首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
滚石冲击作用下埋地高压输气管道的可靠性分析   总被引:1,自引:0,他引:1  
地质灾害往往会对高压输气管线造成安全隐患,岩体崩塌引起的滚石冲击是导致埋地输气管道第三方破坏的主要破坏形式之一。通过概率分布求出滚石产生的偶然性载荷对管道的冲击频率,根据可靠性理论,用管线钢自身的强度和撞击产生的工作应力,建立强度应力的安全裕度方程。然后利用LS-DYNA有限元软件,建立滚石冲击管道模型,计算不同条件下埋地输气管道的最大应力Sm,确定Sm的分布规律。最后,根据应力和强度的分布求得管道可靠度指标和失效概率。本研究提供的方法和结论对埋地输气管道的风险评估、管道的设计及施工具有重要的参考价值。  相似文献   

2.
为研究地基强夯作业中夯击载荷对埋地管道力学性能的影响,基于有限元原理建立了夯锤-管道-围土耦合三维模型,分析了夯击过程中管道截面变形及所受冲击力变化规律,研究了管道壁厚、夯击速度、夯锤体积对管道应力、应变及变形的影响规律。结果表明:夯击载荷下的管道所受冲击力为脉冲型,且随时间推移逐渐降低为0,最大冲击力随管道壁厚、夯击速度、夯锤体积增大而增大;管道最大等效应力、高应力范围及最大等效塑性应变随壁厚增加而减小,但随夯击速度或夯锤体积增大而增大;随着夯击速度、夯锤体积增大,管道截面变形率(椭圆度或凹陷率)逐渐增大,但其随壁厚增加而减小。  相似文献   

3.
为研究地表载荷对硬岩区埋地管道力学性能的影响,建立了管-土耦合三维数值模型,分析了地表载荷大小、作用面积、管道压力、管道径厚比及回填土弹性模量对管道应力分布、塑性应变、椭圆度的影响。结果表明:地表压载作用下,高应力区首先出现在管道顶部且呈椭圆形;随着地表载荷及其作用面积的增大,管道高应力区逐渐扩大,管道截面左右两侧也出现应力集中;随着回填土弹性模量、管道壁厚及内压的增加,管道顶部高应力区及最大等效应力均减小。塑性应变首先出现在管顶,且塑性区随地表载荷、载荷作用长度增加而增大,随回填土体弹性模量及管道壁厚增大而逐渐减小;当内压为0~4MPa时,管道塑性应变及塑性区随内压的增大而减小。管道椭圆度随回填土体弹性模量、管道内压、壁厚增加而逐渐减小,随地表压载增大而增大。  相似文献   

4.
针对影响长输埋地管道安全运行的山体滑坡问题,基于深层圆弧形滑坡理论和有限元方法,建立了在深层圆弧形滑坡作用下的管道计算 模型,对管道的受力进行了数值模拟。对土壤密度、管道壁厚、管道内压以及土抗剪强度进行了参数敏感性分析,研究了各参数对发生滑坡时 管道所受最大应力的影响规律。结果表明:当滑坡规模、滑坡角度增大时,管道所受Von Mises值会随之增大;随土壤密度的增加,管道所受的 应力也会增加;在滑坡多发区,应设计大壁厚的管道,以增加管道安全性;应确保管道内压小于10MPa,当内压突增时应有紧急预案;土抗剪强 度对在深层圆弧形滑坡作用下管道所受应力的影响明显小于其他3个敏感参数。该研究工作为山体滑坡区的安全管道设计提供了一定的参考,对 确保滑坡区埋地管道的安全运营有重要意义。  相似文献   

5.
架空及埋地天然气管道泄漏扩散数值研究   总被引:1,自引:0,他引:1  
天然气在管道运输过程中,由于含硫等腐蚀性气体对管道内壁的腐蚀作用,在管内其他压力的作用下,会引起穿孔泄漏。泄漏后的天然气扩散后,可能会引发火灾、中毒或爆炸。因此,进行天然气管道泄漏扩散及数值模拟研究,对管道输送安全运营和保障人生财产安全意义重大。该文利用CFD软件对架空及埋地含硫天然气管道穿孔泄漏后的甲烷、硫化氢气体的扩散进行了数值模拟。结果表明,受土壤毛孔阻力的影响,埋地天然气管道泄漏爆炸范围比架空天然气管道泄漏要小,但其在地面的影响时间长,硫化氢的中毒范围比架空要低30m左右。为天然气的安全输送及环境保护提供了理论依据。  相似文献   

6.
研究地铁施工引起地下管线变形的安全评估方法,分析三点共圆法求算管线变形曲率中测点间距和测量误差的影响,并对其适用性及相关问题进行了探讨;提出利用六次多项式曲线拟合求算管线变形曲率的方法,并结合工程实例阐述其应用.  相似文献   

7.
为研究半煤岩巷道中岩粉质量分数和煤的挥发分与煤岩混合型粉尘云最低着火温度的关系,选取挥发分差异较大的5种煤样以相同比例配制煤岩混合型粉尘,利用粉尘云最小点火温度测定仪进行煤岩混合型粉尘试验。结果表明,当煤岩混合型粉尘中岩粉质量分数低于40%时,岩粉的混合会导致混合型粉尘云最低着火温度发生小幅度波动;当岩粉质量分数高于40%时,煤岩混合型粉尘最低着火温度会随岩粉质量分数的增加而大幅度升高;挥发分质量分数越小的煤粉,其混合型粉尘云最低着火温度越容易受岩粉质量分数的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号