首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
为了解决高盐榨菜废水的处理问题,对厌氧膜生物反应器(anaerobic membrane reactor, AnMBR)处理高盐榨菜废水的3个运行阶段(盐度提升阶段、负荷提升阶段和排泥运行阶段)的消化性能和膜污染特性进行了研究。结果表明,当盐度由初始的12.9 g·L−1逐渐升高到33.5 g·L−1左右、且负荷维持在0.5~1.0 kg·(m3·d)−1(以COD计)时,COD去除率及沼气产率随盐度的提升先下降后升高,最后分别稳定在75%和300 mL·g−1(以COD计)以上,低负荷耐盐性驯化方式能够实现AnMBR的快速启动;当负荷逐渐增加约至7.6 kg·(m3·d)−1时,COD去除率达到80%左右,沼气产率稳定在330~380 mL·g−1,VFA/ALK始终低于0.15,这表明AnMBR对高盐榨菜废水具有良好的处理效果和较强的运行稳定性;在排泥运行阶段,AnMBR的COD去除率和沼气产率均有明显上升,分别达到83%和400 mL·g−1左右,这表明排泥可以提高消化性能。此外,排泥有利于减缓膜污染。SEM-EDX表征结果表明,膜面污染物中存在大量的有机物和无机盐类晶体物质,工程应用中建议采用NaClO清洗+酸清洗的组合清洗方式。以上研究结果可以为高盐榨菜废水处理工业化应用提供参考。  相似文献   

2.
餐厨废水是一类高油、高盐、高氮等较为复杂的废水,在传统厌氧处理中面临污泥漂浮流失、有机负荷低及COD去除效果差等问题。通过构建中试规模厌氧膜生物反应器(anaerobic membrane reactor, AnMBR)处理餐厨废水,考察了3个运行阶段(污泥驯化阶段、容积负荷(volume loading rate, VLR)提升阶段和污泥停留时间(sludge retention time, SRT)缩短阶段)的厌氧消化性能、稳定性能、污泥性质和膜性能变化。结果表明,在污泥驯化阶段,低负荷(1.5 kg·(m3·d)−1)污泥驯化方式能够实现AnMBR的快速启动,甲烷产率由227 mL·g−1 (以COD计)迅速提升至267 mL·g−1,COD去除率达到99%。在VLR提升阶段,当负荷由3.0 kg·(m3·d)−1逐渐增加至12.0 kg·(m3·d)−1时,甲烷产率由283 mL·g−1升高并稳定至335 mL·g−1左右,COD去除率达到98.5%。然而此阶段污泥浓度由13.39 g·L−1迅速升高至45.59 g·L−1,从而导致膜污染加剧,平均膜通量下降速率由0.53 L·(m2·h·d)−1增至0.78 L·(m2·h·d)−1。在SRT缩短阶段(由100 d缩短至40 d),尽管排泥量由0.4 L·d−1增加至1 L·d−1,甲烷产率并没有受到明显影响,仍稳定在335 mL·g−1左右,COD去除率达到98.9%。此外,缩短SRT增大了排泥量,反应器内污泥浓度由45.59 g·L−1逐渐降低至45.27 g·L−1,缓解了膜污染,膜通量下降速率减缓到0.42 L·(m2·h·d)−1。在整个运行阶段,AnMBR对毒性物质氨氮具有良好的耐受能力,尽管体系内氨氮质量浓度高达2 600 mg·L−1,VFA/ALK始终低于0.04,表明AnMBR不仅对外界环境变化有着较好的缓冲能力,而且对消化体系的内源性抑制因素也有着良好的耐受能力。综上,AnMBR在处理餐厨废水时表现了良好的处理性能和稳定性能。  相似文献   

3.
猪场养殖废水是一类有机污染物浓度高、悬浮物多、性质复杂的废水,在传统厌氧处理中存在消化污泥流失及处理效率低等问题。本研究采用中试规模外部浸没式厌氧膜生物反应器处理猪场实际废水,设计处理水量为1 m3·d−1,在HRT分别为8、5、3 d的3个阶段连续运行4个多月,考察了厌氧膜生物反应器的沼气产量、运行稳定性、污染物去除效果及膜组件运行性能和清洗效果。结果表明,系统运行期间ORP在−486~−545 mV;随着HRT缩短,有机负荷由0.5~1.88 kg·(m3·d)−1升高到5 kg·(m3·d)−1,沼气产量逐渐增大,产率为0.38~0.45 m3·kg−1。在整个运行过程中,VFA/ALK始终小于0.1,系统运行稳定。对TCOD、溶解性COD、氨氮、TN、TP去除率分别达到74%~86%、48%~68%、7%~12.8%、4.6%~16.7%、5%,其中溶解性COD去除率占总COD去除率的55%左右。系统运行期间初始膜通量设定为5 L·(m2·h)−1,在HRT=8 d时,清洗周期为20 d,随后不断缩短,当HRT为3 d时,清洗周期仅为10 d。通过水冲洗与化学清洗相结合的方式可有效缓解膜污染,进而恢复膜通量。以上研究结果可以为厌氧膜生物反应器处理猪场养殖废水工程应用提供参考。  相似文献   

4.
村镇厨余垃圾渗滤液等高浓度有机废水的高效处理是提升村镇环境卫生水平的一个重要方面。为满足村镇厨余垃圾渗滤液低能耗有机物排放达标的处理需求,构建了内循环厌氧膜生物反应器 (internal circulation anaerobic membrane bioreactor,IC-AnMBR),并用来处理厨余渗滤率废水,重点分析了反应器的COD去除性能和调控机制;根据pH、VFAs/碱度、容积产气率、膜通量和出水有机污染物组分等指标,考察了COD在水解酸化、产甲烷和膜截留过程中的转移转化特征。结果表明:通过耦合膜擦洗曝气和沼气曝气循环,将VFAs/碱度和容积产气率分别从1.5和0.1优化到0.02和1.0;优化了COD稳定达标性能和去除负荷,将COD去除率和负荷从59%和0.3 kg·(m3·d)−1分别提高到了97.7%和1.8 kg·(m3·d)−1;采用沼气循环曝气擦洗陶瓷膜,控制了滤饼层积累,并将膜通量从0.6 L·(m2·h)-1提高到2.1 L·(m2·h)−1。IC-AnMBR短流程工艺能够实现村镇厨余垃圾渗滤液的稳定处理。  相似文献   

5.
厌氧膜生物反应器(anaerobic membrane bioreactors, AnMBR)出水普遍存在过饱和的溶解性甲烷(dissolved methane, DCH4),易造成能量流失和温室效应,阐明AnMBR中甲烷气-液分配特征对提高甲烷回收率具有重要意义。为此,本文研究了负荷和混合方式对AnMBR中甲烷气-液分配特征的影响。结果表明,在35 oC,负荷为0.6~1.8 kg·(m3·d)–1的条件下,AnMBR实现了较好的有机物去除效果(COD去除率>90%),运行过程DCH4均处于过饱和状态(过饱和度为1.3~2.1),随着负荷的提升DCH4浓度升高,过饱和度有所下降;相比于循环混合,在浪式脉冲混合条件下的甲烷传质系数(KLa)更大,其中DCH4浓度、过饱和度及DCH4占进水COD的比例均较低。AnMBR大部分进水COD转化为甲烷,主要以气态形式存在 (50.2%~60.0%)。浪式脉冲混合时反应器总能耗比循环混合降低了85.9%~88.0%,提升负荷有利于实现AnMBR处理废水过程的能量平衡。  相似文献   

6.
陈东瑞  刘涛  乔森 《环境工程学报》2023,17(4):1355-1364
石化废水具有成分复杂、生物毒性和可生化性差等特点,废水中的高浓度耗氧有机物(以COD计)以及有毒物质会抑制生物活性,传统厌氧/好氧工艺在处理此类废水时难以达到理想效果。为强化生物处理效果,构建了一种新型电化学强化厌氧膜生物反应器(AnEMBR)与基于悬浮生物载体的生物膜与活性污泥复合工艺(IFFAS)处理实际石化废水。通过AnEMBR构建的生物电化学系统去除COD,并通过IFFAS内的改性载体实现同步硝化反硝化(SND)以去除NH4+-N和TN。运行期间COD去除率大于95%,在-1.2 V的外加电压下缓解不可逆膜污染并回收沼气 (CH4占比90.7%) 。稳定运行阶段的COD、NH4+-N、TN的平均去除率可达到97.9%、93.1%和72.2%,平均出水COD为52.11 mg·L−1、NH4+-N为3.70 mg·L−1、TN为15.19 mg·L−1,达到了《石油化学工业污染物排放标准》(GB 31571‐2015)。以上研究结果可为石化废水强化生物处理提供参考。  相似文献   

7.
为探究厌氧动态膜生物反应器(DMBR)在典型城市有机废弃物厌氧发酵领域应用的可行性,以餐厨垃圾(FW)和剩余污泥(WAS)为处理对象,在连续流条件下探究动态膜FW和WAS厌氧混合发酵系统的运行效能,并优化基质混合比(FW/WAS)和食微比(F/M)。结果表明,以水力停留时间(HRT)和有机负荷(OLR)分别为62.5 d和(1.84±0.45) g·L−1·d−1为初始条件,在连续流下启动FW和WAS厌氧混合发酵系统,经过72 d的运行,系统pH稳定在7.6~8.0,平均甲烷产量达到(0.41±0.08) L·L−1·d−1,无短链挥发性脂肪酸(VFA)累积且TVFA/碱度最大比值仅为0.024,表明系统启动成功且运行稳定。通过对动态膜的特性分析可知,动态膜形成快速,可在较短时间内实现低浊度(<50 NTU)出料,动态膜截留效果显著。通过FW/WAS和F/M的批次优化实验可知,厌氧混合发酵系统最优FW/WAS为4.4∶1 (基于VS),定期调整优化FW/WAS有望取得更高的系统甲烷产率;相应的系统能够耐受的最大F/M为0.944,为后续充分发挥连续流动态膜FW和WAS混合发酵系统的最大效能提供依据。本研究结果可为典型城市有机废物厌氧发酵产甲烷系统的低碳高效稳定运行提供参考。  相似文献   

8.
实现膜污染有效控制是充分发挥陶瓷膜在废水处理及回用领域适用性的关键。为此,构建了平板陶瓷膜反应器,针对性地开展了平板陶瓷膜处理市政污水二级出水运行优化控制与膜污染机制分析研究。结果表明,通过四因素三水平正交实验,得出本实验条件下最佳运行控制工况为:蠕动泵转速200 r·min−1(对应初始膜通量200 L·(m2·h)−1)、过滤时间10 min、水力反冲时间30 s、间歇运行时间2 min;在此运行工况下,平板陶瓷膜可保持平均膜通量43.08 L·(m2·h)−1以上稳定运行16 d(384 h),期间系统出水浊度、色度、COD等水质指标稳定满足《城市污水再生利用 城市杂用水水质》(GB/T 18920-2002)标准要求;原水和膜污染层元素及官能团对比表征结果表明,脂肪族类、酰胺类、无机硅化物类以及无机金属离子是造成膜污染的主要污染物,而凝胶层阻力则对平板陶瓷膜膜污染形成起主导作用。  相似文献   

9.
城市污水处理系统作为人类生活排水的主要收纳者,是人类肠道病毒的重要储存库,也是肠道病毒进入水环境的重要途径。膜生物反应器在保证出水水质稳定的前提下,同时强化了污水中病毒的削减。但是,目前对好氧(aerobic membrane bioreactors, AeMBR)和厌氧(anaerobic membrane bioreactors, AnMBR)膜生物反应器在削减病毒效能和机制方面的差异了解较少。基于此,本研究对比了AeMBR和AnMBR在同一工况下对城市污水中病毒的去除效能,并探究了污泥吸附病毒,病毒在污泥混合液中的灭活及膜污染对病毒截留的差异。结果表明,AeMBR和AnMBR对城市污水中的病毒去除效率均能达到3 log,但在去除机制上存在差异。AeMBR对病毒的去除率在反应器运行初期迅速上升至2 log,而AnMBR对病毒的去除率随着膜污染的加剧而提高,且和TMP有显著相关性(r=0.81,P<0.05)。厌氧污泥的病毒吸附能力高于好氧污泥,而好氧污泥混合液中病毒的灭活速率高于厌氧污泥混合液。泥饼层是膜生物反应器的膜污染组分中截留病毒的主要贡献者。以单位膜阻力对病毒截留效率为计算依据,AeMBR的膜污染各组分中不可逆污染和原始膜的单位膜阻力对病毒截留效率最大,AnMBR的膜污染的孔道有机污堵物的单位膜阻力对病毒截留效率最大。  相似文献   

10.
采用移动床生物膜反应器(MBBR)联合管式膜构建气提式管式膜MBR体系用以处理生活污水,考察了曝气对污水处理效果、膜内气液流态及膜过程的影响,探讨了污泥特性的变化及其对膜污染过程的影响机制。结果表明,气提式管式膜MBR体系下膜出水DO浓度高于混合液,且随着曝气量由50 L·h−1提高至150 L·h−1,管式膜内气含率由0.33增至0.60并呈“活塞流”流态,操作周期由6~7 d延长至17 d,膜污染速率由1.54 kPa·h−1降至0.21 kPa·h−1,临界通量显著增大;同时,MBBR混合液中EPS总量呈减小趋势,但MBBR内悬浮污泥粒径变小,且膜表面EPS中PN/PS比例显著高于MBBR混合液。膜表面污染阻力构成分析表明,气提式管式膜MBR体系下容易发生膜孔堵塞,膜污染以不可逆污染阻力为主。  相似文献   

11.
采用升流式微氧污泥床膜生物反应器启动同步亚硝化、厌氧氨氧化耦合异养反硝化(SNAD)工艺,考察了颗粒污泥性质与膜污染行为的动态变化,并通过统计学手段评估了启动中颗粒污泥特性与膜污染速率之间的相关性。结果表明:由厌氧氨氧化工艺(Anammox)历经全程自养脱氮工艺(CANON)启动SNAD工艺过程中,颗粒污泥浓度(MLSS)、胞外聚合物(EPS)、溶解性微生物产物(SMP)及EPSp/EPSc比值呈现增加趋势,而SMPp/SMPc比和污泥容积指数(SVI)逐渐降低;傅里叶变换红外(FT-IR)和三维荧光谱(3D-EEM)分析结果表明,颗粒污泥蛋白质疏水性逐渐增强,且色氨酸类物质在污泥颗粒化过程中起到重要作用;此外,膜污染速率由1.21 L·(m2·h2·Pa)−1下降至1.08 L·(m2·h2·Pa)−1,这主要是由于EPSp/EPSc比增加,促使颗粒污泥粒径增加,从而减缓膜污染所致;统计学结果进一步表明,相比其他颗粒污泥参数(MLSS、SVI、EPS及SMP),SMPp/SMPc比与膜污染速率之间呈现较强的显著正相关,SMPp/SMPc比可作为膜污染速率预测参数,预测模型为Fr=1.638SMPp/SMPc−1.398。  相似文献   

12.
为考察水力停留时间(hydraulic retention time, HRT)对膜生物反应器(membrane bioreactor, MBR)体系内的混合液特性和膜污染的影响,对兰州某生活污水处理厂生化尾水进行了浸入式中空纤维MBR现场实验。结果表明,在HRT由6 h逐渐升高至12 h的过程中,胞外聚合物(extracellular polymeric substances, EPS)中大分子质量颗粒物的比例、溶解性微生物产物(soluble microbial products, SMP)的含量和污泥的Zeta电位分布均逐渐增大。同时,EPS多糖含量、污泥粒径和黏度均出现逐渐降低的趋势,这些因素可能共同作用导致膜组件的运行时间缩短、过膜压差(transmembrane pressure, TMP)快速增大,最终致使膜污染进程的加快。在HRT为6 h、膜通量15 L·(m2·h)−1、污泥质量浓度为4 000 mg·L−1的条件下,中空纤维式MBR处理生化尾水可以获得较好的混合液特性和处理效果。  相似文献   

13.
将季铵盐(QAC)改性聚偏氟乙烯(PVDF)膜运用于厌氧膜生物反应器(AnMBR),评估了其抗污染性能,探讨了厌氧微生物在QAC/PVDF膜上短期暴露时的活性变化情况。结果表明,QAC/PVDF膜在AnMBR中清洗周期较长,说明QAC/PVDF膜可延缓AnMBR的膜污染形成;将厌氧微生物短期暴露于QAC/PVDF膜的环境中,QAC/PVDF膜对厌氧生物处理相关酶活性影响较小,不会引起厌氧微生物细胞破损或产甲烷性能下降。但随着直接接触的QAC浓度上升,厌氧微生物细胞破损比例上升,相关酶活性和产甲烷性能下降。  相似文献   

14.
为了考察染料类型对膜生物反应器(MBR)处理性能的影响,在相同的染料浓度条件下,探究了阳离子染料MB和阴离子染料CR对MBR去除效果、活性污泥特性及膜污染的影响。结果表明,MBR对亚甲基蓝印染废水中的COD、${{\rm{NH}}_4^ + } $-N和亚甲基蓝的去除率分别为83.07%、25.11%和52.26%,均低于处理刚果红印染废水中的相应污染物去除率(88.93%、87.44%和92.39%)。前者系统中污泥代谢产物为71.43 mg·g−1,高于后者的35.22 mg·g−1,且D50为110.9 μm,导致系统分别在第10和17天的TMP达到清洗压力。扫描电子显微镜、阻力分析和红外光谱表征结果表明,处理亚甲基蓝印染废水的MBR滤饼层较厚(137 μm),膜孔阻力较大(9.01%),污染物主要成分为多糖和蛋白质。  相似文献   

15.
利用升流式厌氧活性污泥床(UASB)反应器处理高含硫有机废水,考察了其在pH=8.5条件下的运行性能、MPA(产甲烷菌)与SRB(硫酸盐还原菌)的竞争规律及微生物群落结构特征。结果表明:在pH=8.5的厌氧生物处理系统中,COD的去除率达到70%以上和硫酸盐去除量达到1 600 mg·L−1,在整个运行期间均保持较好的性能;在COD/${\rm{SO}}_4^{2 - }$为1~10时,MPA始终占有主导地位;在整个运行期间,水相中游离H2S浓度最高仅为5.7 mg·L−1,沼气中的H2S浓度处于较低水平(最高为1.5 mg·L−1)。系统中主要的耐碱性MPA为甲烷丝菌属、甲烷短杆菌、未分类甲烷杆菌科。由此可见,高pH可以有效解除游离态H2S对MPA活性抑制,亦可减少沼气中的H2S含量。  相似文献   

16.
针对富含木质纤维素底物利用效率低的问题,通过在中试厌氧消化系统中共接种瘤胃微生物和厌氧污泥来改善水稻秸秆中木质纤维素的水解,采用逐步提升底物有机负荷(OLR)的方式,评估了接种后水稻秸秆的厌氧消化效率。结果表明,在反应体系底物有机负荷达到4.26 g·(L·d)−1(以VS计)时,系统表现出最佳的厌氧消化性能,此时沼气产率为528 mL·g−1 (以VS计),甲烷产率为287 mL·g−1,容积沼气生产强度达到2.20 L·(L·d)−1。在反应器有机负荷从1.05 g·(L·d)−1提升到4.26 g·(L·d)−1的运行过程中,系统的纤维素降解率稳定在(71 ± 2)%,半纤维素降解率稳定在(92 ± 4)%,木质素降解率稳定在(15 ± 3)%。这种稳定性表明反应器的连续运行成功地形成了高效的木质纤维素降解体系,结果可为实际规模化应用提供参考。  相似文献   

17.
王瑾  李登新 《环境工程学报》2019,13(12):2853-2862
为解决正渗透膜反应器中盐积累的问题,选取乙酸铵(NH4C2H3O2)、乙酸钠(NaC2H3O2)和乙酸钾(KC2H3O2) 3种基于乙酸根离子的有机化肥作为正渗透膜反应器的汲取液,并将其与硫酸铵((NH4)2SO4)、氯化钠(NaCl)和氯化钾(KCl) 3种其对应无机离子汲取液的正渗透(FO)工艺性能和正渗透膜生物反应器(OMBR)工艺性能进行比较。通过工艺水通量和盐含量的测定,生物反应器内COD、铵态氮和硝态氮含量的测定,污染后膜表面的SEM分析,评价了基于乙酸根离子的有机化肥作为正渗透膜反应器的汲取液对反应器内盐积累和膜污染的影响。结果表明:在FO工艺中,乙酸铵、乙酸钠和乙酸钾在0.6 mol·L−1浓度下的平均水通量分别为10.30、11.07和12.73 L·(m2·h)−1,低于其对应的无机离子汲取液的水通量;在OMBR工艺中,乙酸铵、乙酸钠和乙酸钾有机化肥作为汲取液可以显著减缓反应器内盐度的积累。此外,当基于乙酸根离子的有机化肥作为正渗透膜反应器的汲取液时,生物反应器中微生物的生物活性更高,虽然这更容易造成膜污染,但可以有效地去除有机物和氮磷营养物质。研究可为正渗透生物反应器的实际应用提供参考。  相似文献   

18.
为考察氨氮浓度对中温厌氧消化处理马铃薯加工废水的影响,通过批式实验,探究该类废水厌氧消化处理的氨氮抑制阈值。结果表明:氨氮浓度为3 000 mg·L−1 (TAN≈3 659 mg·L−1)时,累积产甲烷量降低至276.1 mL·g−1且出现产甲烷迟滞期;氨氮浓度为4 000 mg·L−1 (TAN≈4 468 mg·L−1)时,累积产甲烷量仅为对照组的39.2%,迟滞期明显延长了7.2 d;高浓度氨氮抑制造成了以丙酸为主的VFAs积累和有机物(蛋白质等)降解不完全,这是COD去除率下降的主要原因;VFAs作为氨氮抑制发生时COD的主要组分,其积累可作为马铃薯加工废水厌氧消化过程发生氨氮抑制的指示因子;马铃薯加工废水中温厌氧消化的氨氮阈值约为3 000 mg·L−1。该结果可为马铃薯加工废水的高效处理与资源化利用提供参考。  相似文献   

19.
由于厌氧膜生物反应器(AnMBR)在水中有机物资源化利用方面具有独特的优势,逐步成为污水处理领域的研究热点。从反应器与膜组件的配置、有机物的去除以及产甲烷率等方面讨论了影响AnMBR运行效果的主要因素。结合污水深度脱氮的需求,探讨了厌氧氨氧化(ANAMMOX)自养脱氮与AnMBR的耦合技术。介绍了国内外相关耦合工艺的应用形式,总结了关于该耦合工艺最新的研究方法、运行效果等,展望了该技术在污水处理领域的应用前景。  相似文献   

20.
采用中试厌氧膜生物反应器(AnMBR)处理高浓度餐厨废水,多维分析污泥停留时间(SRT为50、30和20 d)对其运行效能的影响。结果显示,AnMBR在各SRT工况下均展现出较好的稳定性,消化罐pH维持在7.2(7.8之间,膜出水COD去除率达到96%以上。缩短SRT虽然能够有效提高有机负荷,但是过低的SRT会显著降低COD转化率。AnMBR在SRT 30 d工况下可获得最佳处理效能,有机负荷达到(8.7±1.3)kg COD·(m3·d)-1,沼气生产强度达到(4.5±0.8)m3·(m3·d)-1,COD转化率为(82.1±7.3)%。厌氧消化液中胶体态和溶解性大分子有机质的累积是导致膜过滤效能下降的主要原因,控制SRT 30 d有效削减了其积累量,从而提高了膜通量并减缓了膜污染趋势。Ca2+会沉积在污泥混合液中,其浓度随着SRT缩短显著降低。此外,SRT缩短会降低长链脂肪酸(LCFA)的转化率;但是未降解的LCFA很可能与Ca2+形成沉淀,会减轻游离LCFA对微生物活性的抑制作用,进而有助于AnMBR的稳定运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号