首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
天然气管道失效个人生命风险评价技术研究   总被引:1,自引:0,他引:1  
为研究天然气长输管道失效个人生命风险,提出一种以人员伤亡概率为指标的天然气管道失效后果风险评价方法。基于天然气管道的失效概率和失效致死长度参数,建立天然气长输管道生命风险评价模型。用该模型,对国内某城市住宅小区内带腐蚀缺陷的天然气管线进行定量风险分析。借鉴英国天然气输送公司数据,确定天然气管线个人生命风险值。案例证明,用所建立的天然气管道失效个人生命风险评价模型能够有效地分析带缺陷天然气管道失效后果,实现天然气管道的个人安全生命风险全定量评价。  相似文献   

2.
为研究不同孔径泄漏下天然气管道失效概率,首先基于EGIG数据库和UKOPA数据库天然气管道历史失效数据,计算由不同失效原因导致3种孔径泄漏所占比例;然后将我国管道各原因基础失效概率按照对应比例分别进行修正,获得较适用于我国天然气管道特点的不同孔径泄漏基础失效概率;最后分别考虑第三方破坏、腐蚀、施工缺陷/材料失效、误操作、自然力破坏5种失效原因,完成对天然气管道不同孔径泄漏基础失效概率的修正计算。研究结果表明:小孔泄漏、中孔泄漏和破裂泄漏的基础失效概率分别为0.173,0.128,0.048次/(103 km·a);修正因子包括管径、埋深、壁厚、管龄、防腐层类型、管道所处区域,上述因子能够满足不同场景下天然气管道失效概率的修正计算;概率量化方法综合考虑失效原因、泄漏孔径以及管道本体信息,能够定量化预测天然气管道失效概率,为天然气管道定量风险评价提供数据支撑。  相似文献   

3.
Natural gas industry is developing rapidly, and its accidents are threatening the urban safety. Risk management through quantitative assessment has become an important way to improve the safety performance of the natural gas supply system. In this paper, an integrated quantitative risk analysis method for natural gas pipeline network is proposed. This method is composed of the probability assessment of accidents, the analysis of consequences and the evaluation of risk. It is noteworthy that the consequences analyzed here include those of the outside and inside gas pipelines. The analysis of consequences of the outside pipelines focuses on the individual risk and societal risk caused by different accidents, while those of the inside pipelines concerns about the risk of the economic loss because of the pressure re-distribution. Risk of a sample urban gas pipeline network is analyzed to demonstrate the presented method. The results show that this presented integrated quantitative risk analysis method for natural gas pipeline network can be used in practical application.  相似文献   

4.
燃气管网定量风险分析方法综述   总被引:5,自引:2,他引:3  
以城市燃气管网的风险为研究对象,分析并提出一种可用于城市燃气管网定量风险分析的新思路,包含了不同事故后果及其物理模型的分析即事故可能性分析、后果分析和风险评价,分为失效事故假定、泄漏率计算、物理效应计算、致死率计算、风险值计算、风险评价等环节;整理、研究城市燃气管网定量风险分析所涉及的多种物理模型,并通过比较不同模型的特点,分析各个模型的不足之处;最后针对国内外研究现状及燃气管网风险的特点,指出研究发展方向:研究风险在燃气管网内的传播,提出燃气管网相继失效的风险分析方法。所提出的分析思路、计算方法可与工程应用相结合。  相似文献   

5.
With the rapid development of petroleum industry, the transport pipelines of oil and gas are increasingly constructed to minimize land use conflicts. Therefore, the parallel pipelines are unavoidable in order to save land resource, reduce the pipeline construction and maintenance costs. The economy and security of pipeline laying and running is the primary problem considered in pipeline construction, which the parallel spacing plays a decisive role to. The leakage of natural gas is very serious and dangerous due to its flammable and combustible. The explosive of leak gas causes impact failure to parallel pipeline. Specific to the surface conduit parallel gas pipeline, numerical simulation of leak natural gas explosive was carried out based on TNT equivalent weight method. Explosive damage degree of pipeline decreased with the pipeline distance increasing. Consulting with the pipeline ovalization strain design criteria and the combustion effect, the safety parallel natural gas pipeline space maybe at least 4 m to ensure the surface conduit parallel pipeline safely and steadily operation.  相似文献   

6.
天然气管道泄漏爆炸后果评价模型对比分析   总被引:4,自引:5,他引:4  
天然气管道失效可能导致多种严重后果,爆炸灾害给周围的人员和建筑物造成重大的危害,对其爆炸危害范围的评价进行研究具有重要现实意义。笔者综合分析蒸气云爆炸(VCE)定量评价模型和API pub 581后果评价模型;并以某输气管道为实例对爆炸后果进行了定量模拟评价;得到死亡区域与泄漏时间的关系,确定了其爆炸事故的伤害范围;对两种模型的评价结果进行了对比分析。爆炸后果评价模型的研究与其对比探讨,为今后输气管线的定量风险后果评价模型选取提供参考依据。  相似文献   

7.
Failure of Leak Detection System (LDS) to detect pipeline leakages or ruptures may result in drastic consequences that could lead to excessive financial losses. To minimize the occurrence of such failure, the functionality of the LDS and the integrity of the pipeline should be assessed on a priority basis. This paper presents an integrated risk-based assessment scheme to predict the failure and the failure consequences of offshore crude oil pipelines. To estimate risk, two important quantities have to be determined, the joint probability of failure of the pipeline and its LDS and the consequences of failure. Consequences incorporate the financial losses associated with environmental damage, oil spill cleanup and lost production. The assessment provides an estimate of the risk in monetary value and determines whether the estimated risk exceeds a predefined target risk. Moreover, the critical year for the asset can be determined. In essence, the outcome of the assessment facilitates an informed decision-making about the future of the asset.  相似文献   

8.
In urban areas, buried gas pipeline leakages could potentially cause numerous casualties and massive damage. Traditional static analysis and dynamic probability-based quantitative risk assessment (QRA) methods have been widely used in various industries. However, dynamic QRA methods combined with probability and consequence are rarely used to evaluate gas pipelines buried in urban areas. Therefore, an integrated dynamic risk assessment approach was proposed. First, a failure rate calculation of buried gas pipelines was performed, where the corrosion failure rate dependent on time was calculated by integrating the subset simulation method. The relationship between failure probability and failure rate was considered, and a mechanical analysis model considering the corrosion growth model and multiple loads was used. The time-independent failure rates were calculated by the modification factor methods. Next, the overall evolution process from pipeline failures to accidents was proposed, with the accident rates subsequently updated. Then, the consequences of buried gas pipeline accidents corresponding to the accident types in the evolution process were modeled and analyzed. Finally, based on the above research, dynamic calculation and assessment methods for evaluating individual and social risks were established, and an overall application example was provided to demonstrate the capacity of the proposed approach. A reliable and practical theoretical basis and supporting information are provided for the integrity and emergency management of buried gas pipelines in urban areas, considering actual operational conditions.  相似文献   

9.
The transport of hazardous materials by pipeline is widely used for the transfer of significant quantities of oil and chemicals. Due to the extremely low frequency of spills, pipelines are considered the safest mode for the land transportation of hazardous substances. Accident records, while confirming that Loss of Containment (LOC) events are rare, also point out the major-accident hazard of pipelines, due to the extremely severe potential consequences of spills. Quantitative Risk Analysis (QRA) techniques have been applied to pipelines since many years with the aim of evaluating risk for workers or exposed population. However, releases of liquids, as oil and oil products, also create an hazard to the environment, due to the potential of extensive soil and groundwater contamination. An integrated model was developed for the environmental Risk Analysis of spills from pipelines. Specific environmental risk indexes were defined, expressing the risk of soil and groundwater contamination, both in physical and economic terms. A case-study is presented and discussed to illustrate the features of the methodology. The results confirmed that the proposed model may be considered an important tool within a comprehensive approach to the management of risk related to onshore pipelines.  相似文献   

10.
Vast amounts of oil & gas (O&G) are consumed around the world everyday that are mainly transported and distributed through pipelines. Only in Canada, the total length of O&G pipelines is approximately 100,000 km, which is the third largest in the world. Integrity of these pipelines is of primary interest to O&G companies, consultants, governmental agencies, consumers and other stakeholder due to adverse consequences and heavy financial losses in case of system failure. Fault tree analysis (FTA) and event tree analysis (ETA) are two graphical techniques used to perform risk analysis, where FTA represents causes (likelihood) and ETA represents consequences of a failure event. ‘Bow-tie’ is an approach that integrates a fault tree (on the left side) and an event tree (on the right side) to represent causes, threat (hazards) and consequences in a common platform. Traditional ‘bow-tie’ approach is not able to characterize model uncertainty that arises due to assumption of independence among different risk events. In this paper, in order to deal with vagueness of the data, the fuzzy logic is employed to derive fuzzy probabilities (likelihood) of basic events in fault tree and to estimate fuzzy probabilities (likelihood) of output event consequences. The study also explores how interdependencies among various factors might influence analysis results and introduces fuzzy utility value (FUV) to perform risk assessment for natural gas pipelines using triple bottom line (TBL) sustainability criteria, namely, social, environmental and economical consequences. The present study aims to help owners of transmission and distribution pipeline companies in risk management and decision-making to consider multi-dimensional consequences that may arise from pipeline failures. The research results can help professionals to decide whether and where to take preventive or corrective actions and help informed decision-making in the risk management process. A simple example is used to demonstrate the proposed approach.  相似文献   

11.
Corrosion is the main reason for the failure of buried gas pipelines. For effective corrosion failure probability analysis, the structural reliability theory was adopted in this study to establish two calculation models for pipeline corrosion failure: the pressure failure model and von Mises stress failure model. Then, two calculation models for the corrosion failure probability were established based on a corrosion depth growth model obtained from actual survey data of soil corrosion characteristics. In an example, Monte Carlo simulation (MCS) and subset simulation (SS) were used to analyze the corrosion failure probability of pipelines, and the results were compared. SS can compensate for the shortcomings of MCS as it has higher computational efficiency and accuracy. Therefore, SS was adopted to simulate variations in the corrosion failure probability of buried pipelines with the service time for the two failure probability calculation models, which were applied to a natural gas pipeline located in a chemical industry park in Zhuhai, China. A sensitivity analysis was carried out on the relevant parameters that affect the failure probability. The results showed that multiple loads caused by the covering soil, residual stress, temperature differential, and bending stress have a non-negligible effect on the pipeline reliability. The corrosion coefficients gradually become the most important factors that affect the failure probability with increased service time. The proposed methodology considers the actual operating conditions of pipelines to provide a reliable theoretical basis for integrity management.  相似文献   

12.
The formation of a crater by the abrupt and catastrophic rupture of a high-pressure pipeline can be highly relevant, especially when the crater uncovers other pipelines, which could undergo a domino effect with a significant increase of the consequences on people or on the environment. However, this scenario has been only partially studied in the literature. To assess the influence of the pipeline parameters on the dimensions of the resulting crater, a statistical analysis of accidental ruptures of buried natural gas pipelines that have involved the formation of a crater was carried out. Mathematical expressions are proposed to describe the proportionality relationships found, which can be very useful to support adequate separation distances in the design and construction of parallel corridors of pipelines after appropriate escalating effects are considered. Finally, detailed event trees were developed to calculate the probability of occurrence of the final outcomes, as well as the identified domino sequences, based on a qualitative and quantitative analysis of the data. The study of these accident scenarios, based on actual cases, represents a useful and needed advance in risk analysis of natural gas transportation through pipelines.  相似文献   

13.
为避免因腐蚀导致油气管道失效,针对因管道特性和腐蚀尺寸的不确定性使得管道剩余强度成为概率模型的特点,建立了腐蚀管道强度损失随机模型;借助可靠性理论,通过分析管道腐蚀进程的时变性特点,将管道系统由损伤积累和抗力衰减导致的剩余强度随机化;提出基于穿越率的腐蚀油气管道失效评定及安全寿命预测方法。研究结果表明:腐蚀速率和运行压力对管道失效概率及安全寿命影响显著,管道尺寸影响适中,而相关系数和拉伸强度影响较小;若腐蚀速率Va=0.2 mm/a,VL=10 mm/a或局部腐蚀缺陷半径达到管道壁厚的0.5倍时,建议作为重点风险段监测并检修。所建方法是对腐蚀油气管道运营监控和风险评估的有益补充。  相似文献   

14.
Urban gas pipelines usually have high structural vulnerability due to long service time. The locations across urban areas with high population density make the gas pipelines easily exposed to external activities. Recently, urban pipelines may also have been the target of terrorist attacks. Nevertheless, the intentional damage, i.e. terrorist attack, was seldom considered in previous risk analysis of urban gas pipelines. This work presents a dynamic risk analysis of external activities to urban gas pipelines, which integrates unintentional and intentional damage to pipelines in a unified framework. A Bayesian network mapping from the Bow-tie model is used to represent the evolution process of pipeline accidents initiating from intentional and unintentional hazards. The probabilities of basic events and safety barriers are estimated by adopting the Fuzzy set theory and hierarchical Bayesian analysis (HBA). The developed model enables assessment of the dynamic probabilities of consequences and identifies the most credible contributing factors to the risk, given observed evidence. It also captures both data and model uncertainties. Eventually, an industrial case is presented to illustrate the applicability and effectiveness of the developed methodology. It is observed that the proposed methodology helps to more accurately conduct risk assessment and management of urban natural gas pipelines.  相似文献   

15.
Failures of pipelines conveying dangerous substances can pose major risks. Identification of pipeline hazards associated with the different pipeline system functions is essential for risk analysis and historical data are of great importance. Incident data are analysed, following a review of official sources, by failure mechanism, size and function of the systems in two types of transmission networks around the world, i.e. natural gas and hazardous liquids. The development of the networks and the reporting criteria used by the official sources for the collection of incidents in the last twenty five years have shown remarkable differences. The performance of both gas and liquid transmission lines in Europe, the US and the former Soviet Union in terms of failures has shown a progressive improvement but the extent of consequences following gas releases and oil spillages have not shown any change in the last fifteen years. External interference is not always the predominant cause of failures in all systems depending also on pipe size. Failures with casualties in gas transmission have not shown any decrease over the last decade and there is a clear indication that many are connected with the parts and functions other than the main body of the pipeline. A comparison between European and US gas frequency data, derived under common constraints, shows that valuable information can be lost when criteria for incidents collection are only limited to the body of the pipeline.  相似文献   

16.
Aging urban oil and gas pipelines have a high failure probability due to their structural degradation and external interference. The operational safety of the aging urban oil and gas pipeline is challenged by different hazards. This paper proposes a novel methodology by integrating an index-based risk evaluation system and fuzzy TOPSIS model for risk management of aging urban oil and gas pipelines, and it is carried out by evaluating the priority of hazards affecting pipeline safety. Firstly, the hazard factors of aging urban oil and gas pipelines are identified to establish an index-based risk evaluation system. Subsequently, the fuzzy TOPSIS model is employed to evaluate the importance of these hazard factors and to decide which factors should be managed with priority. This work measures the importance of a hazard factor from three aspects, i.e. occurrence (O), severity (S) and detectability (D), and the weights of these three parameters are determined by a combination weight method. Eventually, the proposed methodology is tested by an industrial case to illustrate its effectiveness, and some safety strategies to reduce the operational risk of the pipeline are presented. The proposed methodology is a useful tool to implement more efficient risk management of aging urban oil and gas pipelines.  相似文献   

17.
This paper presents a novel quantitative risk analysis process for urban natural gas pipeline networks using geographical information systems (GIS). The process incorporates an assessment of failure rates of integrated pipeline networks, a quantitative analysis model of accident consequences, and assessments of individual and societal risks. Firstly, the failure rates of the pipeline network are calculated using empirical formulas influenced by parameters such as external interference, corrosion, construction defects, and ground movements. Secondly, the impacts of accidents due to gas leakage, diffusion, fires, and explosions are analyzed by calculating the area influenced by poisoning, burns, and deaths. Lastly, based on the previous analyses, individual risks and social risks are calculated. The application of GIS technology helps strengthen the quantitative risk analysis (QRA) model and allows construction of a QRA system for urban gas pipeline networks that can aid pipeline management staff in demarcating high risk areas requiring more frequent inspections.  相似文献   

18.
Thermal interaction analysis in pipeline systems: A case study   总被引:2,自引:0,他引:2  
The assessment of the consequences of high pressure releases of flammable gases is a fundamental requirement for the safe design and operation of industrial installations, plants and pipework. A scenario of interest concerns a high pressure jet-fire following the ignition of a gas jet release which results in a thermal loading to the surroundings and possibly leads to accident escalation.

In the present paper, a case study is presented: two parallel-laid natural gas pipelines have been considered, the accidental scenarios which may possibly occur as a consequence of a pipeline failure have been discussed and the thermal effects caused by the jet-fire developing from different rupture sizes have been assessed.

Three scenarios have been analyzed, considering the pipelines being within a highly congested area: (i) large failure and vertical jet with detached flame; (ii) small failure with jet fire directly impinging on the parallel pipeline; (iii) small failure with pipeline engulfed within fire.

Once the temperature gradient through the pipeline wall has been found, the stresses deriving from pressure load and steel differential expansion have been analytically calculated and compared with the yielding stresses at the temperature achieved by the pipeline wall.

In the first scenario the pipeline is able to resist without major problems; in the second case the pipeline rupture is likely to occur; in the third scenario the pipeline resists to the applied loads but with a low margin to yielding.

It is understood that the analysis results are very much dependent on the utilized hypotheses, therefore a sensitivity analysis was performed in order to assess the variation of the results as a function of the variation of problem data; this analysis identifies the large influence of the parameters on the final result.  相似文献   


19.
Individual risk analysis of high-pressure natural gas pipelines   总被引:1,自引:0,他引:1  
Transmission pipelines carrying natural gas are not typically within secure industrial sites, but are routed across land out of the ownership of the pipeline company. If the natural gas is accidentally released and ignited, the hazard distance associated with these pipelines to people and property is known to range from under 20 m for a smaller pipeline at lower pressure to up to over 300 m for a larger pipeline at higher pressure. Therefore, pipeline operators and regulators must address the associated public safety issues.This paper focuses on a method to explicitly calculate the individual risk of a transmission pipeline carrying natural gas. The method is based on reasonable accident scenarios for route planning related to the pipeline's proximity to the surrounding buildings. The minimum proximity distances between the pipeline and buildings are based on the rupture of the pipeline, with the distances chosen to correspond to a radiation level of approximately 32 kW/m2. In the design criteria for steel pipelines for high-pressure gas transmission (IGE/TD/1), the minimum building proximity distances for rural areas are located between individual risk values of 10−5 and 10−6. Therefore, the risk from a natural gas transmission pipeline is low compared with risk at the building separated minimum distance from chemical industries.  相似文献   

20.
为了满足油气输送需求,现将一输水管线改输高压天然气,需对该管线改输的可行性进行研究论证,通过ANSYS建模分析得到腐蚀缺陷处在475MPa高压下所受到的最大等效应力小于管道的设计抗力2736MPa,满足安全标准。利用OLGA模拟出管道输送高压天然气时的压力和温度曲线满足实际工况要求,OLGA模拟出的预测腐蚀速率最大处为004mm/y,对管道的剩余寿命影响较小。应用DNV腐蚀因素失效概率模型计算得到该管道的失效概率小于15×10-3,安全等级介于“一般”和“很高”之间。经研究论证得该管道改输高压天然  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号