共查询到20条相似文献,搜索用时 15 毫秒
1.
S. J. Kalkhoff 《Journal of the American Water Resources Association》1993,29(6):989-996
ABSTRACT: A geographic information system (GIS) was used to determine the relation between the stream-water quality and underlying geology in Roberts Creek watershed, Clayton County, Iowa, for base-flow conditions during the spring and summer of 1988–90. Geologic, stream, basin and subbasin boundaries, and water-quality sampling-site coverages were created by digitizing available maps. A contour coverage was created from digital line-graph data. The areal extent of geologic units subcropping in each subbasin was quantified with GIS, and the results then were output and joined with the discharge and water-quality data for statistical analyses. Illustrations showing the geology of the study area and the results of the study were prepared using GIS. By using GIS and a statistical software package, a weak but statistically significant relation was found between the water temperature, pH, and nitrogen concentrations in Roberts Creek and the underlying geology during base-flow conditions. 相似文献
2.
Richard H. Shertzer David W. Hall Scott A. Steffy Rodney A. Kime 《Journal of the American Water Resources Association》1998,34(1):13-26
ABSTRACT: Spatial and temporal variability in rainfall concentrations of nutrients, major ions, and herbicides was monitored at 7 locations in or near the Conodoguinet Creek watershed in south-central Pennsylvania from 1991.1993. Results were used to (1) compare precipitation quality in forested, agricultural and urban areas, and (2) assess the practicality of using volunteer citizen monitoring in such a study. As indicated in previous studies, sulfate and nitrogen concentrations in precipitation were linked to sample pH. Concentrations of major ions in precipitation appeared to relate more to regional influences rather than local influences. However, concentrations of herbicides in precipitation may have been influenced by both regional and local use which caused compounds like atrazine, deethylatrazine, propazine, simazine, metolachior, alachlor, ametryn, and prometon to be present in detectable concentrations in rainfall. Seasonality was evident in nitrogen, sulfate, pH, and herbicide data and was suggested in calcium, iron, manganese, magnesium, orthophosphate, and chloride data. Agricultural weed control activities were probably responsible for the seasonal pattern in pesticide data which peaked in May and June. Tropical storm Danielle may have caused the apparent seasonal patterns for the other nine parameters. This storm did not follow the typical west to east movement pattern and consequently produced rainfall of relative high quality. A variety of quality assurance checks indicated that trained volunteer citizen monitors were successful participants in this intensive and extensive scientific study, collecting good quality samples in a timely manner. Without this kind of volunteer help, it is extremely difficult to complete studies that require sampling in response to natural events such as rainfall. 相似文献
3.
Trudy Steidl Pulley Del Wayne R. Nimmo John D. Tessari 《Journal of the American Water Resources Association》1998,34(5):1087-1098
ABSTRACT: Wilson's Creek has an extensive history of toxicity from both point and nonpoint sources. Seven-day chronic daphnid (Ceriodaphnia dubia) bioassays identified one toxic site in the Wilson's Creek watershed. Procedures for the characterization phase of a Toxicity Identification Evaluation (TIE) were modified for chronic assessment and performed on four water samples from the toxic site. The characterization involved chemical/physical alterations of samples, combined with bioassays, to help in identification of the class(es) of toxicants; followed by chemical analyses. To help understand the additivity of mixtures, toxic units were derived. Successive samples contained concentrations of copper, cadmium, nickel and zinc that literature values describe as being chronically toxic to daphnids. Summed chronic toxic units for these values greatly exceeded ambient toxic units, and more than accounted for observed toxicity. Substantial fluctuations in water quality occurred over the five sampling periods of the characterization studies and a Test of Methods, June through August, 1991. This variability illustrates the difficulty in detecting and documenting nonpoint sources of pollution. Tests using living organisms, in conjunction with toxicity identification methods, on samples taken over time appear to be appropriate for detecting acute and chronic toxicity in areas impacted by intermittent point and nonpoint-source toxicity. 相似文献
4.
Robert L. Parsons James W. Pease Darrell J. Bosch 《Journal of the American Water Resources Association》1995,31(6):1079-1087
ABSTRACT: EPIC, a soil erosion/plant growth simulation model, is used to simulate nitrogen losses for 120 randomly selected and previously surveyed cropland sites. Simulated nitrogen losses occur through volatilization, surface water and soil runoff, subsurface lateral flow, and leaching. Physical and crop management variables explain a moderate but significant proportion of the variation in nitrogen losses. Site slope and tillage have offsetting effects on surface and ground water losses. Nitrogen applications in excess of agronomic recommendations and manure obtained off the farm and applied to the sites are significant contributors to nitrogen losses. Farm characteristics such as production of confined livestock, total manure nitrogen available, and farm income per cropland acre explain a relatively large portion of the variability in manure nitrogen applied to survey sites. The results help to identify farm characteristics that can be used to target nutrient management programs. Simulation modeling provides a useful tool for investigating variables which contribute to agricultural nitrogen losses. 相似文献
5.
Raymond A. Ferrara Andrew Hildick-Smith 《Journal of the American Water Resources Association》1982,18(6):975-981
ABSTRACT: Storm water detention basins have historically been employed for quantity (i.e., flooding) control only. However, recently it has been suggested that these basins may also provide a practical means of storm water quality control. This paper presents the formulation of a mathematical modeling approach which may be used by professionals to simultaneously design detention basins for the dual purpose of storm water quantity and quality control. Model simulations demonstrate that for a given basin, pollutant removal increases as storm frequency increases. The importance of particle size distribution and settling velocity for net pollutant removal is illustrated, The design procedure is demonstrated, and pollutant loading diagrams for estimating pollutant removal as a function of storm size are developed. 相似文献
6.
Fred J. Brenner James J. Mondok 《Journal of the American Water Resources Association》1995,31(6):1101-1112
ABSTRACT: A 155,947 ha portion of the Shenango River watershed in western Pennsylvania was evaluated as to the potential impact of agriculture drainage on water quality. Approximately a third of the area is being used as either cropland or pasture with approximately an equal percentage in forest lands. Eleven subwatersheds were evaluated as to their potential for nonpoint source pollution according to the criteria established by the Pennsylvania Department of Environmental Resources for the Chesapeake Bay Pollution Abatement Program. The individual components and overall rating for each subwatershed were then evaluated as to their correlation with four water quality variables based on 104 samples collected at 26 sampling stations throughout the watershed. There was a significant correlation between the overall rating factor for each subwatershed and each of the four water quality variables. In general, the watershed delivery factor, animal nutrient factor, and management factors were correlated with fecal coliform and phosphorus in the receiving streams, whereas the ground water delivery factor appeared to be more important in determining nitrate concentrations in these streams. These results indicate that manure and nutrient management, along with the exclusion of livestock from streams and the enhancement and/or replacement of riparian wetlands, are important approaches in reducing agricultural impacts in fresh water ecosystems. 相似文献
7.
ABSTRACT: Application of fertilizer can degrade quality of runoff, particularly during the first post-application, runoff-producing storm. This experiment assessed and compared runoff quality impacts of organic and inorganic fertilizer application for a single simulated storm occurring seven days following application. The organic fertilizers used were poultry (Gallus gallus domesticus) litter, poultry manure, and swine (Sus scrofa domesticus) manure. All fertilizers were applied at an application rate of 217.6 kg N/ha. Simulated rainfall was applied at 50 mm/h for an average duration of 0.8 h. Runoff samples were collected, composited, and analyzed for nitrate N (NO3-N), ammonia N (NH3-N), total Kjeldahl N (TKN), ortho-P (PO4-P), total P (TP), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliforms (FC), and fecal streptococci (FS). Application of the fertilizers did not alter the hydrologic characteristics of the receiving plots relative to the control plots. Concentrations of fertilizer constituents were almost always greater from treated than from control plots and were usually much greater. Flow-weighted mean concentrations of NH3-N, PO4-P, and TP were highest for the inorganic fertilizer treatment (42.0, 26.6, and 27.9 mg/L, respectively). Runoff COD and TSS concentrations were greatest for the poultry litter treatment. Concentrations of FC and FS were greater for fertilized than for control plots with no differences among fertilized plots, but FC concentrations for all treatments were in excess of Arkansas' primary and secondary contact standards. Mass losses of fertilizer constituents were low (≤ 3 kg/ha) and were small proportions (≤ 3 percent) of amounts applied. 相似文献
8.
R. A. Wagner T S. Tisdale J. Zhang 《Journal of the American Water Resources Association》1996,32(1):57-73
ABSTRACT: A modeling framework was developed to determine phosphorus loadings to Lake Okeechobee from watersheds located north of the lake. This framework consists of the land-based model CREAMS-WT, the in-stream transport model QUAL2E, and an interface procedure to format the land-based model output for use by the in-stream model. QUAL2E hydraulics and water quality routines were modified to account for flow routing and phosphorus retention in both wetlands and stream channels. Phosphorus loadings obtained from previous applications of CREAMS-WT were used by QUAL2E, and calibration and verification showed that QUAL2E accurately simulated seasonal and annual phosphorus loadings from a watershed. Sensitivity and uncertainty analyses indicated that the accuracy of monthly loadings can be improved by using better estimates of in-stream phosphorus decay rates, ground water phosphorus concentrations, and runoff phosphorus concentrations as input to QUAL2E. 相似文献
9.
B. G. Wernick K E. Cook H. Schreier 《Journal of the American Water Resources Association》1998,34(3):639-650
ABSTRACT: Agricultural and residential activities are key non-point sources of nitrogen pollution in urban-rural fringe areas. A GIS-based watershed approach was used to compare land use indicators (septic system and animal unit densities), to streamwater nitrate-N in the Salmon River near Vancouver, B.C., Canada. The density of septic systems was used as an indicator of residential development while animal unit density was used as an indicator of the intensity of agricultural activity. Nitrate-nitrogen (nitrate-N) concentrations as high as 7.1 mg·L?1 were found in the mid-portion of the watershed during the summer months, when streamflow is low and groundwater comprises a large proportion of water in the stream. The major aquifer supplying water to the midsection of the watershed is contaminated with nitrate-N. A comparison of the relationships between septic system and animal unit density and nitrate-N in the upstream to downstream direction provided evidence that both residential and agricultural activities contribute to elevated nitrate-N in the Salmon River mainstem. In contrast, only septic system density corresponded to the pattern of streamwater nitrate-N in Coghlan Creek, the main tributary to the Salmon River. 相似文献
10.
ABSTRACT: While the quality of rivers has received much attention, the degradation of small streams in upland areas of watersheds has only recently been recognized as a major problem. A major cause of the problem is increases in nonpoint source pollution that accompany urban expansion. A case study is used to examine the potential for storm water detention as a means of controlling water quality in streams of small watersheds. The storm water management basin, which is frequently used to control increases in discharge rates, can also be used to reduce the level of pollutants in inflow to receiving streams. Data collected on a 148-acre site in Maryland shows that a detention basin can trap as much as 98 percent of the pollutant in the inflow. For the 11 water quality parameters, most showed reductions of at least 60 percent, depending on storm characteristics. 相似文献
11.
D. R. Edwards T C. Daniel O. Marbun 《Journal of the American Water Resources Association》1992,28(3):487-494
ABSTRACT: Confined production of poultry results in significant volumes of waste material which are typically disposed of by land application. Concerns over the potential environmental impacts of poultry waste disposal have resulted in ongoing efforts to develop management practices which maintain high quality of water downstream of disposal areas. The timing of application to minimize waste constituent losses is a management practice with the potential to ensure high quality of streams, rivers, and lakes downstream of receiving areas. This paper describes the development and application of a method to identify which time of year is best, from the standpoint of surface water quality, for land application of poultry waste. The procedure consists of using a mathematical simulation model to estimate average nitrogen and phosphorus losses resulting from different application timings, and then identifying the timings which minimize losses of these nutrients. The procedure was applied to three locations in Arkansas, and three different criteria for optimality of application timing were investigated. One criterion was oriented strictly to water quality, one was oriented only to crop production, and the last was a combination. The criteria resulted in different windows of time being identified as optimal. Optimal windows also varied with location of the receiving area. The results indicate that it is possible to land-apply poultry waste at times which both minimize nutrient losses and maximize crop yield. 相似文献
12.
Richard H. McCuen Darryl E. Cook Robert L. Powell 《Journal of the American Water Resources Association》1980,16(1):79-85
ABSTRACT: Recent regulations require impact statements for major water development projects, including reservoirs that will be used for water supply, recreation, and pollution control. A water quantity/quality model was developed and used for making water quality projections of a proposed reservoir in Montgomery County, Maryland. The study area is uncommon in that there is an extensive water quality data base. The results indicate that land use changes will have a significant effect on water quality and that the proposed reservoir will improve the quality of the surface waters downstream from the reservoir. A major effect of land use changes is the increase in the variability of water quality. 相似文献
13.
Vassilios A. Tsihrintzis Rizwan Hamid 《Journal of the American Water Resources Association》1997,33(1):163-176
ABSTRACT: Runoff depth and pollutant loading (Biological Oxygen Demand [BOD5], Total Suspended Solids [TSS], Total Kjeldahl Nitrogen [TKN] and lead [Pb]) computations of urban stormwater runoff from four small sites (i.e., 14.7–58.3 ac) in South Florida were performed using the Soil Conservation Service (SCS) hydrology method and empirical equations developed by the U.S. Environmental Protection Agency (EPA). Each site had different predominant land uses (i.e., low density residential, high density residential, highway and commercial). Quantity and quality data from 95 storm events at these sites were measured by the U.S. Geological Survey (USGS), and used for calibration of the methodology to derive appropriate input parameters. Calibrated input parameters were developed for each land use to test the applicability of the methodology in small sub-tropical urban watersheds, and to provide hydrologists with a way to select appropriate parameter values for planning studies. A total of 16 independent rainfall events were used for verification of the methodology. Comparisons of predicted versus measured data for both hydrographs and pollutant loadings were performed. 相似文献
14.
ABSTRACT: The development of a nondegradation policy for high quality waters is a complex and often controversial process. This paper discusses the development of a nondegradation policy for two components of the National Wild and Scenic Rivers System. Water quality in these reaches of the Delaware River is threatened by rapid growth and development and the cumulative impacts from numerous wastewater discharges and nonpoint sources of pollution. The Delaware River Basin Commission, with assistance from its member states and the National Park Service, conducted a highly public, six-year planning process to develop a nondegradation policy that protected existing water quality without impinging upon local and state economic development objectives. The resulting non-degradation policy includes such features as numeric definitions of existing water quality and measurable change; stringent point source requirements; nonpoint source requirements including watershed planning requirements; and other water quality management policies. 相似文献
15.
D. E. Barb J. F. Cruise X. Mo 《Journal of the American Water Resources Association》1996,32(3):511-519
ABSTRACT: A model for urban stormwater quality was developed in this study. The basis for the model is the process by which pollutants build up on the watershed surface. For the wet climate of the study site, it was assumed that there exists an interval of time over which the pollutant buildup equals the pollutant washoff (no accumulation of pollutant). The buildup model was represented by a linear function of the antecedent dry time. The buildup function was then linked with a pollutant washoff model represented by a power function of the storm runoff volume. Various time intervals for no net accumulation were tested to calibrate the model. The model was calibrated to observed data for two small urban basins in Baton Rouge, Louisiana, and model results were used to analyze the behavior of phosphorus concentrations in storm runoff from these basins over a long period of time. 相似文献
16.
Robert A. Hainly Joan M. Kahn 《Journal of the American Water Resources Association》1996,32(5):965-984
ABSTRACT: Median concentrations and instantaneous yields of alachlor, metolachlor, atrazine, cyanazine, and simazine were generally highest at sites in the Lower Susquehanna River Basin and in agricultural subbasins. Instantaneous herbicide yields are related to land use, hydrogeologic setting, streamflow yield, and agricultural row cropping practices. The significance of these relations may be affected by the interdependence of the factors. The percentage of basin area planted in corn is the most influential factor in the prediction of herbicide yield. Instantaneous yields of all five herbicides measured in June 1994 related poorly to averaged 1990–94 herbicide use. Annually averaged herbicide-use data are too general to use as a predictor for short-term herbicide yields. An evaluation of factors affecting herbicide yields could be refined with more-current land use and land cover information and a more accurate estimate of the percentage of basin area planted in corn. Factors related to herbicide yields can be used to predict herbicide yields in other basins within the Chesapeake Bay watershed and to develop an estimate of herbicide loads to Chesapeake Bay. 相似文献
17.
Douglas A. Haith Leslie L. Shoemaker 《Journal of the American Water Resources Association》1987,23(3):471-478
ABSTRACT: Loading functions are proposed as a general model for estimating monthly nitrogen and phosphorus fluxes in stream flow. The functions have a simple mathematical structure, describe a wide range of rural and urban nonpoint sources, and couple surface runoff and ground water discharge. Rural runoff loads are computed from daily runoff and erosion and monthly sediment yield calculations. Urban runoff loads are based on daily nutrient accumulation rates and exponential wash off functions. Ground water discharge is determined by lumped parameter unsaturated and saturated zone soil moisture balances. Default values for model chemical parameters were estimated from literature values. Validation studies over a three-year period for an 850 km2 watershed showed that the loading functions explained at least 90 percent of the observed monthly variation in dissolved and total nitrogen and phosphorus fluxes in stream flow. Errors in model predictions of mean monthly fluxes were: dissolved phosphorus - 4 percent; total phosphorus - 2 percent; dissolved nitrogen - 18 percent; and total nitrogen - 28 percent. These results were obtained without model calibration. 相似文献
18.
L. Donald Duke Molly M. Kihara 《Journal of the American Water Resources Association》1998,34(3):661-676
ABSTRACT: Nonstorm water discharges to municipal separate storm sewer systems (MS4s) are notable for spatial and temporal variability in volume, pollutant type, pollutant concentration, and activity of origin. The objective of this paper was to determine whether current technical knowledge and existing U.S. policy support an improved regulatory approach. The proposed policy would use type of discharge as a regulatory basis, merging the concepts of allowability of de minimis discharges and type-based statewide consistent rules. Specific research objectives were to comprehensively identify discharge types, characterize their prevalence in California, analyze relevant local and regional regulatory guidelines, and systematically evaluate opinions of experts about potential water quality impacts. Results demonstrate nonstorm water discharges were widespread in at least one sector, industrial facilities subject to a state permit; one discharge for every four facilities was reported in 1995, even though the permit explicitly prohibits such discharges. Clear consensus exists for minimal water quality concern for some discharge types when considering both municipal guidelines and experts’ opinions. In particular, condensate from a wide range of equipment and discharges from fire fighting equipment testing were found to be of low concern. Discharge types with consensus high concern were largely limited to discharges prohibited under other regulations, such as wastewater and hazardous waste management controls. Some discharge types where no consensus was identified, such as landscape irrigation, nevertheless generated concern for water quality impacts and appear to be relatively widespread. Available information supports technical feasibility of the proposed policy because at least some discharge types show strong consensus for de minimis impacts among regulatory guidelines and opinions of technical experts. 相似文献
19.
ABSTRACT: Forest management activities may substantially alter the quality of water draining forests, and are regulated as nonpoint sources of pollution. Important impacts have been documented, in some cases, for undesirable changes in stream temperature and concentrations of dissolved oxygen, nitrate-N, and suspended sediments. We present a comprehensive summary of North American studies that have examined the impacts of forest practices on each of these parameters of water quality. In most cases, retention of forested buffer strips along streams prevents unacceptable increases in stream temperatures. Current practices do not typically involve addition of large quantities of fine organic material to streams, and depletion of streamwater oxygen is not a problem; however, sedimentation of gravel streambeds may reduce oxygen diffusion into spawning beds in some cases. Concentrations of nitrate-N typically increase substantially after forest harvesting and fertilization, but only a few cases have resulted in concentrations approaching the drinking-water standard of 10 mg of nitrate-NIL. Road construction and harvesting increase suspended sediment concentrations in streamwater, with highly variable results among regions in North America. The use of best management practices usually prevents unacceptable increases in sediment concentrations, but exceptionally large responses (especially in relation to intense storms) are not unusual. 相似文献
20.
Kenneth H. Reckhow Jonathan B. Butcher Carlos M. Marin 《Journal of the American Water Resources Association》1985,21(2):185-195
Models for pollutant runoff can be useful in water quality management planning if appropriately structured for the problem at hand. Accordingly, a “top-down” approach is proposed for the examination of extant pollutant runoff models. The approach consists of the identification of objectives and attributes that reflect the needs of planners and decision makers when these models are used for water quality management planning. Ideally, the attributes should concern the effect of model information on improved decision making and the cost of model application. Practical difficulties with the first attribute necessitates substitution of surrogate attributes reflecting model appropriateness, resolution, and uncertainty. Common pollutant runoff models, in particular export coefficients and hydrology-driven simulation models, are found to have serious weaknesses on some of the attribute scales. The “top-down” approach leads to a set of desirable pollutant runoff model attributes; alternate modeling techniques are thus examined in order to identify promising future directions for model development. The focus of this examination is phosphorus, due to its importance in the eutrophication of surface waters. Models for both sediment-attached and dissolved phosphorus are considered. Among the conclusions is the belief that the partial contributing area concept can yield an effective yet simple simulation despite the variable and complex nature of runoff. 相似文献