首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.

The chitosan-stabilized ferrous sulfide nanoparticles were loaded on biochar to prepare a composite material FeS-CS-BC for effective removal of hexavalent chromium in water. BC and FeS-CS-BC were characterized by Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. Batch experiments were employed to evaluate the Cr(VI) removal performance. The experimental results showed that the removal rate of Cr(VI) by FeS-CS-BC(FeS:CS:BC?=?2:2:1) reached 98.34%, which was significantly higher than that of BC (44.58%) and FeS (79.91%). In the pH range of 2–10, the removal of Cr(VI) by FeS-CS-BC was almost independent of pH. The limitation of coexisting anions (Cl?、SO42?、NO3?) on Cr(VI) removal was not too obvious. The removal of Cr(VI) by FeS-CS-BC was fitted with the pseudo-second-order dynamics, which was a hybrid chemical-adsorption reaction. The X-ray photoelectron spectroscopy (XPS) analysis result showed that Cr(VI) was reduced, and the reduced Cr(VI) was fixed on the surface of the material in the form of Cr(VI)–Fe(III).

Removal of hexavalent chromium from wastewater by FeS-CS-BC composite synthesized by impregnation.

  相似文献   

2.

As an ubiquitous carcinogen, polycyclic aromatic hydrocarbons (PAHs) are closely related to anthropogenic activities. The process of urbanization leads to the spatial interlacing of farmlands and urbanized zones. However, field evidence on the influence of urbanization on the accumulation of PAHs in crops of peri-urban farmlands is lacking. This study comparatively investigated the urbanization-driven levels, compositions, and sources of PAHs in 120 paired plant and soil samples collected from the Yangtze River Delta in China and their species-specific human intake risks. The concentrations of PAHs in crops and soils in the peri-urban areas were 2407.92 ng g?1 and 546.64 ng g?1, respectively, which are significantly higher than those in the rural areas. The PAHs in the root were highly relevant to those in the soils (R2?=?0.63, p?<?0.01), and the root bioconcentration factors were higher than 1.0, implying the contributions of root uptake to plant accumulations. However, the translocation factors in the peri-urban areas (1.57?±?0.33) were higher than those in the rural areas (1.19?±?0.14), indicating the enhanced influence through gaseous absorption. For the congeners, the 2- to 3-ring PAHs showed a higher plant accumulation potential than the 4- to 6-ring PAHs. Principal component analysis show that the PAHs in the peri-urban plants predominantly resulted from urbanization parameters, such as coal combustion, vehicle emissions, and biomass burning. The mean values of estimated dietary intake of PAHs from the consumption of peri-urban and rural crops were 9116 ng day?1 and 6601.83 ng day?1, respectively. The intake risks of different crops followed the order rice?>?cabbage?>?carrot?>?pea. Given the significant input of PAHs from urban to farmland, the influence of many anthropogenic pollutants arising from rapid urbanization should be considered when assessing the agricultural food safety.

Graphical abstract
  相似文献   

3.

The changes in some potentially toxic elements (PTEs) including lead (Pb), cadmium (Cd), arsenic (As), iron (Fe), zinc (Zn), and copper (Cu) during pekmez (grape molasses-like syrup) processing and the utilization of various types of clarifiers (white soil, bentonite, and gelatin) in two levels (1.5 and 3% w/w) were analyzed. The average concentrations of Pb, Cd, As, Fe, Zn, and Cu in grape samples were measured as 0.055?±?0.005, 0.030?±?0.002, 0.044?±?0.002, 2.882?±?0.013, 2.372?±?0.088, and 1.194?±?0.01 μg g?1. During pekmez production, the range of changes in Pb, Cd, As, Fe, Zn, and Cu was ?43.38% to 40.25%, ?55.49% to 0.23%, ?76.15% to 1.80%, ?74.15% to 58.47%, ?40.55% to ?18.12%, and ?83.16% to ?21.39%, respectively. The effect of the clarification process on the PTEs depended on the type and concentration of both PTE and clarifier agent used while the incorporation of gelatin resulted in a significant reduction in all of PT.

Graphical abstract

  相似文献   

4.

Hg emission flux from various land covers, such as forests, wetlands, and urban areas, have been investigated. China has the largest area of coalfield in the world, but data of Hg flux of coalfields, especially, those with coal fires, are seriously limited. In this study, Hg fluxes of a coalfield were measured using the dynamic flux chamber (DFC) method, coupled with a Lumex multifunctional Hg analyzer RA-915+ (Lumex Ltd., Russia). The results show that the Hg flux in Wuda coalfield ranged from 4 to 318 ng m?2 h?1, and the average value for different areas varied, e.g., coal-fire area 99 and 177 ng m?2 h?1; no coal-fire area 19 and 32 ng m?2 h?1; and backfilling area 53 ng m?2 h?1. Hg continued to be emitted from an underground coal seam, even if there were no phenomena, such as vents, cracks, and smog, of coal fire on the soil surface. This phenomenon occurred in all area types, i.e., coal-fire area, no coal-fire area, and backfilling area, which is universal in Wuda coalfield. Considering that many coalfields in northern China are similar to Wuda coalfield, they may be large sources of atmospheric Hg. The correlations of Hg emission flux with influence factors, such as sunlight intensity, soil surface temperature, and atmospheric Hg content, were also investigated for Wuda coalfield.

?

  相似文献   

5.

Date palm waste–derived biochar (DBC) was produced through pyrolysis (600 °C) and modified with zeolite (Z-DBC), silica (S-DBC), or nano-zerovalent iron (nZVI-DBC) to design efficient sorbents. The pristine and engineered biochars were characterized by SEM, XRD, BET, TGA, CHNS-O, and FTIR to investigate the surface, structural, and mineralogical composition. The nZVI-DBC exhibited lowest pH (6.15) and highest surface area (220.92 m2 g−1), carbon (80.55%), nitrogen (3.78%), and hydrogen (11.09%) contents compared with other biochars. Isotherm sorption data for chlortetracycline (CTC) removal from aqueous solutions was described well by Langmuir and Redlich–Peterson isotherms showing the highest fitness (R2 values in the range of 0.88–0.98 and 0.88–0.99, respectively). Langmuir predicted maximum CTC adsorption capacity was in order of nZVI-DBC (89.05 mg g−1) > S-DBC (45.57 mg g−1) > Z-DBC (30.42 mg g−1) > DBC (28.19 mg g−1). Kinetics adsorption data was best described by power function model (R2 = 0.93–0.99), followed by interaparticle diffusion (R2 = 0.85–0.96) model. The nZVI-DBC performed outclass by removing 98% of CTC, followed by S-DBC (68%), Z-DBC (35%), and DBC (36%). Chemisorption, H-bonding, and interaparticle diffusion were the operating mechanisms for CTC adsorption onto DBC, S-DBC, and Z-DBC, while π-π electron donor–accepter interactions and redox reactions augmented these mechanisms for highest CTC adsorption onto nZVI-DBC. Therefore, nZVI-DBC may serve as an efficient green technology for the removal of CTC from aqueous solutions and to reduce surface date palm waste pollution.

.

  相似文献   

6.

Silver nanoparticles (Ag NPs) were synthesised by the reduction of Ag+ to Ag0 in the presence of enol form of flavonoids present in plant extract of Tabernaemontana divaricate (T. divaricate). Prepared Ag NPs were characterised using UV–Vis, XRD, HR-TEM with EDX and XPS techniques. XPS spectra exhibited peaks at 366 eV and 373 eV, which specified spin orbits for Ag 3d3/2, and Ag 3d5/2 that confirmed the formation of Ag NPs. Ag NPs were spherical in shape with an average size of 30 nm as revealed by HR-TEM and FE-SEM techniques. EDX studies verified the high purity of Ag NPs with silver 46.96%, carbon 16.35%, oxygen 16.22%, nitrogen 20.25% and sulphur 0.21%. LC–MS analysis of plant extract confirmed the qualitative presence of alkaloids, tannins, flavonoids, phenols, and carbohydrates. Prepared Ag NPs showed good photocatalytic activity towards degradation of 4-Amniopyridine with 61% degradation efficiency at optimum conditions in 2 h of reaction time under visible light. The ten intermediates were found within the mass number of 0–450. Ag NPs synthesised using bio-extract have also shown good inactivation against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) bacteria due to the availability of free radicals.

Graphical abstract
  相似文献   

7.

Drinking water reservoirs are threatened globally by anthropogenic nitrogen pollution. Hydrochemistry and isotopes were analyzed to identify spatial and temporal varieties of main nitrate sources in a large drinking water reservoir in East China. The results showed that NO3? was the main nitrogen form in both the dry and wet seasons, but dissolved organic nitrogen (DON) was increased in the wet season. The δ15N-NO3? values (+?1.3‰ to +?11.8‰) and δ18O-NO3? values (+?2.5‰ to +?13.5‰), combined with principal component analysis (PCA), indicated that chemical fertilizer was the main nitrate source during the dry season, while chemical fertilizer, soil N, and sewage/manure were the main nitrate sources during the wet season in the Qiandao Lake area. And, the nitrate isotopes showed the significant nitrification and assimilation in the Qiandao Lake area. A Bayesian isotopic mixing model (Stable Isotope Analysis in R) was applied to the spatial and seasonal trends in the proportional contribution of four NO3? sources (chemical fertilizer (CF), soil nitrogen (SN), sewage and manure (SM), and atmospheric deposition (AD)) in the Qiandao Lake area. It was revealed that CF was the most important nitrate source in the dry season, accounting for 53.4% with 19.2% of SM and 18.9% of SN, while the contribution of SN increased in the wet season, accounting for 31.6%, followed by CF (30.8%) and then SM (24.2%). The main nitrate sources in the urban area, rural area, and central lake area were CF and SN, accounting for 66.1% in the urban area, 71.7% in the rural area, and 68.2% in the central lake area. Measures should be made to improve chemical fertilizer use efficiency and to reduce nitrogen loss in the Qiandao Lake area.

.

  相似文献   

8.

Few studies have carried out soil washing experiments using pot experiments to simulate in situ soil washing operations, particularly for alkaline soils. This study explored the effects of multiple washing operations using pot experiments on the removal efficiencies of potentially toxic metals (PTM) from alkaline farmland soil and the reuse strategy of washed soil for safe agricultural production. The results showed that the removal efficiencies of Cd, Pb, Cu, and Zn after seven washings with a mixed chelator (EDTA, GLDA, and citric acid) were 41.1%, 47.1%, 14.7%, and 26.5%, respectively, which was close to the results of the EDTA treatment. For the alkaline soil studied, the second washing with the mixed chelators most effectively removed PTM owing to the activation of them after the first washing operation. The mixed chelator more effectively increased the proportion of stable fraction of PTM and maintained soil nutrients (e.g., nitrogen content) than EDTA, indicating little disturbance of alkaline soil quality after washing with the mixed chelator. After the amendment of the washed soil, there was no visible difference in the biomass weight of crops from the soils washed with different agents, indicating that the inhibitory effect of both washing agents on plant growth was effectively alleviated. The Cd and Pb contents in Z. mays were below the threshold of Hygienical Standard for Feeds of China (GB 13078–2017) (1 and 30 mg·kg?1). Moreover, after three cropping operations, the available concentrations of PTM in the soil washed with the mixed chelator were lower than those in the soil washed with EDTA, indicating the value and potential of agricultural reuse of alkaline farmland soil washed with the mixed chelator.

Graphical abstract
  相似文献   

9.

Marine algae have made a strong contribution to global food security in the future. This study is the first report describing the concentration, pathways, and interactions of halogens in 15 species of marine algae collected from the Eastern Harbor in Alexandria, Egypt, relative to 22 key variables. The relationship between halogen content and chemical and biochemical parameters was studied through multivariate analysis. Among all the tested algae, the iodine content was the lowest (2.53–3.00 μg/g). The range of fluoride and chloride in macroalgae (1.12–1.70 and 0.10–0.46 mg/g) was smaller than that of microalgae (0.10–0.46 and 1.48–3.17 mg/g). The bromide content in macroalgae (0.36–5.45 mg/g) was higher than that in microalgae (0.40–0.76 mg/g). The halogen content in macroalgae was arranged in the order of Br > F > Cl > I. In addition, the biochemical parameters such as carbohydrates, proteins, lipids, and certain heavy metals (Fe, Zn, Cu, Mn, Pb, Ni, Co, Cd, and Cr) were determined. Calories, energy, total antioxidant activity (TAC), K/Na, and ion quotient amounts were estimated. The results showed that the green seaweed species had the highest TAC content. In most of the studied algal species, the calculated ion quotient referred to their likelihood of overcoming high blood pressure. The estimated daily intake (EDI) of algae showed no adverse effects on human health. Most of the research variables are below the acceptable WHO/FAO level. Generally, the calorie content of the selected algae is less than 2 kcal, which makes the algae considered an alternative source of healthy food to reduce obesity.

Graphical abstract

  相似文献   

10.

This study investigates the spatiotemporal variability of major and trace elements, dissolved organic carbon (DOC), total dissolved solids (TDS), and suspended particulate matter (SPM) in surface waters of several hydrosystems of the Loire River watershed in France. In particular, this study aims to delineate the impact of the abovementioned water physicochemical parameters on natural iron and manganese physical speciation (homoaggregation/heteroaggregation) among fine colloidal and dissolved (<?10 nm), colloidal (10–450 nm) and particulate (>?450 nm) phases in Loire River watershed. Results show that the chemistry of the Loire River watershed is controlled by two end members: magmatic and metamorphic petrographic context on the upper part of the watershed; and sedimentary rocks for the middle and low part of the Loire. The percentage of particulate Fe and Mn increased downstream concurrent with the increase in SPM and major cations concentration, whereas the percentage of colloidal Fe and Mn decreased downstream. Transmission electron microscopy analyses of the colloidal and particulate fractions (from the non-filtered water sample) revealed that heteroaggregation of Fe and Mn rich natural nanoparticles and natural organic matter to the particulate phase is the dominant mechanism. The heteroaggregation controls the partitioning of Fe and Mn in the different fractions, potentially due to the increase in the ionic strength, and divalent cations concentration downstream, and SPM concentration. These findings imply that SPM concentration plays an important role in controlling the fate and behavior of Fe and Mn in various sized fractions.

Physical speciation by heteroaggregation of (Fe-Mn) compounds: high [SPM]?→?[Fe-Mn] particulate faction; low {SPM]?→?[Fe-Mn] colloid-dissolved fraction.

  相似文献   

11.

Microbial remediation, especially the application of probiotics, has recently gained popularity in improving water quality and maintaining aquatic animal health. The efficacy and mechanism of mixed Bacillus for improvement of water quality and its effects on aquatic microbial community structure remain unknown. To elucidate these issues, we applied two groups of mixed Bacillus (Bacillus megaterium and Bacillus subtilis (A0?+?BS) and Bacillus megaterium and Bacillus coagulans (A0?+?BC)) to the aquaculture system of Crucian carp. Our results showed that the improvement effect of mixed Bacillus A0?+?BS on water quality was better than that of A0?+?BC, and the NH4+-N, NO2?-N, NO3?-N, and total phosphorus (TP) concentrations were reduced by 46.3%, 76.3%, 35.6%, and 80.3%, respectively. In addition, both groups of mixed Bacillus increased the diversity of the bacterial community and decreased the diversity of the fungal community. Microbial community analysis showed that mixed Bacillus A0?+?BS increased the relative abundance of bacteria related with nitrogen and phosphorus removal, such as Proteobacteria, Actinobacteria, Comamonas, and Stenotrophomonas, but decreased the relative abundance of pathogenic bacteria (Acinetobacter and Pseudomonas) and fungi (Epicoccum and Fusarium). Redundancy analysis showed that NH4+-N, NO2?-N, and TP were the primary environmental factors affecting the microbial community in aquaculture water. PICRUST analysis indicated that all functional pathways in the A0?+?BS group were richer than those in other groups. These results indicated that mixed Bacillus A0?+?BS addition produced good results in reducing nitrogenous and phosphorus compounds and shaped a favorable microbial community structure to further improve water quality.

Graphical abstract
  相似文献   

12.

Organophosphate pesticides (OPPs) are one type of the most massively used pesticides and ubiquitously detected in aquatic environments, which may pose potential risks to the aquatic organisms and human health. In the present study, the spatiotemporal distribution and potential risks of OPPs were investigated in overlying water and surficial sediments from urban waterways of Guangzhou. For all studied sites, in general, four target OPPs (i.e., malathion, chlorpyrifos, terbufos, and diazinon) were present in the overlying water, with malathion and chlorpyrifos as major components. Higher concentrations of the four OPPs were found for the water and sediments collected in the dry season compared to the wet season, possibly because of the dilution effect of heavy rains. The results of Pearson’s analyses and principal coordinate analyses (PCoA) suggested similar sources for target OPPs in the water and sediments across the Guangzhou urban waterways. Potential ecological risks of the OPPs to three representative taxons (algae, aquatic invertebrates, and fish) were evaluated via toxic units (TUs) and risk quotients (RQs), while risk assessment on human health was performed using hazard index (HI). Although TU results showed no acute risks to the aquatic organisms in the overlying water and surface sediments, RQ results of the mixture showed high risks to the aquatic invertebrate and fish in all water samples. Individual HI values and cumulative HI values were on the order of 10?6–10?3 for children and adults, suggesting no potential risks to either children or adults through drinking and bathing.

Graphical abstract
  相似文献   

13.

In the context of urban agriculture, where soils are frequently contaminated with metal(loid)s (TM), we studied the influence of vermicompost amendments on symbiotic fungal communities associated with plants grown in two metal-rich soils. Leek (Allium porrum L.) plants were grown with or without vermicompost in two metal-rich soils characterized by either geogenic or anthropogenic TM sources, to assess the influence of pollutant origin on soil-plant transfer. Fungal communities associated with the leek roots were identified by high throughput Illumina MiSeq and TM contents were measured using mass spectrometry. Vermicompost addition led to a dramatic change in the fungal community with a loss of diversity in the two tested soils. This effect could partially explain the changes in metal transfer at the soil-AMF-plant interface. Our results suggest being careful while using composts when growing edibles in contaminated soils. More generally, this study highlights the need for further research in the field of fungal communities to refine practical recommendations to gardeners.

Graphical abstract

  相似文献   

14.

Atmospheric contamination by heavy metal(loid)–enriched particulate matter (metal-PM) is highly topical these days because of its high persistence, toxic nature, and health risks. Globally, foliar uptake of metal(loid)s occurs for vegetables/crops grown in the vicinity of industrial or urban areas with a metal-PM-contaminated atmosphere. The current study evaluated the foliar uptake of arsenic (As), accumulation of As in different plant organs, its toxicity (in terms of ROS generation, chlorophyll degradation, and lipid peroxidation), and its defensive mechanism (antioxidant enzymes) in spinach (Spinacia oleracea) after foliar application of As in the form of nanoparticles (As-NPs). The As-NPs were prepared using a chemical method. Results indicate that spinach can absorb As via foliar pathways (0.50 to 0.73 mg/kg in leaves) and can translocate it towards root tissues (0.35 to 0.68 mg/kg). However, health risk assessment parameters showed that the As level in the edible parts of spinach was below the critical limit (hazard quotient <?1). Despite low tissue level, As-NP exposure caused phytotoxicity in terms of a decrease in plant dry biomass (up to 84%) and pigment contents (up to 38%). Furthermore, several-fold higher activities of antioxidant enzymes were observed under metal stress than control. However, no significant variation was observed in the level of hydrogen peroxide (H2O2), which can be its possible transformation to other forms of reactive oxygen species (ROS). It is proposed that As can be absorbed by spinach via foliar pathway and then disturbs the plant metabolism. Therefore, air quality needs to be considered and monitored continuously for the human health risk assessment and quality of vegetables cultivated on polluted soils (roadside and industrial vicinity).

?

  相似文献   

15.

A review of the applicability of electron beam water radiolysis for sewage sludge treatment is presented. Electron beam treatment has been proven to be a successful approach to the disinfection of both wastewater and sewage sludge. Nevertheless, before 2000, there were concerns about the perceived high capital costs of the accelerator and with public acceptance of the usage of radiation for water treatment purposes. Nowadays, with increased knowledge and technological development, it may be not only possible but also desirable to use electron beam technology for risk-free sewage sludge treatment, disposal and bio-friendly fertiliser production. Despite the developing interest in this method, there has been no attempt to perform a review of the pertinent literature relating to this technology. It appears that understanding of the mechanism and primary parameters of disinfection is key to optimising the process. This paper aims to reliably characterise the sewage sludge electron beam treatment process to elucidate its major issues and make recommendations for further development and research.

Graphical abstract

  相似文献   

16.
Shan  Danping  Zhang  Tao  Li  Ludi  Sun  Yuqing  Wang  Di  Li  Yingzi  Yang  Zheng  Cui  Kanglong  Wu  Shaowei  Jin  Lei  Hong  Bo  Shang  Xuejun  Wang  Qi 《Environmental science and pollution research international》2022,29(49):74003-74011

Diet is an important exposure route for phthalates, such as di-iso-butyl phthalate (DiBP), dibutyl phthalate (DBP), bis(2-ethylhexyl) phthalate (DEHP), and benzyl butyl phthalate (BBP). In this study, we aimed to estimate phthalate exposure in the diet of pregnant women and assess the health risk. A total of 517 pregnant women in the first trimester were recruited, and food frequency questionnaires were collected. A simple distribution assessment method was used to estimate daily exposure, and the hazard index (HI) method was used to assess cumulative risk. The maximum daily dietary exposure to DEHP, DBP, DiBP, and BBP was 5.25, 3.17, 2.59, and 0.58 μg/kg bw/day, respectively, and did not exceed the safety limit values. Cereals and vegetables were the main sources of the estimated daily intake (EDI) of phthalates in the diet. The cumulative risk assessment, based on the European Food Safety Authority tolerable daily intake (TDI) and the US Environmental Protection Agency reference dose (RfD), did not exceed the threshold of 1. DiBP, DBP, and DEHP had higher hazard quotient (HQ) values for cumulative health risk than BBP. In conclusion, a low health risk was posed by the cumulative dietary exposure to phthalates for pregnant women in Beijing.

Graphical abstract
  相似文献   

17.

In this study, an approach for the facile, rapid, energy-saving, and sensitive determination of Fe3+ and Cr(VI) was developed. L-arginine/D-glucose carbon quantum dots (Arg/Glu-CQDs), with a photoluminescence quantum yield of 21%, were synthesized from L-arginine and D-glucose through a facile, hydrothermal process. The maximum emission wavelength of Arg/Glu-CQDs was observed at 450 nm, under an excitation wavelength of 365 nm. In addition, Arg/Glu-CQDs exhibited a sensitive and selective response to Fe3+ compared to Fe2+ and other metal ions. The Arg/Glu-CQDs’ fluorescence was noticeably quenched through the inner filter effect (IFE) when Arg/Glu-CQDs were mixed with Fe3+. Accordingly, the Arg/Glu-CQDs/Fe2+ system could selectively detect Cr(VI); Cr(VI) could oxidize Fe2+ to Fe3+ and quench the fluorescence. The fluorescence sensor system (i.e., the Arg/Glu-CQDs/Fe2+ system) showed high sensitivity and excellent selectivity for the detection of Fe3+ and Cr(VI) in river water samples. Satisfactory detection efficiencies ranging from 97.07 to 103.46% were obtained. The cytotoxicity of Arg/Glu-CQDs was evaluated through an MTT assay using A549 cells as the target, to extend the application of Arg/Glu-CQDs to biological systems; the MTT assay indicated that the Arg/Glu-CQDs is non-cytotoxicity. Arg/Glu-CQDs were also successfully imaged in A549 cells indicating further application possibilities in bioimaging.

Graphical abstract

  相似文献   

18.

Electrocoagulation (EC) is an excellent and promising technology in wastewater treatment, as it combines the benefits of coagulation, flotation, and electrochemistry. During the last decade, extensive researches have focused on removal of emerging contaminants by using electrocoagualtion, due to its several advantages like compactness, cost-effectiveness, efficiency, low sludge production, and eco-friendness. Emerging contaminants (ECs) are micropollutants found in trace amounts that discharging into conventional wastewater treatment (WWT) plants entering surface waters and imposing a high threat to human and aquatic life. Various studies reveal that about 90% of emerging contaminants are disposed unscientifically into water bodies, creating problems to public health and environment. The studies on removal of emerging contaminants from wastewater are by global researchers are critically reviewed. The core findings proved that still more research required into optimization of parameters, system design, and economic feasibility to explore the potential of EC combined systems. This review has introduced an innovative collection of current knowledge on electro-coagulation for the removal of emerging contaminants.

Graphical abstract
  相似文献   

19.
Li  Li  Wang  Qiyuan  Zhang  Xu  She  Yuanyuan  Zhou  Jiamao  Chen  Yang  Wang  Ping  Liu  Suixin  Zhang  Ting  Dai  Wenting  Han  Yongming  Cao  Junji 《Environmental science and pollution research international》2019,26(12):11730-11742

To investigate the chemical composition, size distribution, and mixing state of aerosol particles on heavy pollution days, single-particle aerosol mass spectrometry was conducted during 9–26 October 2015 in Xi’an, China. The measured particles were classified into six major categories: biomass burning (BB) particles, K-secondary particles, elemental carbon (EC)–related particles, metal-containing particles, dust, and organic carbon (OC) particles. BB and EC-related particles were the dominant types during the study period and mainly originated from biomass burning, vehicle emissions, and coal combustion. According to the ambient air quality index, two typical episodes were defined: clean days (CDs) and polluted days (PDs). Accumulation of BB particles and EC-related particles was the main reason for the pollution in Xi’an. Most types of particle size were larger on PDs than CDs. Each particle type was mixed with secondary species to different degrees on CDs and PDs, indicating that atmospheric aging occurred. The mixing state results demonstrated that the primary tracers were oxidized or vanished and that the amount of secondary species was increased on PDs. This study provides valuable information and a dataset to help control air pollution in the urban areas of Xi’an.

Graphical abstract

  相似文献   

20.

Activated carbon was one of the main adsorptions utilized in elemental mercury (Hg0) removal from coal combustion flue gas. However, the high cost and low physical adsorption efficiency of activated carbon injection (ACI) limited its application. In this study, an ultra-high efficiency (nearly 100%) catalyst sorbent-Sex/Activated carbon (Sex/AC) was synthesized and applied to remove Hg0 in the simulated flue gas, which exhibited 120 times outstanding adsorption performance versus the conventional activated carbon. The Sex/AC reached 17.98 mg/g Hg0 adsorption capacity at 160 °C under the pure nitrogen atmosphere. Moreover, it maintained an excellent mercury adsorption tolerance, reaching the efficiency of Hg0 removal above 85% at the NO and SO2 conditions in a bench-scale fixed-bed reactor. Characterized by the multiple methods, including BET, XRD, XPS, kinetic and thermodynamic analysis, and the DFT calculation, we demonstrated that the ultrahigh mercury removal performance originated from the activated Se species in Sex/AC. Chemical adsorption plays a dominant role in Hg0 removal: Selenium anchored on the surface of AC would capture Hg0 in the flue gas to form an extremely stable substance-HgSe, avoiding subsequent Hg0 released. Additionally, the oxygen-containing functional groups in AC and the higher BET areas promote the conversion of Hg0 to HgO. This work provided a novel and highly efficient carbon-based sorbent -Sex/AC to capture the mercury in coal combustion flue gas.

Selenium-modified porous activated carbon and the interface functional group promotes the synergistic effect of physical adsorption and chemical adsorption to promote the adsorption capacity of Hg0.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号