ρ(OC)/ρ(EC)值为1.3.厂区TSP中ρ(EC)低于焦炉顶,ρ(OC)明显高于焦炉顶,且厂区≤10.2μm颗粒物中ρ(OC)、ρ(EC)远高于焦化厂所在地区环境空气;焦炉顶和厂区的OC、EC均主要富集在细颗粒物中,焦炉顶和厂区OC的粒径分布差别较大,厂区比焦炉顶OC的粒径分布更趋向于向细颗粒物分布,焦炉顶和厂区EC的粒径分布相似;厂区粒径≤10.2μm颗粒物中,随着粒径的减小,ρ(SOC)和SOC对OC的贡献均呈增大的趋势.  相似文献   

18.
廊坊市是北京市及周边传输通道“2+26”城市之一.为研究廊坊市开发区冬季颗粒物中碳组分污染特征,于2018年1月5日—2月5日在廊坊市开发区国控点位同步开展PM2.5及PM10样品采集,使用DRI分析OC(有机碳)与EC(元素碳)的质量浓度.结果表明:廊坊开发区冬季ρ(PM2.5)、ρ(PM10)分别为(54.5±46.0)(91.0±58.2)μg/m3.PM2.5中ρ(OC)、ρ(EC)分别为14.64、3.54 μg/m3,PM10中分别为17.07、4.58 μg/m3;PM2.5、PM10中ρ(OC)与ρ(EC)相关性均较好,R2均为0.91(P < 0.01),表明二者具有相似的来源;在PM2.5和PM10中OC/EC〔ρ(OC)/ρ(EC),下同〕分别为4.46和4.16,ρ(SOC)(SOC为二次有机碳)分别为6.15和5.88 μg/m3,分别占ρ(OC)的42.1%和37.7%,表明二次污染较严重.碳组分丰度及主成分分析结果表明,PM2.5与PM10中碳组分来源基本一致,主要来源于汽车尾气、水溶性极性化合物、生物质燃烧及燃煤的混合源,柴油车排放,以及道路扬尘.后向气流轨迹聚类结果表明,颗粒物及碳组分质量浓度受途径内蒙古自治区及河北省中部、北京市南部气团的影响较大;对于碳组分来源,道路扬尘及汽车尾气受气团传输的影响较大,而生物质燃烧、燃煤等受气团传输的影响较小.研究显示,汽车尾气、燃烧源及道路扬尘为廊坊市开发区冬季碳组分的主要来源.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号