首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
选取北京市区为采样点,于2016年1月进行PM_(2.5)采集,并分析了PM_(2.5)和水溶性组分的污染特征和来源。结果表明,采样期间北京市PM_(2.5)质量浓度平均为67.7μg/m~3,水溶性离子是PM_(2.5)的主要组分,其中SO_4~(2-)、NO_3~-和NH_4~+之和占总离子的79.1%;Ca~(2+)和Mg~(2+)分别占PM_(2.5)质量浓度的2.5%和0.9%,海盐气溶胶和K~+分别占PM_(2.5)的3.6%和1.6%。采样期间NO_3~-/SO_4~(2-)为1.1,表明NO_2和SO_2主要来自移动源的贡献。北京市区冬季PM_(2.5)主要来自二次污染源、扬尘、生物质燃烧和海盐气溶胶,贡献率分别为42.351%、21.164%、16.314%和5.436%。  相似文献   

2.
为了解天津市南开区冬季大气颗粒物污染特征,基于颗粒物浓度及组分在线监测数据,分析大气污染特征,对细颗粒物(PM2.5)进行了来源定性分析。结果表明,天津市南开区2021年12月环境空气质量综合指数为4.74,PM2.5、可吸入颗粒物(PM10)、二氧化氮(NO2)、一氧化碳(CO)、臭氧(O3)和二氧化硫(SO2)浓度分别为53μg/m3、89μg/m3、49μg/m3、1.2mg/m3、55μg/m3和6μg/m3。PM2.5、PM10和NO2对综合指数贡献占比较高,是冬季影响空气质量的主要污染物。PM2.5与PM10、CO和NO2的相关性较高,PM2.5化学组分中硝酸根(...  相似文献   

3.
利用2016年1月至12月潍坊城区典型区域的PM_(10)、PM_(2.5)浓度的连续观测数据,研究了PM_(10)、PM_(2.5)浓度的变化特征及其与气象因素的关系。结果表明,潍坊城区颗粒物污染较为严重,PM_(10)超标率为7.59%、PM_(2.5)超标率为33.61%。PM_(10)和PM_(2.5)质量浓度均存在明显的季节变化和月变化规律,表现为夏季月份较低,而冬季月份较高。PM_(2.5)/PM_(10)比值的平均值为0.526,该比值也呈现一定季节变化,冬夏两季较高,春秋两季较低。PM_(10)和PM_(2.5)与气温均呈现一定的负相关性,PM_(10)还与湿度呈现负相关关系。  相似文献   

4.
利用车载环境空气质量监测系统对长沙市城区典型交通路口的近地面空气质量进行了实时监测。结果表明,在监测时段(14∶00~20∶00)内,该监测点环境空气中PM10的小时质量浓度范围在0.097~0.222mg/m3之间,平均值0.163mg/m3;PM2.5的小时质量浓度范围在0.050~0.158mg/m3之间,平均值0.103mg/m3。PM2.5/PM10比值在48.1%~76.6%之间,平均值62.4%。PM10与PM2.5质量浓度在星期一相对较低,星期二有所升高,星期三至周末总体上保持基本稳定。在监测时段PM10与PM2.5小时质量浓度呈现先降后升的变化规律,即14∶00~15∶00,PM10与PM2.5质量浓度相对较高,16∶00左右降至最低,从17∶00开始逐渐升高,20∶00达到峰值。PM10和PM2.5的质量浓度变化与车流量和车速密切相关,温度、相对湿度和风速等气象因素对PM10和PM2.5质量浓度的变化影响也较显著。  相似文献   

5.
2015年在南昌市6个国控点分四个季度采集了大气PM_(2.5)样品,分析了其主要化学组分,并对PM_(2.5)质量浓度进行了重构。结果表明:南昌市PM_(2.5)的主要化学组分为SO_4~(2-)、OC、NO_3~-、NH_4~+和EC,占比具有明显的时空变化特征,硫酸盐在第二、三季度最大,硝酸盐在第一、四季度最大,SO_4~(2-)和NH_4~+在石化点位最高,NO_3~-在京东镇政府点位最高,OC和EC在省外办点位最高;重构后,南昌市PM_(2.5)以硫酸盐、有机物、地壳类物质为主,说明2015年南昌市扬尘和二次硫酸盐源类对PM_(2.5)的贡献可能是主要的。  相似文献   

6.
对2011—2015年期间铜川市降水离子化学组分进行分析。结果表明,降水为中性偏碱性,电导率和离子总浓度值较高。阴阳离子总浓度不平衡,阳离子浓度大于阴离子,SO_4~(2-)、NO_3~-是主要致酸性离子,Ca~(2+)、NH_4~+是主要碱性离子。以富集因子法分析,SO_4~(2-)、NO_3~-、F~-主要来自于人为活动排放,Mg~(2+)、K~+主要来自于陆源,Cl~-主要来自于海源。  相似文献   

7.
运用Theil-Sen斜率估计法和Mann-Kendall趋势检验法求出淮河流域23个监测点PM_(2.5)与PM_(10)的变化规律,结果表明,17个地区的空气质量有所改善。与不同气象指标的相关分析表明,空气中PM_(2.5)、PM_(10)的含量与降水量、湿度和温度呈负相关关系,与气压和风速呈正相关关系。夏季空气中悬浮物质含量较低,表明降雨在净化空气中起主导作用。与空气中次生气溶胶的相关分析结果表明,淮河流域空气中的悬浮物质主要来源于煤炭燃烧和交通运输。  相似文献   

8.
随着城市化、工业化进程的不断推进,大气颗粒物成为影响我国城市环境空气质量的首要污染物。对近年来我国颗粒物浓度变化、气象条件与颗粒物之间的关系、颗粒物中化学成分、微观形貌及来源解析和对人体健康的危害进行概述和总结,并将影响颗粒物污染的特殊情况(沙尘天气、特殊节假日、秸秆焚烧和累积效应等)也进行了分类分析,结合目前的研究现状及国内成功经验提出了颗粒物污染防治的对策。  相似文献   

9.
二重源解析技术在西宁市PM_(10)来源解析中的应用研究   总被引:1,自引:0,他引:1  
在西宁市(青海大学、振兴、朝阳、马坊、颐豪、开发区、多巴)采样点采集大气PM10环境样品,针对西宁市颗粒物主要排放源采集土壤尘、建筑水泥尘、燃煤尘等排放源PM10样品,应用二重源解析技术得到了西宁市PM10源解析结果,六类污染源的年总贡献值213.6μg/m3,其中燃煤尘、建筑水泥尘、土壤风沙尘和机动车尾气尘对PM10的年分担率达到了83.2%。  相似文献   

10.
于2009~2010年典型月份采集成都市区大气PM_(2.5) 样品,采用IMPROVE-热光反射法对样品中有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)进行分析,探讨OC和EC浓度水平、来源及二次有机碳分布特征。结果表明,成都市年均OC和EC质量浓度分别为(22.6±10.2)μg/m3和(9.0±5.4)μg/m3,与国内外其他城市相比,污染严重;OC和EC的质量浓度呈现明显季度差异,均为秋冬季春夏季;相关性分析表明,OC和EC秋冬季节相关性较好,表明其来源相近,春夏季节相关性差,表明其来源较为复杂;OC/EC值2,且估算出二次有机碳(secondary organic carbon,SOC)年均值为(8.9±4.6)μg/m~3,占OC质量浓度的38.5%,表明二次污染严重。  相似文献   

11.
2018年4月—9月,对新乡市环境空气中70种VOCs进行监测,分析了VOCs浓度水平、组成特征、臭氧生成潜势及来源。结果表明,新乡市环境空气中VOCs浓度范围为27.25~289.18μg/m3,平均浓度为117.23μg/m3,以醛酮类和烷烃为主,表现为醛酮类烷烃类芳香烃烯炔烃,主要来源于机动车尾气及燃烧源(贡献比为37.609%)以及溶剂使用(贡献比为16.791%)。环境空气中VOCs的臭氧生成潜势贡献表现为醛酮类芳香烃烯炔烃烷烃类。  相似文献   

12.
基于454d PM_(10)、PM_(2.5)质量浓度小时数据,分析不同时间尺度下西安市和安康市PM_(10)、PM_(2.5)变化规律。结果表明:(1)西安市和安康市PM_(10)、PM_(2.5)日均浓度均呈宽"U"字型变化趋势,秋冬季污染重于夏秋季,西安市污染重于同期安康市。(2)经小波分析发现,西安市在2017年供暖期内PM_(10)、PM_(2.5)浓度小波周期与同期安康市基本相同,经济结构差异和自然条件差异对PM_(10)、PM_(2.5)时间周期无显著影响。(3)城市自然、经济和供暖条件引起西安市和安康市PM_(10)、PM_(2.5)小时浓度变化趋势差异。  相似文献   

13.
近年来中国经历了数次大范围雾霾天气,北京等多个城市更是遭遇连续雾霾。造成雾霾天气的主要污染物PM_(2.5)又称细颗粒物。为了进一步治理北京雾霾,为制定政策提供依据,须了解北京地区PM_(2.5)的来源。本文基于后向轨迹模式并结合PM2.5浓度计算了2015年9月1日0:00至2016年8月31日23:00以北京为起始点,向后推算48小时的轨迹,并结合轨迹聚类分析法、潜在源贡献因子法(PSCF)、浓度权重轨迹分析法(CWT)等,探讨北京地区PM_(2.5)的来源。结果表明:模拟的后向轨迹经过聚类分析可分为6类,其中来自内蒙古西部的轨迹最多,来自西北、北西北方向的轨迹次之,来自西西北方向且在京津冀地区停留一段时间的轨迹占比最小,来自河北、山东、河南的交接地区及河北的沿海地区的轨迹占比也较小。其中来自内蒙古西部地区及河北、山东、河南交界地区的两类轨迹对北京的空气质量有较大的影响,是北京PM_(2.5)污染的主要潜在源区;来自北西北方向及河北的沿海地区两类轨迹的气团最为清洁,为北京带来良好的天气;来自西北及西西北方向的部分轨迹对应的PM_(2.5)浓度严重超标,说明来自此方向的气团对北京的空气质量也有一定的影响。  相似文献   

14.
张红芳 《青海环境》2014,(4):186-189
目的:研究宝鸡市城区雾霾期和非雾霾期PM10、PM2.5的质量浓度变化以及比例关系,为宝鸡的雾霾治理提供技术支撑。方法:在宝鸡市监测站院子设点对PM10、PM2.5分别进行雾霾期和非雾霾期2h段对比监测,结合气象条件进行相关分析,总结规律。结果:PM2.5、PM10质量浓度雾霾期高于非雾霾期。结论:总结了不同时段PM10、PM2.5质量浓度和二者比例关系,为以后的研究和环境管理提供参考。  相似文献   

15.
采用单颗粒气溶胶质谱仪对昌吉市大气中PM_(2.5)进行在线监测和分源解析分析,对大气总细颗粒物贡献最大的是燃煤源,占比32.5%;第二是机动车尾气源,占比25.4%;第三位是工业工艺源,占比15.8%。对优良天气和污染天气下的颗粒物进行污染物来源对比分析结果表明,监测期间污染的形成与燃煤和工业工艺源颗粒物的增加有关。三次典型污染过程分析结果显示:第一次污染过程主要受到燃煤源颗粒物及工业工艺源颗粒物的影响;第二次、第三次污染过程主要受到燃煤源颗粒物及机动车尾气颗粒物积累的影响。  相似文献   

16.
利用巴中市城区一个自然年(2016年3月1日~2017年2月28日)的空气质量数据,分析了巴中市城区PM_(2.5)的污染特征和时空变化规律。结果表明,PM_(2.5)日均浓度对数值接近正态分布特征,PM_(2.5)与其他主要大气污染物都具有显著的相关关系。CO、NO_2是主要的相关因素,与PM_(2.5)的相关系数都高达0.7以上。PM_(2.5)浓度表现为冬季秋季春季夏季,这与首要污染物是PM_(2.5)的天数占比以及PM_(2.5)与PM_(10)相关系数的季节变化一致,反映了PM_(2.5)呈现出以冬季污染最重,春、秋季污染中等,夏季污染最小的季节特征。PM_(2.5)与PM10的浓度比值表现为冬季秋季夏季春季。各个站点的PM_(2.5)变化趋势一致,相互之间浓度差异小且比较均衡,巴中中学站点的PM_(2.5)浓度无论在任何季节都高于其他站点,苏山坪站点在冬季的PM_(2.5)浓度明显低于其他站点,表明PM_(2.5)污染具有明显的区域性特征,与人类活动强度相关的局地污染对PM_(2.5)污染具有一定影响。  相似文献   

17.
为掌握南宁市大气细颗粒物(PM_(2.5))碳组分的污染特征和来源特点。在秋、冬季两季期间分别采集南宁市大气PM_(2.5)样品,分析有机碳(OC)和元素碳(EC),并采用示踪法初步追溯其来源。结果表明,南宁市秋季大气PM_(2.5)中OC和EC质量浓度均值分别为9. 66和2. 12μg/m~3;冬季均值分别为15. 80和3. 05μg/m~3,秋季较冬季低。秋、冬季PM_(2.5)中OC/EC分别为4. 6和5. 2,表明存在二次有机碳(SOC),经估算,秋、冬季SOC分别为6. 16和10. 97μg/m~3,分别占OC的62. 3%和66. 6%。利用碳组分丰度对碳组分分析结果表明,PM_(2.5)主要来源是机动车尾气和燃煤,同时受甘蔗渣燃烧或生物质露天焚烧的影响。  相似文献   

18.
使用大气挥发性有机物(VOCs)在线连续自动监测系统,对滕州市木石镇2019年11月环境空气中VOCs进行观测,并分析了VOCs的浓度状况、组成特征、光化学影响和来源。结果表明:观测期间,木石镇大气中TVOC平均体积分数为(32.75±28.96)×10-9,各物种体积分数从大到小顺序依次为烷烃>烯烃>OVOC>芳香烃>卤代烃>乙炔>含硫化合物;日变化规律呈双峰型,峰值在6:00~7:00时与0:00~1:00时出现。大气VOCs的平均臭氧生成潜势(OFP)为102.02×10-9,烯烃对臭氧生成潜势贡献率最大,为69.5%;乙烯、丙烯、正丁烯、萘和1,3-丁二烯等是臭氧生成潜势较高的物种。对OH自由基消耗速率(LOH)贡献最大的为烯烃,其次为芳香烃,两者贡献率占到76.8%。VOCs对二次气溶胶(SOA)浓度的贡献值为0.85μg/m3,其中芳香烃对SOA生成贡献占比为92.8%,对SOA生成贡献最大的前5个物种为萘、甲苯、苯、乙苯、间/对二甲苯。利用PMF模型...  相似文献   

19.
为了解蒙自市PM2.5的主要化学组分季节变化、来源及贡献,于2017~2018年每季典型月连续10天在蒙自市城区采集样品,对PM2.5的质量浓度及主要化学组成成分进行了测量分析。结果显示:经CMB解析后工艺过程源、二次硫酸盐、煤烟尘、机动车尘、道路扬尘、二次硝酸盐、建筑施工尘和其他源对PM2.5的贡献率分别为23.24%、20.65%、14.11%、13.31%、7.34%、6.32%、5.21%和9.82%;水溶性无机离子质量浓度为19.49μg/m^3,占PM2.5年平均质量浓度的53.09%,是PM2.5的重要组成部分,此外SO2-4、NH+4和NO-3分别占离子总量的41.20%、27.51%、12.85%;PM2.5中NO-3/SO2-4比值在0.20~0.38范围内,说明固定污染源对蒙自地区大气中SO2和NOX的贡献仍然大于机动车的贡献;春季SOC值为3.33大于二次反应生成的有机碳的条件,表明春季受到二次污染源的影响最为严重;蒙自市全年PM2.5浓度平均值为29.72μg/m^3,低于国家环境空气质量标准(GB3095—2012)年均35μg/m^3二级限值,而且风向、风速等气象条件是造成蒙自春季PM2.5浓度高于其它季节20μg/m^3的关键因素,而其关键贡献源是工业源、建筑施工工地和道路扬尘源。  相似文献   

20.
为研究炼化企业厂区大气PM2.5无机元素污染特征及其来源,于2015年非采暖期和2016年采暖 期采集两处炼化企业厂区环境空气中PM2.5样品,采用电感耦合等离子体质谱法(ICP-MS)分析其中14种无机 元素质量浓度与富集情况,并通过主成分分析法解析其来源。结果表明:Na、Fe、Ca、K、Mg 5种地壳元素的质 量浓度 ρ(Na)、ρ(Fe)、ρ(Ca)、ρ(K)、ρ(Mg)占PM2.5中14种无机元素质量浓度总量ρT的93.4%,V、Cr、Mn、Ni、Cu、Zn、As、Cd、Pb人为活动排放元素的质量浓度占 ρT的6.6%。相较于我国主要城市地区,所述炼化企业厂 区PM2.5中 ρ(Cd)、ρ(Cu)、ρ(Fe)、 ρ(Pb)、ρ(Mn)、 ρ( Ni)、 ρ(Cr)、 ρ(Zn)均较低,说明厂区各污染源并未对所在地 区环境空气造成严重的无机元素污染。厂区PM2.5中Zn、Cd、Cr元素富集因子分别为43.2,38.4,34.4,说明这 些元素受人为活动的影响较为严重。富集因子分析和主成分分析均表明,所述炼化企业厂区PM2.5来源复杂多 样,包括燃煤、机动车尾气排放、土壤扬尘、生物质燃烧、道路扬尘、建筑扬尘、燃煤及垃圾焚烧等,其中燃煤和机动车尾气排放对厂区PM2.5的贡献大于47.97%;土壤扬尘、生物质燃烧、道路扬尘和建筑扬尘对PM2.5的贡献 大于31.36%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号