首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 499 毫秒
1.
As a part of the effort to understand the structure of long-range transported aerosol plumes and local pollution, aerosol observations monitored the mass concentrations and number-size distributions during the period August 2006 to July 2009 near the top of Mt. Haruna (1365 m), an isolated mountain in the Kanto Plain in Japan. The mass concentrations observed at Mt. Haruna and plain sites showed a seasonal variation with a maximum in spring and summer, respectively. The spring peaks in aerosols at Mt. Haruna were probably caused by long-range transport of mineral dust and anthropogenic particles from the Asian continent. The summer peaks at the plain sites was attributed to local pollution from the Tokyo metropolitan area. Three examples of 2007 Asian dust events were investigated to show that aerosols may be dispersed in a complicated three-dimensional structure and that delayed arrivals of the dust plumes at plain sites compared to Mt. Haruna were not a rare case. Because of the boundary layer being stable at night, the dust layer was advected eastward without the vertical mixing before sunrise. This study suggests that after thermal convection activated by sunlight during daytime Asian dust transported in the free troposphere may be brought down into the atmospheric boundary layer, increasing the dust concentration there.  相似文献   

2.
The chemical composition as well as the water uptake characteristics of aerosols was determined in size-segregated samples collected during November 2002 on the Slovenian coast. Major ions, water-soluble organic compounds (WSOC), short-chain carboxylic acids and trace elements were determined in the water-soluble fraction of the aerosol. Total aerosol black carbon (BC) was measured from filter samples. Our results showed that the origin of air masses is an important factor that controls the variation in the size distribution of the main components. Very high concentrations of WSOC as well as higher concentrations of BC were found under mostly continental influence. Besides the main ionic species (SO4(2-), NH4(+), K+) in the finest size fraction (0.17-0.53 microm), the concentration of NO3(-) was also high. The difference between the two different air mass origins is particularly expressed for Cl-, Na+, Mg2+ and Ca2+ determined in particles larger than 1.6 microm. As expected, a very good correlation was found between Na+ and Cl-. A good correlation was found between sea salt elements and elements of crustal origin (Na+, Cl-, Mg2+, Ca2+, Sr). A good relationship between typical anthropogenic tracers (K, V and Pb) was also observed. The mass growth factors, for all size fractions of aerosols collected under continental influence were very low (maximum 2.23 at 94%, 1.6-5.1 microm), while under marine influence the mass growth factors increased significantly with the particle size. At 97% humidity, the mass growth factors were 6.95 for the size fraction 0.53-1.6 microm and 9.78 for larger particles (1.6-5.1 microm).  相似文献   

3.
Chemical characterizations of soluble aerosols in southern China   总被引:14,自引:0,他引:14  
Wu D  Tie X  Deng X 《Chemosphere》2006,64(5):749-757
Soluble aerosols are measured at Guangdong and Hainan Provinces of southern China. The measured chemical composition of aerosols includes F-, Cl-, NO3-, SO4=, Na+, NH4+, K+, Ca2+, and Mg2+. The locations of measurements include a mega city (Guangzhou), a medium city along the coastline (Haiko), a small city along the coastline (Shanya), and a remote island site in the South China Sea (Yongxing island). The results reveal that aerosols in this region are complex and heterogeneous. Sulfate aerosol (SO4=) has the highest concentrations in Guangzhou (approximately 41% of total soluble aerosol mass), suggesting that anthropogenic activities (e.g., coal burning) play important roles in controlling aerosol concentrations in Guangzhou. By contrast, the concentrations of chlorine (Cl-) and sodium (Na+) are higher in Yongxing than in Guangzhou, indicating that the sea salt is the dominant aerosol in this marine environment site. In the medium (Haiko) and small (Shanya) city sites, the effects of anthropogenic and marine activities on aerosols fall in between the values in the mega city and the remote island site. The measured ratio of Cl-/Na+ shows that the ratio is less than 1.16 in all observation sites. The ratio in the Guangzhou city, the Haiko city, the Shanya city, and the Yongxing island is 0.52, 0.91, 0.24, and 0.53, respectively, indicating that significantly heterogeneous chemical reactions occur on sea salt particles. Unlike those in Europe and North America, there are high concentrations of calcium (Ca+) in all observation sites. The percentage of calcium mass to the measured total soluble aerosols mass is 21, 32, 34, and 30 at Guangzhou, Haiko, Sanya, and Yongxing, respectively. The calculations show that calcium plays an important role in neutralizing aerosols. The calculated "cation/anion" (summation operator[ion+]/summation operator[ion-]) ratio is 2.5, 2.5, 3.2, and 2.1, at Guangzhou, Haiko, Shanya, and Yongxing, respectively. The high "cation/anion" ratios suggest that SO4=, NO3-, and Cl- are neutralized, and the aerosols as a whole (internally mixed), appear to be in an alkaline mode in this region. However, without taking into account for calcium, the calculated "cation/anion" ratio reduces to 1.2, 0.98, 1.3, and 0.8 at Guangzhou, Haiko, Sanya, and Yongxing, respectively. The property of aerosols switches from an alkaline mode to an acidity mode at the Haiko and Yongxing sites.  相似文献   

4.
A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant.  相似文献   

5.
To examine the diversity of chemical and physical properties of aerosol particles, in particular dust, over the North Pacific, aerosols were collected along ∼32°N latitude between 140°E and 170°W longitude aboard the NOAA R/V Ronald H. Brown during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) in the spring 2001. A total of 11,482 aerosol particles were examined through individual-particle analysis. Results indicate that dust particles over this region were dominated primarily by Si-rich particles, including aluminosilicates that contain Fe. Fe is also present as separate Fe-rich particles. Additional common particle types include Ca- and S-rich particles; many of the later appear to represent soil-derived calcium carbonate and its reaction products whereas the former are predominantly reaction products of sea salt and sulfate. Particles are often aggregates of different types including pollution-derived substances and highly heterogeneous, both internally and externally. Dust particles are non-spherical, having circularities from 1.0 up to 4.5, suggesting the high degree of complexity of particle shape. The majority of dust particles were dominated by particles with median diameters from 0.67 to 1.26 μm. However, dust particles with diameters of 5 μm or even larger do exist associated with those events of dust originated from Asian desert areas. The existence of soot and Fe-rich particles over this region indicates the influence of fossil fuel sources in Asia. Aerosol Fe from both Asian desert and fossil fuel combustion may contribute to the nutrient Fe in the surface waters of the North Pacific basin. Therefore, the transport of Asian dust associated with species of fossil fuel burning in the spring may play an important role in altering the natural composition of aerosols over the North Pacific.  相似文献   

6.
Abstract

A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant.  相似文献   

7.
Aerosol samples were collected from Northwest China desert region (Minqin), coastal suburb (Qingdao) and interior of the Yellow Sea (Qianliyan) in spring and summer of 1995 and 1996. Samples were analysed for major components, carbon and sulphur. The results show that concentrations of aerosols change considerably in time and space. The crustal materials carried by cold front system increase notably the aerosol concentration (mass/unit vol.) over the Yellow Sea but reduce the percentage contribution of pollutants and sea-salt. The sea-salt and regional aerosols become dominant fractions in coastal atmosphere in summer when the dust storms are expired in source region and the Southeast monsoon starts in the Pacific Ocean.  相似文献   

8.
Atmospheric aerosols have been collected at four sites around Japan during 2000. From systematically monitoring the major (Na, Mg, Al, K, Ca, and Fe) and trace (Rb and Sr) elements, along with the Sr isotope composition, we have tried to estimate the contribution of long-range-transported Asian dust (“Kosa”) to the atmospheric aerosols.The results are summarized as follows:(1) The concentration of each element in the aerosols increased during the “Kosa” period. The increase was particularly obvious in samples collected on 8 April 2000, when the “Kosa Phenomenon” was observed at all the sampling sites in Japan, 2 days after a very heavy dust storm had occurred in China.(2) The Rb–Sr isotopic diagram shows a two-component mixing relationship: one with a high 87Sr/86Sr ratio and a high 87Rb/86Sr ratio, and the other with a low 87Sr/86Sr ratio and a low 87Rb/86Sr ratio. There is a significant difference between that of the expected end member of the Asian dust and that of the reported Asian loess, which is thought to be the possible source of the components of the “Kosa”, although the lower component is consistent with the local component at Wako.(3) Plots of the 87Sr/86Sr ratio vs the Ca/Al and Sr/Al ratios support a two-component mixing suggested by the Rb–Sr systematics, and they indicate that the contributing continental soil components to the “Kosa” aerosols should be composed of the silicate fraction of Asian loess.(4) The discrepancy in the Rb–Sr systematics between the expected end member and the possible sources may be caused by the dissolution of the Ca-bearing minerals via long-range dust transport, or by a combination of source characteristics and grain size separation.  相似文献   

9.
Asia is one of the major sources of not only mineral dust but also anthropogenic aerosols. Continental air masses associated with the East Asian winter monsoon always contain high contents of mineral dust and anthropogenic species and transported southeastward to Taiwan, which have significant influences on global atmospheric radiation transfer directly by scattering and absorbing solar radiation in each spring. However, few measurements for the long-range transported aerosol and its optical properties were announced in this area, between the Western Pacific and the southeastern coast of Mainland China. The overall objective of this work is to quantify the optical characteristics of different aerosol types in the Eastern Asian. In order to achieve this objective, meteorological parameters, concentrations of PM10 and its soluble species, and optical property of atmospheric scattering coefficients were measured continuously with 1 h time-resolved from 11 February to 7 April 2004 in Taipei Basin (25°00′N, 121°32′E). In this work, the dramatic changes of meteorological parameters such as temperature and winds were used to determine the influenced period of each air mass. Continental, strong continental, marine, and stagnant air masses defined by the back-trajectory analysis and local meteorology were further characterized as long-range transport pollution, dust, clean marine, and local pollution aerosols, respectively, according to the diagnostic ratios. The aerosol mass scattering efficiency of continental pollution, dust, clean marine, and local pollution aerosols were ranged from 1.3 to 1.6, 0.7 to 1.0, 1.4 and 1.4 to 2.3 m2 g−1, respectively. Overall, there are two distinct populations of aerosol mass scattering efficiencies, one for an aerosol chemical composition dominated by dust (<1.0 m2 g−1) and the other for an aerosol chemical composition dominated by anthropogenic pollutants (1.3–2.3 m2 g−1), which were similar to the previous measurements with high degree of temporal resolution.  相似文献   

10.

Objective

In this work, continuous and size-segregated aerosol measurements at Mt. Krvavec, Slovenia, during the Eyjafjallajökull volcanic eruption were performed. Based on chemical and morphological characteristics of size-segregated particles, the presence of the volcanic aerosols after long-range transport to Slovenia was to be confirmed.

Results and conclusions

Continuous measurements with the aethalometer and SMPS indicated the suspected volcanic ash plume passing over the sampling site. The aerosols collected by discrete sampling showed a chemical signature similar to the known elemental signature of the Icelandic volcanic ash. Coarse particles showed a composition typical for silicates rich in metals; in many cases also S was present. Morphological analysis showed particles with features indicative of an explosive volcanic eruption, e.g., pumice and pumice shards, glass shards, minerals, evidence of steam condensation, etc. The high sulfate concentration associated with the fine particles resulted in sulfate crystallization within the cascade impactor leading to the formation of large structures resembling a “fern”. Mass size distributions for Fe, Ti, Mn, Ca, Na, and Mg showed one primary peak (for Fe, Mn, and Ti at 2.8 μm; for Ca, Na, and Mg at ca. 4 μm), which supports the fact that most of the particles in the coarse sizes were silicates rich in metals. The size distribution of the water-soluble SO 4 2? showed a maximum peak at 0.75 μm, which also confirms the high sulfate concentration in the fine particles. Chemical and morphological characterization of aerosols collected at Mt. Krvavec indeed confirmed that volcanic ash plume passed over Slovenia.  相似文献   

11.
Long-term surface observations indicate that soil dust represents over 30% of the annual fine (particle diameter less than 2.5 μm) particulate mass in many areas of the western US; in spring and summer, it represents an even larger fraction. There are numerous dust-producing playas in the western US, but surface dust aerosol concentrations in this region are also influenced by dust of Asian origin. This study examines the seasonality of surface soil dust concentrations at 15 western US sites using observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network from 2001 to 2004. Average soil concentrations in particulate matter less than 10 μm in diameter (PM10) were lowest in winter and peaked during the summer months at these sites; however, episodic higher-concentration events (>10 μg m−3) occurred in the spring, the time of maximum Asian dust transport to the western US. Simulated surface dust concentrations from the Navy Aerosol Analysis and Prediction System (NAAPS) suggested that long-range transport from Asia dominates surface dust concentrations in the western US in the spring, and that, although some long-range transport does occur throughout the year (1–2 μg m−3), locally generated dust plays a larger role in the region in summer and fall. However, NAAPS simulated some anomalously high concentrations (>50 μg m−3) of local dust in the fall and winter months over portions of the western US. Differences between modeled and observed dust concentrations were attributed to overestimation of total observed soil dust concentrations by the assumptions used to convert IMPROVE measurements into PM10 soil concentrations, lack of inhibition of model dust production in snow-covered regions, and lack of seasonal agricultural sources in the model.  相似文献   

12.
Cheng MT  Lin YC  Chio CP  Wang CF  Kuo CY 《Chemosphere》2005,61(10):1439-1450
Aerosol samples for PM(2.5) and PM(2.5-10) were collected at four locations in central Taiwan from 26 to 31 March 2000, a period that experienced exceedingly high PM levels from 29 to 30 March due to the passage of an Asian dust storm. The samples were analyzed for mass, metallic elements, ions, and carbon. The purpose of this paper is to investigate the influence of the dust storm on the characteristics of local ambient particulate matter. The results indicate that the concentrations of the crustal elements Ca, Mg, Al, Fe and the sea salt species Na+ and Cl- in PM(2.5-10) during the dust episode exceed the mean concentrations in the non-dust period by factors of 3.1, 2.9, 2.6, 2.2, 2.3 and 2.1 respectively. Enrichment factors of Ca, Fe, and Mg in PM(2.5-10) during the dust event are close to unity, indicating that these elements are from soil. Reconstruction of aerosol compositions revealed that soil of coarse particulates elevated approximately 50% in the dust event. It is noted that during the dust event, the ratio of Mg/Al in PM(2.5-10) ranged from 0.21 to 0.25 while that of Ca/Al ranged from 0.6 to 0.9, levels more constant than those obtained in non-dust period.  相似文献   

13.
The results of the inorganic and organic analyses of aerosol samples collected on the east and west sides of Hong Kong during a dust episode (9–10 May 1996) are reported. The origin of the dust was traced to Northern China. The dust reached Hong Kong by way of the East China Sea. The characteristics of the inorganic elements and organic compounds were quite different from the non-episodic samples collected on 1–2 April 1996, EPD (Environmental Protection Department, Special Administrative Region, Hong Kong, China) results for April–May 1994, and our early studies (Zheng et al., 1997. Atmospheric Environment 31(2), 227–237.). Results from X-ray spectrometry showed pronounced increase in the relative abundance of Al, Fe, Ca, S and Cl in the dust samples compared to the non-episodic samples. The high abundance of Cl in the dust samples suggested the aerosols experienced long-range transport by way of the sea. ICP-MS analysis revealed higher concentrations of Fe, Ca, S and Pb in the episodic samples relative to the values measured during April–May 1994 by EPD. The high Ca content in the soil samples is a characteristic of northern Chinese crustal material (Liu et al., 1985). Hong Kong aerosols are characterized by high octadecenoic acid concentration due to heavy urbanization and Chinese-style stir-fry cooking. A much lower C18:1/C18:0 ratio was found in the episodic samples, however, suggesting the aerosols were transported from a long distance. The high ratio of ⩾C20/<C20 in n-alkanoic acids, the high input of n-alkanes and n-alkanols from plant waxes, and the unusually similar distribution of the organic compounds in the east and west samples suggested the existence of non-local sources on 9–10 May 1996. The compositions and distributions of lipids in the aerosol samples collected during the episode corresponded well with those of the eolian dust samples over the Atlantic and Pacific Oceans. Back trajectories and low altitude (<3 km) mesoscale flow modeling were performed, suggesting the existence of a mesoscale atmospheric structure off the east China coast, which could be responsible for the dust episode. Surface charts indicated the presence of suspended dust near Shanghai on 8 May 1996. Taiwan also experienced a similar episode on 8–9 May 1996. This integrated, multi-technique approach provides clear evidence that the 9–10 May episode was attributed to a consequence of Asian Dust. This is the first scientific report of Asian Dust in Hong Kong.  相似文献   

14.
Atmospheric aerosol particulate matter was directly collected in the free troposphere over the Japan Sea coast between 1992 and 1994 using an aircraft-borne nine-stage cascade impactor (particle size range: 0.1–8 μm). The water-soluble components in the aerosol particulate matter were analyzed by ion chromatography. Particulate sulfate and ammonium were detected in most of the samples and their size distributions showed noticeable peaks below the 1 μm particle size range. Water-soluble calcium (Ca2+) was detected in half of the samples; the size distribution showed that the maximum particle size was larger than 1 μm. Highly concentrated Ca2+ in larger particles was possibly due to transport of Kosa aerosols from the Asian continent in the free troposphere. The concentration of fine particulate sulfate and ammonium tended to increase whenever Ca2+ was detected, which suggests possible mixing of Kosa aerosols and non-Kosa aerosols during long-range transport of air masses containing Kosa particles.  相似文献   

15.
Daily fine particulate matter (PM2.5) samples were collected at Gwangju, Korea, during the Aerosol Characterization Experiments (ACE)-Asia Project to determine the chemical properties of PM2.5 originating from local pollution and Asian dust (AD) storms. During the study period, two significant events occurred on April 10-13 and 24-25, 2001, and a minor event occurred on April 19, 2001. Based on air mass transport pathways identified by back-trajectory calculation, the PM2.5 dataset was classified into three types of aerosol populations: local pollution and two AD aerosol types. The two AD types were transported along different pathways. One originated from Gobi desert area in Mongolia, passing through Hunshandake desert in Northern Inner Mongolia, urban and polluted regions of China (AD1), and the other originated in sandy deserts located in the Northeast Inner Mongolia Plateau and then flowed southward through the Korean peninsula (AD2). During the AD2 event, a smoke plume that originated in North Korea was transported to our study site. Mass balance closures show that crustal materials were the most significant species during both AD events, contributing -48% to the PM2.5 mass; sulfate aerosols (19.1%) and organic matter (OM; 24.6%) were the second greatest contributors during the AD1 and AD2 periods, respectively, indicating that aerosol properties were dependent on the transport pathway. The sulfate concentration constituted only 6.4% (4.5 microg/m3) of the AD2 PM2.5 mass. OM was the major chemical species in the local pollution-dominated PM2.5 aerosols, accounting for 28.7% of the measured PM2.5 mass, followed by sulfate (21.4%), nitrate (15%), ammonium (12.8%), elemental carbon (8.9%), and crustal material (6.5%). Together with substantial enhancement of the crustal elements (Mg, Al, K, Ca, Sc, Ti, Mn, Fe, Sr, Zr, Ba, and Ce), higher concentrations of pollution elements (S, V, Ni, Zn, As, Cd, and Pb) were observed during AD1 and AD2 than during the local pollution period, indicating that, in addition to crustal material, the AD dust storms also had a significant influence on anthropogenic elements.  相似文献   

16.
Lee CT  Lin NH  Hsu WC  Chang YL  Chang SY 《Chemosphere》1999,38(2):425-443
The Mei-yu (plum rain) season is a short but important period when the weather changes from spring to summer in Taiwan. In this study, size-segregated aerosols were collected alternately at 5 sampling sites in northwestern Taiwan from June 16 to 24, 1994. For the first time in Taiwan, this study revealed the aerosol mass spectra and water-soluble ions in the Mei-yu season. For all samples, a bi-modal aerosol mass spectra was found with modal diameters at 3.2 and 0.32 microm, respectively. The aerosol samples were able to be divided into different groups to show their mass and ion spectra according to the calculated 5-hr backward air trajectory. The utilization of enrichment factors showed that aerosol Cl-, Na+, and Mg2+ for all sizes, and super-micron SO4(2-) were related to the sea. Both the scheme of "chlorine loss" (Ohta and Okita, 1990) and a multivariate analysis (Thurston and Spengler, 1985) for categorizing water-soluble ions showed that sea-salts were major contributors in the prevalence of a sea breeze. In contrast, the secondary salts were significant for land breeze and a mix of land-sea breeze. In conclusion, the influence of local circulation on the distribution of aerosol mass and ionic species was found to be prominent.  相似文献   

17.
Kim KH  Lee M  Lee G  Kim YP  Youn YH  Oh JM 《Chemosphere》2002,48(3):317-327
To investigate the regional cycle of aerosols and their ionic constituents, three field intensive campaigns were conducted during fall and winter of 1997 and spring of 1998. The concentrations of most ionic species were found to decrease significantly across fall, winter, and spring such that the sum for all cation (and anion) species of each season is computed as: 193 > 96 > 73.7 nequiv m(-3) (and 240 > 104 > 51.5 nequiv m(-3)). To examine the fundamental characteristics of aerosol compositions in the study area, we conducted correlation analysis in various manners. The results indicated that the concentrations of major ionic species were strongly affected by some meteorological parameters including wind speed. It was also seen that relative strengths of correlations between important parameters (e.g., between wind speed and most of major inorganic species) maintain close relationships with the factors associated with the air mass origin. In addition, the results of factor analysis indicated the existence of at least three major sources in the study area which include: sea-salt aerosol, secondary aerosol, and organic aerosol component. The springtime occurrence of unexpectedly low concentrations of most ionic constituents is found to sensitively reflect the influence of the inflow of southeasterly winds that prevailed during spring, while it is not common for that season of the year. Because most of those changes are closely tied with the variabilities in the regional circulation patterns for each measurement period, assessment of the ionic composition in concert with the temporal variations of meteorological conditions provided valuable insights into the source signals of different air masses that passed by the study area.  相似文献   

18.
A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), namely low-Z (atomic number) particle EPMA, was used to characterize the chemical compositions of the individual aerosol particles collected at the Gosan supersite, Jeju Island, Korea, as a part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia). On 4-10 April 2001 just before a severe dust storm arrived, seven sets of aerosol samples were obtained by a seven-stage May cascade impactor with a flow rate of 20 L/min. Overall 11,200 particles on stages 1-6 with cutoff diameters of 16, 8, 4, 2, 1, and 0.5 microm, respectively, were examined and classified based on their secondary electron images and X-ray spectra. In general, sea salt particles were the most frequently encountered, followed by mineral dust, organic carbon (OC)-like, (NH4)2SO4/NH4HSO4-containing, elemental carbon (EC)-like, Fe-rich, and K-rich particles. Sea salt and mineral dust particles had a higher relative abundance on stages 1-5, whereas OC-like, (NH4)2SO4/NH4HSO4-containing, Fe-rich, and K-rich particles were relatively abundant on stage 6. The analysis on relative number abundances of various particle types combined with 72-hr backward air mass trajectories indicated that a lot of reacted sea salt and reacted mineral dust (with airborne NOx and SO2 or their acidic products) and OC-like particles were carried by the air masses passing over the Yellow Sea (for sample "10 April") and many NH4HSO4/ (NH4)2SO4-containing particles were carried by the air masses passing over the Sea of Japan and Korea Strait (for samples "4-9 April"). It was concluded that the atmosphere over Jeju Island was influenced by anthropogenic SO2 and NOx, organic compounds, and secondary aerosols when Asian dust was absent.  相似文献   

19.
Chang SY  Fang GC  Chou CC  Chen WN 《Chemosphere》2006,65(5):792-801
Continuous measurements of hourly PM10 soluble ions were performed by the in situ IC technology in order to assess the impact of Asian outflows on local air quality. The intensive aerosol observation was carried in Taipei from 11 February 22:00 to 7 April 19:00, 2004. Concentrations of the water-soluble ions (Cl(-), NO(-)(2), NO(-)(3), SO(2-)(4), Na(+), NH(+)(4), K(+), and Ca(2+)) were measured in a total of 3,300 samples. The characteristics of air pollutant events in Taipei Basin were classified as frontal dust, dust, northeast monsoon, south wind and sea/land breeze according to the hourly meteorology and air pollutant concentrations. Factor analysis was conducted based on hourly data for 13 variables to find the group of variables with similar behavior. According to the source characteristics of high loading species, the possible sources of PM10 aerosols in each group were identified. Three to four factors were identified for each event. The total variances of frontal dust, dust, northeast trade, south wind, and sea/land breeze events were explained about 85%, 86%, 76%, 77%, and 80%, respectively, indicating that the identified factors were satisfactory.  相似文献   

20.
To study the mixing and transformation of Asian dust with pollution in the two dust storms over the northern China in 2006, both TSP and PM2.5 samples were collected at three sites of northern China in addition to the dry deposition samples collected in an episode in Beijing. 23 elements, 15 ions, and 16 PAHs in each sample were analyzed. The two dust storms in northern China were observed in April 8–10 (DS1) and April 16–18 (DS2). Compared to DS2, DS1 was weaker and more polluted with stronger mixing between crustal and pollutant aerosols during their long-range transport. The concentrations of pollution species, e.g. pollution elements, ions, and PAHs were higher in DS1 than that in DS2, while the crustal species showed adverse variation. The correlation between chemical species and Al and between PAH(4) and PAH(5,6) further confirmed the stronger chemical transformation and aerosol mixing in DS1 than that in DS2. Back trajectory and chemical analysis revealed that in DS1 the air masses at Beijing were mostly from southern or southwestern direction at lower altitude with much more pollution, while in DS2 the air masses were mostly from the northwestern and northern direction with dust mainly, which explained why there was a stronger mixing of dust with pollution aerosol in DS1 than that in DS2 over Beijing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号