共查询到20条相似文献,搜索用时 15 毫秒
1.
It is urgent to explore effective suppression methods for gas fires and explosions to ensure the safe utilizations of combustible gases in industrial processes. In this work, experiments are performed to study the effect of spherical ceramic pellets on premixed methane-air flame propagation in a closed duct. High-speed schlieren photography and pressure transducers are used to record the flame propagation and pressure transient, respectively. Behaviors of the flame propagating through a section of the duct filled with ceramic pellets in mixtures at different equivalence ratios are scrutinized. Three different diameters of pellets are considered in the experiments. The result shows that the flame can be quenched in the case with a smaller pellet diameter (3 mm) for a wide range of equivalence ratios from fuel-lean to fuel-rich mixture. For larger pellet diameter (5 or 10 mm), flame extinction occurs in fuel-rich mixtures (e.g. Φ = 1.1, 1.2). For the cases of flame surviving through the pellets bed, the pellets show a significant influence on the flame structure and behavior. The flame propagation depends on the porosity and the mean void diameter of the porous media in the pellets bed. Small void diameter is beneficial to flame quenching, while large porosity can accelerate the flame propagation. The pressure dynamics evolution is closely related to the interaction of flame with the pellets, and it depends on whether the flame quenches in the pellets bed. Overall, d = 3 mm ceramic pellets display the best suppression effect on flame propagation and pressure buildup in this study. The results of this study are of great significance to guide the safety design of spherical suppression materials in engineering applications for process safety researchers and engineers. 相似文献
2.
燃烧假人测试系统是国际公认的定量评估防护装备阻燃性能的专用设备,本文主要介绍了燃烧假人测试系统的研究现状、系统构成、技术体系及应用前景。 相似文献
3.
A. Grov H.E.Z. OpsvikR.K. Eckhoff 《Journal of Loss Prevention in the Process Industries》2011,24(5):552-557
Electrical apparatus for use in the presence of explosive gas atmospheres has to be specially designed to prevent the apparatus from igniting the gas. Flameproof design is one of several options, and one requirement is then that any holes and slits in the enclosure wall be designed to prevent a possible gas explosion inside the enclosure from being transmitted to an explosive gas cloud outside it. Current standards (IEC) require that joint surfaces have a surface roughness of <6.3 μm. Any damaged joint surface has be restored to this quality. The present investigation has demonstrated that flame gap surfaces in flameproof electrical apparatuses can suffer considerable mechanical and corrosive damage before the flame gaps no longer function satisfactorily. In some cases very significant mechanical surface damage in fact improves the gap performance. This indicates that current high costs of repairing and replacing flameproof electrical apparatus in process plants offshore and onshore can be reduced considerably without any increase of the explosion risk. 相似文献
4.
In accident scenarios originating from weak ignition, flame acceleration preconditions the fresh gas ahead of the flame front and provides the necessary conditions for deflagration-to-detonation transition to occur. Strong shear layers, which form at the rear edge of obstacles in the accelerated flow of fast flames, isolate fresh gas pockets. Vortices in the intense shear layer have the potential to locally quench the flame, limiting the integral heat release and delaying the onset of detonation.This study investigates the potential of local turbulent quenching in H-CO-air mixtures. First, the presence of locally reduced heat release is visualized in highly resolved simulations for H-air and H-CO-air flames. Efficient simulation methods are of great importance for risk analysis studies. In connection with the results from highly resolved simulations this justifies a more detailed look at RANS-based combustion models for said flames. Thus, three different treatments of turbulent quenching are investigated, in which the geometrical configuration (blockage ratio and obstacle spacing) and the geometry size is varied.The results indicate that quenching does not need to be considered in RANS-based combustion models for H-CO-air flames in explosion scenarios. But since quenching does eventually occur at very high turbulence intensities, the authors suggest limiting the flame turbulence interaction to flame stretch values obtained from 1D counter-flow flame simulations with detailed chemistry. 相似文献
5.
金属网阻火器设计参数的优化选择 总被引:7,自引:0,他引:7
就不同的火焰速度,应采用合理的金属同参数进行了研究,得出了临界消焰速度和金属网形状系数(d/W)以及金属同层数之间的实验式。提出了网与网之间的理想间隔,并研究出多层金属网的最佳故数。按照本文提出的有关论据,便可在设计金属网阻火器时,对有关参数进行优化选择。 相似文献
6.
Numerical simulations of premixed hydrogen-air flame propagation in a pipe with different contraction or expansion angles are carried out in this study. The effects on the flame propagation characteristics are investigated, including flame shape, the speed of flame front and overpressure. Results show that the flame propagation at different contraction angles experiences 6 flame stages: spherical flame stage, finger-shaped flame stage, stage of flame front touching the sidewalls, classic tulip flame stage, dissipation stage of tulip flame and its re-formation stage. The formation of tulip flame and the following stages are promoted by the contraction structure. Meanwhile, the development of the flow and pressure fields near the contraction are analyzed and it is found that the paraclinical effects induced by the contraction angle enhance the tulip re-formation. In the sudden expansion pipes, a triple flame stage appears in the pipes. The flame front remains relatively static for a period of time. However, the flame would continue to propagate when the expansion angle becomes larger and the flame propagation distance in the ducts increased obviously with the larger expansion angle. Baroclinic effect can inhibit the intensity of the vortex in the flow field, and hence weaken the forward transport of fuel. This inhibit effects decrease with the expansion angle becomes larger. The results of this study have implications concerning designs for pipe geometry of hydrogen and may help get better hydrogen transportation. 相似文献
7.
Hiroshi Shimizu Manai Tsuzuki Yasuo Yamazaki A. Koichi Hayashi 《Journal of Loss Prevention in the Process Industries》2001,14(6):603-608
The study of extinguishment using water mist has been motivated due to the phase-out of the use of halens and the search for alternative means that preserve all of the benefits of a clean total flooding agent without adverse environmental impact. With the numerical simulation, we analyzed a gas–liquid two-phase problem including water (liquid), air and methane (gas) using Eulerian equations for the liquid phase and the full Navier–Stokes equations for the gas phase. Gaseous mass, momentum and energy equations are integrated simultaneously by a Harten–Yee explicit non-MUSCL modified-flux type TVD scheme for the convective terms and a central difference scheme for the viscous terms. Liquid phase conservation equations are solved with an application of a flux-vector-splitting scheme. In the experiments in an open room (500×500×500 mm) we observed an interaction of the diffusion flame with the water mists. The results show remarkable flame quenching and a good agreement between the numerical and experimental results. 相似文献
8.
研制满足高炉煤气管道阻火的火焰捕器.内径88 mm、199 mm和305 mm组合爆炸管道模拟实验结果表明,FA型火焰捕器的阻火性能良好,满足高炉煤气管道阻火的技术要求,各项技术性能指标达到了设计要求. 相似文献
9.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions. 相似文献
10.
以氨基三甲叉磷酸(ATMP)、尿素为原料采用热缩合法合成新型膨胀型阻燃剂一ATU。用傅里叶红外光谱及元素分析表征ATU的结构及组成。将ATU与常见碳源季戊四醇进行复配,应用于PP材料的阻燃。研究发现ATU集气源酸源于一身,对于PP阻燃效果明显,甚至好于同比例的APP。极限氧指数仪和垂直燃烧仪测试材料燃烧等级;微型燃烧量热仪(MCC)研究了材料燃烧过程中热释放情况;热重分析(TGA)和扫描电镜(SEM)分别从材料的热降解及成炭原理方面上对ATU的阻燃机理进行了研究。 相似文献
11.
A. E. Dahoe L. P. H. de Goey 《Journal of Loss Prevention in the Process Industries》2003,16(6):457-478
A methodology to determine the laminar burning velocity from closed vessel gas explosions is explored. Unlike other methods which have been used to measure burning velocities from closed vessel explosions, this approach belongs to the category which does not involve observation of a rapidly moving flame front. Only the pressure–time curve is required as experimental input. To verify the methodology, initially quiescent methane–air mixtures were ignited in a 20-l explosion sphere and the equivalence ratio was varied from 0.67 to 1.36. The behavior of the pressure in the vessel was measured as a function of time and two integral balance models, namely, the thin-flame and the three-zone model, were fitted to determine the laminar burning velocity. Data on the laminar burning velocity as a function of equivalence ratio, pressure and temperature, measured by a variety of other methods have been collected from the literature to enable a comparison. Empirical correlations for the effect of pressure and temperature on the laminar burning velocity have been reviewed and two were selected to be used in conjunction with the thin-flame model. For the three-zone model, a set of coupled correlations has been derived to describe the effect of pressure and temperature on the laminar burning velocity and the laminar flame thickness. Our laminar burning velocities are seen to fall within the band of data from the period 1953–2003. A comparison with recent data from the period 1994–2003 shows that our results are 5–10% higher than the laminar burning velocities which are currently believed to be the correct ones for methane–air mixtures. Based on this observation it is concluded that the methodology described in this work should only be used under circumstances where more accurate methods can not be applied. 相似文献
12.
13.
Ou-Sup Han Masaaki Yashima Toei Matsuda Hidenori Matsui Atsumi Miyake Terushige Ogawa 《Journal of Loss Prevention in the Process Industries》2000,13(6):449-457
The structure of flame propagating through lycopodium dust clouds has been investigated experimentally. Upward propagating laminar flames in a vertical duct of 1800 mm height and 150×150 mm square cross-section are observed, and the leading flame front is also visualized using by a high-speed video camera. Although the dust concentration decreases slightly along the height of duct, the leading flame edge propagates upwards at a constant velocity. The maximum upward propagating velocity is 0.50 m/s at a dust concentration of 170 g/m3. Behind the upward propagating flame, some downward propagating flames are also observed. Despite the employment of nearly equal sized particles and its good dispersability and flowability, the reaction zone in lycopodium particles cloud shows the double flame structure in which isolated individual burning particles (0.5–1.0 mm in diameter) and the ball-shaped flames (2–4 mm in diameter; the combustion time of 4–6 ms) surrounding several particles are included. The ball-shaped flame appears as a faint flame in which several luminous spots are distributed, and then it turns into a luminous flame before disappearance. In order to distinguish these ball-shaped flames from others with some exceptions for merged flames, they are defined as independent flames in this study. The flame thickness in a lycopodium dust flame is observed to be 20 mm, about several orders of magnitude higher than that of a premixed gaseous flame. From the microscopic visualization, it was found that the flame front propagating through lycopodium particles is discontinuous and not smooth. 相似文献
14.
为研究多孔材料对甲烷/空气预混气体爆燃火焰的抑制淬熄效果,运用一套自主设计的管道爆炸抑制系统进行实验研究。在实验中运用高速摄像机记录爆燃火焰在穿过多孔材料板时的淬熄过程,采用20,40,60,80PPI (孔目数) 的4种多孔材料,研究不同孔目数的多孔材料对爆燃火焰传播的形态结构、火焰传播速度以及抑制淬熄等特性的影响。结果表明:多孔材料的孔目数对爆燃火焰传播的早期阶段影响较小,爆燃火焰都经历了半球形火焰和指形火焰阶段;当火焰传播到多孔材料板时,孔目数越大对火焰的降速作用越强,80PPI工况下爆燃火焰不能穿过多孔材料板,即发生淬熄。实验结果揭示了多孔材料对火焰的淬熄作用与微孔通道和火焰的相互作用有关。 相似文献
15.
火焰几何特性和辐射特性是刻画火灾规模及其危害的重要参量。利用三维火焰重构技术,获取了丙烷浮力扩散火焰的火焰高度、表面积、体积和火焰面元视角系数的变化规律。结果表明,三维重构的火焰能够表征真实火焰形态的动态变化。平均火焰表面积和体积均可较好地拟合为热释放速率的幂函数,火焰表面积热释放速率随火焰热释放速率的增加趋于常数。平均火焰高度、表面积和体积与火焰外部平均辐射热流之间具有较好的幂函数关系,且拟合指数随着与火源距离的增大而减小。此外,将点源、圆柱辐射模型和火焰面元积分方法得到的辐射计算值与辐射测量值进行比较,发现火焰面元积分方法能够更好地预测火焰外围的瞬时和平均辐射热流分布。 相似文献
16.
气体爆燃火焰在狭缝中的淬熄 总被引:15,自引:4,他引:11
通过叙述可燃气体爆燃火焰在平行板狭缝中传播时产生淬熄的实验和理论研究结果,给出了甲烷,丙烷,乙炔,氢气等四种可燃气体与空气的预混气作为实验介质所进行的爆火焰淬熄实验中,火焰传播速度与淬熄直径、淬熄长度之间的关系。对于气体爆燃火争的淬熄理论模型进行了探讨,得到了有应用价值的结论。 相似文献
17.
An experimental study has been conducted to investigate the effects of hydrogen addition on the fundamental propagation characteristics of methane/air premixed flames at different equivalence ratios in a venting duct. The hydrogen fraction in the methane–hydrogen mixture was varied from 0 to 1 at equivalence ratios of 0.8, 1.0 and 1.2. The results indicate that the tendency towards flame instability increased with the fraction of hydrogen, and the premixed hydrogen/methane flame underwent a complex shape change with the increasing hydrogen fraction. The tulip flame only formed when the fraction of hydrogen ranged from 0 to 50% at an equivalence ratio of 0.8. It was also found that the flame front speed and the overpressure increased significantly with the hydrogen fraction. For all equivalence ratios, the stoichiometric flame (Φ = 1.0) has the shortest time of flame propagation and the maximum overpressure. 相似文献
18.
火焰振荡频率是火灾科学研究领域的一个重要基本参数,对横向风下火焰振荡频率的研究可以为火灾图像探测的参数设置提供理论依据。针对浮力扩散火焰(0.6×10~(-5)弗洛德数Fr2×10~(-2),10~2理查德森数Ri10~5),本研究将横向风条件下火焰结构假设为倾斜的柱状,通过对燃烧产生的浮力和横向风产生的拖曳力进行动力学分析,得出横向风条件下火焰振荡频率表达公式。结合实验结果得出,火焰振荡频率的理论值和实验值均随拖曳系数的增大(即外界风速的增加)而增大,但实验值的上升趋势较理论值平缓.这是因为公式忽略了风速对火焰温度和系数K的影响。 相似文献
19.
为探究甲烷体积分数对煤粉爆炸过程的影响,并掌握甲烷-煤粉爆炸火焰传播特征,通过粒度分析仪和同步热分析仪研究2种煤粉样品的粒径大小和热解过程。利用1 500 mm× 80 mm× 80 mm的半开口竖直燃烧管道,探究不同甲烷体积分数下,中位粒径分别为65 和25 μm 烟煤粉的火焰传播特性,分析甲烷体积分数对甲烷-煤粉复合火焰结构、温度和速度的影响。结果表明:25 μm煤粉比65 μm煤粉的火焰更加明亮,甲烷体积分数的增加对65 μm煤粉火焰有更强的促进作用;当甲烷体积分数越接近当量比时,火焰锋面越规则,火焰速度也越快;随着甲烷体积分数的增加,火焰温度和火焰传播速度均呈现先增大后减小的趋势;甲烷体积分数为9%时,火焰温度达到最大值;甲烷体积分数为8%和10%时,65和25 μm煤粉最大火焰速度为分别为26.53和39.28 m/s。 相似文献
20.
Transient computations with full hydrogen chemistry were performed to reveal the flame structure and extinguishment process of co-flow, hydrogen diffusion flame suppressed by water vapor. As the concentration of water vapor was increased, the flame detached away from the burner brim and formed an edge flame at the flame base. Water vapor showed larger chemical inhibition effect than nitrogen when extinguishing hydrogen flame, which was attributed to its enhanced third body effect in the reaction H + O2 + M = HO2 + M. The minimum extinguishing concentration (MEC) of water vapor and nitrogen was predicted by Senecal formula and perfectly stirred reactor (PSR) model respectively. The MECs predicted by PSR model agree with the MECs calculated by Fluent, which shows that 1) the flame extinction is controlled by the flame base, and 2) radiation absorption is negligible. The measured MECs are in a reasonable agreement with the values calculated by Fluent, which demonstrates the accuracy of the CFD model. A simple model was used to investigate the relative importance of extinguishing mechanisms of water vapor. The results show that in a co-flow configuration the thermal cooling and chemical inhibition effect are the main extinguishing mechanisms in suppressing hydrogen diffusion cup burner flame. 相似文献