共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
为了有效降解水中的喹诺酮类抗生素环丙沙星(CPFX),降低处理成本,利用工业废铁屑(IWFe)活化过硫酸盐(PS)降解CPFX,探索了IWFe的粒径、反应体系初始pH、PS/CPFX(质量比)对CPFX降解效果的影响,并且研究了反应动力学、自由基的生成以及使用前后IWFe的变化。结果表明,IWFe+PS体系对CPFX的去除率超过90%,随着IWFe粒径的变小和PS/CPFX的增大,CPFX的去除率增加。在中性条件下,CPFX的去除率最大。IWFe的表面氧化物主要为Fe_3O_4和α-FeOOH,其中Fe~(2+)可活化PS产生·SO_4~-和·OH,·SO_4~-和·OH对CPFX的去除率的贡献分别为47.7%和21.9%。使用后,IWFe上Fe~(2+)的减少低于Fe~(3+)的增加,表明IWFe内核的Fe~0也参与了PS的活化。本研究提供了一种高效、低成本的有机废水处理方法,对实际工程具有一定的参考价值。 相似文献
4.
采用电晕放电等离子体降解水中的邻苯二甲酸二甲酯,研究了放电输出功率、溶液初始浓度、空气流量、初始pH、Fe2+和羟基自由基清除剂对邻苯二甲酸二甲酯去除效率的影响,并对其降解动力学进行了初步模拟。结果表明,电晕放电等离子体对水中邻苯二甲酸二甲酯有较好的去除效果。在放电功率45 W、初始浓度50 mg·L-1、空气流速2 L·h-1、初始pH 6.31、初始电导率4.05 μS·cm-1的条件下,反应30 min,邻苯二甲酸二甲酯的去除率可达到95%。酸性条件下有利于邻苯二甲酸二甲酯的降解。添加Fe2+,在反应初期可显著提高邻苯二甲酸二甲酯的降解率。羟基自由基清除剂的加入在一定程度上抑制了邻苯二甲酸二甲酯的降解。电晕放电等离子体降解邻苯二甲酸二甲酯的过程基本符合一级反应动力学。 相似文献
5.
6.
7.
通过HNO3、H2O2、NaOH对活性炭进行浸渍改性,采用BET、SEM、Boehm、FT-IR对改性前后的活性炭进行表征,研究了改性前后的活性炭在不同反应体系对DMP的降解效果和动力学,探讨了微波诱导改性前后的活性炭催化降解DMP的机理。结果表明,3种改性活性炭的BET比表面积、总孔容、微孔孔容和平均孔径均有所增加。HNO3、H2O2改性后表面酸性基团增加、碱性基团减少,而NaOH改性呈现相反的理化特征变化。活性炭理化特征的变化可能与化学改性剂溶液的酸碱性、氧化还原性有关。微波诱导改性前后的活性炭催化体系对DMP的降解率大于单独吸附或单纯微波辐射体系,且均符合一级反应动力学。在微波诱导改性前后的活性炭催化体系中,改性前后的活性炭通过表面吸附-微波诱导氧化协同作用极大地提高了对DMP的降解率。 相似文献
8.
为了有效去除感潮河道底泥中邻苯二甲酸二甲酯(DMP),从深圳市某受DMP污染的感潮河道底泥中富集驯化出了一个土著DMP高效降解功能菌群(命名为菌群ZM),确定了菌群ZM的优势功能菌属,探究了pH、温度、盐度对其降解DMP的影响,研究了其在模拟底泥中的DMP降解性能。结果表明,变形杆菌门(Proteobacteria)α-变形菌纲(α-Proteobacteria)的新鞘氨醇杆菌属(Novosphingobium)是最主要的DMP降解功能菌。pH为6、温度为35℃是菌群ZM降解DMP的最佳条件。菌群ZM在盐度0.05%~1.00%内表现出较好的耐受性。菌群ZM在2 d内可以降解模拟底泥中70%的DMP(初始质量浓度100 mg/kg)。综上,菌群ZM在处理感潮河道底泥中DMP污染问题上具有一定的实际应用潜力。 相似文献
9.
针对邻苯二甲酸二甲酯(DMP)难降解的特性,采用高铁酸盐-光催化的协同工艺降解水中的DMP;研究了不同参数对DMP降解效能的影响;探讨了光催化降解DMP的机理。结果表明,Fe(Ⅵ)-TiO_2-UV体系对DMP的降解率明显优于其他2种体系(高铁酸盐体系和TiO_2-UV降解体系),说明光催化与高铁酸盐的组合产生明显的协同效应;当DMP初始浓度为5 mg·L~(-1)、pH=9、高铁酸盐和二氧化钛投加浓度分别为31.7 mg·L~(-1)和40mg·L~(-1)时,DMP降解率较高(75%);在Fe(Ⅵ)-TiO_2-UV体系光降解DMP过程中,TiO_2催化剂表面产生的Fe—O—(有机)络合物会抑制DMP降解,用1%HCl溶液洗涤TiO_2,可恢复其活性;用Fe(VI)-TiO_2-UV体系降解实际生产废水和模拟废水中DMP,DMP降解率分别为67%和78.2%。高铁酸盐-光催化联合工艺的协同作用极大地提高了DMP的降解率。 相似文献
10.
为研究CuO在活化过一硫酸氢盐(PMS)与过二硫酸盐(PS)降解染料时的差异,通过单因素控制实验,探究PMS/PS浓度、CuO投加量、初始pH和氯离子对CuO/PMS和CuO/PS体系降解孔雀石绿染料(MG)的影响。结果表明:常温常压下,在MG初始浓度为10 μmol·L-1,PMS浓度为250 μmol·L-1,CuO投加量为200 mg·L-1的条件下,60 min后CuO/PMS体系对MG的降解率为86.73%;当MG初始浓度为10 μmol·L-1,PS浓度为200 μmol·L-1,CuO投加量为200 mg·L-1时,60 min后CuO/PS体系对MG的降解率为79.07%,过量的CuO和过低的pH均会降低体系的氧化能力。当MG初始浓度为10 μmol·L-1,氧化剂浓度为200 μmol·L-1,CuO投加量为200 mg·L-1时,CuO/PMS体系与CuO/PS体系对MG降解率分别为80.35%和79.07%,降解效果大致相当。在地下水/工业废水中氯离子普遍存在情况下,CuO/PS体系由于不产生硫酸根自由基,则避免了氯代副产物的生成,因而相对硫酸根自由基氧化体系具有一定优势。动力学分析显示,两种体系中MG的降解均遵循一级反应动力学模型。 相似文献
11.
酞酸酯是环境中普遍存在的有机污染物(内分泌干扰物)之一。利用UV/TiO2光催化降解水体中的邻苯二甲酸二甲酯(DMP),讨论了溶液pH、TiO2投加量及DMP初始浓度等因素对DMP降解的影响。结果表明,DMP为10mg/L左右时,TiO2投加量为0.2~0.5g/L、pH=7是比较理想的降解条件;DMP初始浓度越高,其降解率则越低。研究了Langmuir-Hinshelwood模式下DMP在TiO2表面的吸附与催化活性的关系,发现DMP主要通过吸附在催化剂的表面而非在溶液本体中发生降解。线性回归计算所得光照条件下的吸附常数远大于无光照条件下的吸附常数,可能是由于UV和TiO2体系之间产生协同效应,提高了UV/TiO2体系对DMP的降解效果。另外,初步分析了可能的降解反应机制。 相似文献
12.
将Fe3+负载在活性炭上制得载铁催化剂Fe/AC,并研究了该催化剂对邻苯二甲酸二甲酯(DMP)的催化降解性能。通过正交实验和单因素实验,探讨了催化剂投加量、H2O2投加量、溶液pH值和反应温度对水中DMP降解率的影响,同时对DMP矿化度进行了分析。实验结果表明,制得的载铁催化剂具有较高的催化活性;降解效果的影响顺序是反应温度〉催化剂投加量〉H2O2投加量〉溶液pH值;在反应温度为80℃、催化剂投加量为4 g/L、H2O2投加量为20 mL/L和溶液pH值为3的条件下反应120 min后,质量浓度为10 mg/L的DMP降解率最高可达97.73%;在优化的实验条件下反应150 min,DMP矿化度可达62.73%;催化剂反复使用5次仍具有较好的催化活性,DMP降解率仍可达到77%以上;反应过程中溶液Fe3+浓度的变化维持在1.07 mg/L左右,且可推测催化降解DMP主要是由非均相和均相催化氧化反应共同作用的。 相似文献
13.
将Fe3+负载在活性炭上制得载铁催化剂Fe/AC,并研究了该催化剂对邻苯二甲酸二甲酯(DMP)的催化降解性能。通过正交实验和单因素实验,探讨了催化剂投加量、H2O2投加量、溶液pH值和反应温度对水中DMP降解率的影响,同时对DMP矿化度进行了分析。实验结果表明,制得的载铁催化剂具有较高的催化活性;降解效果的影响顺序是反应温度催化剂投加量H2O2投加量溶液pH值;在反应温度为80℃、催化剂投加量为4 g/L、H2O2投加量为20 mL/L和溶液pH值为3的条件下反应120 min后,质量浓度为10 mg/L的DMP降解率最高可达97.73%;在优化的实验条件下反应150 min,DMP矿化度可达62.73%;催化剂反复使用5次仍具有较好的催化活性,DMP降解率仍可达到77%以上;反应过程中溶液Fe3+浓度的变化维持在1.07 mg/L左右,且可推测催化降解DMP主要是由非均相和均相催化氧化反应共同作用的。 相似文献
14.
研究了在超声波、Fenton不同体系中邻苯二甲酸二甲酯(DMP)和壬基酚(NP)的降解效果.通过正交实验得到超声波/Fenton工艺各个因素影响程度的大小为:H2O2投加量>初始pH>反应时间>Fe2+投加量>超声功率.最后得到降解250mL质量浓度为100 μg/L的DMP的最佳条件:H2 O2投加量为2 mmol/L、Fe2+投加量为0.40 mmol/L、初始pH为3.00、超声功率为1 800W、反应时间为120 min,降解率可达到85.96%;降解250mL质量浓度为100 μg/L的NP的最佳条件:H2O2投加量为4mmol/L、Fe2+投加量为0.50 mmol/L、初始pH为3.00、超声功率为1 800W、反应时间为120 min,降解率可达到78.70%. 相似文献
15.
使用溶胶凝胶法制备纳米铁酸铜催化剂,并用于活化过一硫酸盐催化降解苯胺废水。探究了纳米铁酸铜投加量、过一硫酸盐投加量和pH对苯胺降解率的影响。结果表明,在纳米铁酸铜投加量为2.0g/L、过一硫酸盐投加量为0.2g/L、pH=7.0的条件下,纳米铁酸铜活化过一硫酸盐催化降解苯胺废水的效果最好,反应60min,100mL质量浓度为10mg/L的苯胺降解率可达99%。纳米铁酸铜在反应过程中的总铁溶出量仅为0.87mg/L,总铜溶出量仅为0.03mg/L。苯胺的降解途径:一是苯胺中的氨基被自由基攻击,生成亚硝基苯,继续氧化生成硝基苯,然后开环矿化为CO_2和H_2O;二是氨基对位苯环上的氢原子被羟基取代生成对羟基苯胺,对羟基苯胺被自由基攻击生成亚氨基苯醌,进一步反应生成对苯醌,然后开环矿化为CO_2和H_2O。 相似文献
16.
针对污水处理厂尾水中抗生素等生物难降解有机物频繁检出的问题,采用相对绿色、低毒性的过渡金属元素制备了锰铁铜类水滑石(MnFeCu-LDHs),并将其用于活化过一硫酸盐(PMS)降解氯四环素(CTC)。探究了初始pH、反应温度、催化剂和PMS投量对CTC降解效能的影响规律,通过化学捕获和淬灭实验确定了活性氧物种(ROS)的种类与贡献,并对反应前后的催化剂进行理化性质表征且考察了催化剂稳定性。结果表明,在初始pH为7、反应温度为298 K、催化剂及PMS投加量均为0.2 g·L−1条件下,反应5 min后CTC去除率达到80.88%,30 min去除率达到91.18%,同时,随着初始pH和温度的提高,CTC的降解效果得到明显增强;ROS淬灭实验和EPR捕获实验结果证实了在该体系中,·OH、SO4·−、1O2均参与了CTC的降解,贡献度最高的是1O2,其次为·OH和SO4·−;基于反应前后XPS光谱对比分析,发现MnFeCu-LDHs活化PMS过程稳定性较好,此外该催化剂在重复使用5次后,CTC的30 min去除率仍达到73.61%。因此,本研究可为SR-AOPs应用于控制水环境抗生素类污染提供新思路。 相似文献
17.
利用给水厂含铁污泥和污水厂污泥混合热解制备铁基污泥炭 (Iron-SBC) ,作为过硫酸盐活化剂,用于调理污泥脱水。研究了Iron-SBC的最佳制备条件及其活化PDS调理污泥脱水的效果,并探究其活化机制。结果表明,Iron-SBC最佳制备条件为给水厂含铁污泥和污水厂污泥比例3∶1、热解温度800 ℃、热解时间1 h。XRD、FT-IR及BET分析结果表明,与原混合污泥相比,Iron-SBC比表面积和孔容增大,表面负载了Fe0和FeO、Fe2O3、Fe3O4等铁的氧化物,并含有大量官能团。在活化PDS过程中,Iron-SBC表面的Fe0、铁的氧化物及官能团等均能有效活化PDS,产生SO4−·和·OH自由基。XPS分析结果表明,Iron-SBC表面部分Fe2+被氧化为Fe3+,官能团C-C、C-OH和C=O等被氧化,并有Fe-O键生成。经Iron-SBC/PDS调理污泥后,CST、SRF和Wc分别由原泥的19.1 s、14.9×1012 m·kg−1和85.06%下降到8.4 s、5.4×1012 m·kg−1和73.48%。本研究结果可为含铁污泥和剩余污泥资源化及污泥深度脱水提供参考。 相似文献
18.
为了解生物炭应用于邻苯二甲酸酯污染土壤修复的可行性,选择邻苯二甲酸二甲酯作为目标污染物,以花生壳为原料制备生物炭,通过室内模拟试验研究生物炭对邻苯二甲酸二甲酯在土壤中自然降解和吸附行为的影响。结果表明,未添加与添加生物炭土壤中邻苯二甲酸二甲酯的自然降解过程均遵循一级动力学方程,生物炭含量0.5%和1.0%的土壤中邻苯二甲酸二甲酯的半衰期分别延长2.185 d和4.151 d,表明添加生物炭会不同程度地延缓土壤中邻苯二甲酸二甲酯的自然降解;在不同的生物炭含量水平下,土壤对邻苯二甲酸二甲酯的吸附均能很好地符合Freundlich方程所描述的规律,生物炭含量0.1%、0.5%和1.0%土壤的吸附常数Kf分别为35.647、45.830和57.649,显著高于对照土壤(7.793),表明土壤对邻苯二甲酸二甲酯的吸附作用随生物炭含量增加而显著增强。 相似文献
19.
近年来,尖晶石型铁氧体在光催化领域展现出良好的应用前景,但其团聚作用会影响催化效果,构建异质结结构可以有效提高催化效率。通过自组装法合成了一系列Bi2WO6/NiFe2O4 p-n型异质结催化剂(NiFe-Bi-XY),并将其应用于去除水体中的四环素污染物。在太阳光/NiFe-Bi-73/过一硫酸盐(PMS)体系中,在反应30 min时对20 mg·L−1四环素溶液的去除率可以达到91.1%,矿化率可以达到56.3%,所构建的反应体系在碱性环境中依然保持着对四环素良好的去除效果。通过XPS价带谱、禁带宽度计算、Mott-Schottky和ESR测试证明NiFe-Bi-XY形成了p-n型异质结结构。在所构建的体系中,四环素的降解主要是通过光催化和非光催化降解2种途径共同实现的。淬灭实验结果表明,·O2−和1O2是降解四环素的主要活性物种。以上研究结果可为合成高效的二元异质结催化剂,并将其用于环境修复提供参考。 相似文献