首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ABSTRACT: The growth of aquatic plants in open‐channels has many adverse environmental effects including, but not limited to, impeding the transport of water, hindering navigation, increasing flood elevations, increasing sediment deposition, and degrading water quality. Existing control strategies include physical removal and chemical treatment. Physical removal is only a temporary solution and chemical treatment is unacceptable if the water will be consumed by humans. The hydrodynamic method can wash out the encroached aquatic plants by keeping flow velocity higher than the critical velocity required to bend and rupture (lodge) their stems. This approach is a promising, physically‐based, efficient, economic, and permanent solution for this problem. However, the success of this approach requires the accurate prediction of the critical lodging velocity. This paper presents an analytic study of the lodging velocity for the submerged portion of aquatic plants of narrow leaved emergent stems that are wider at bottom than the top. Based on the principles of engineering materials and the theory of turbulent flow, a semi‐empirical formula is derived for the prediction of the critical lodging velocity. It indicates that the lodging of aquatic plants is controlled not only by flow conditions but also the geometric and mechanical characteristics of the plants. These analytic results provide a satisfactory explanation of the lodging phenomena observed in the field and are verified by the available experimental data.  相似文献   

2.
ABSTRACT: A meandering stream channel was simulated in the Hydraulics Laboratory at Colorado State University and a series of tests was conducted using four types of vegetation to evaluate the potential effects of vegetation on sediment deposition and retention in a stream channel. The data collected included average flow velocity, flow depth, length of vegetation, density of vegetation, cross-sectional area of the vegetative stem, wetted perimeter of the vegetative stem, and injection and flushing time. The findings indicated that the vegetation could retain from 30 to 70 percent of the deposited sediments. The ability of vegetation to entrap and retain sediment is related to the length and cross-sectional area of the vegetation. The variables describing the flow and the vegetative properties were combined to form a predictive parameter, the sedimentation factor (Sd) that can be compared with the amount of sediment entrapped by vegetation in a stream system. A relation was developed correlating vegetation length to sediment retention after flushing for flexibility and rigid vegetation.  相似文献   

3.
Field studies were conducted on black willow (Salix nigra) cuttings planted for riparian zone restoration along Harland Creek, Twentymile Creek, and Little Topashaw Creek in Mississippi, USA. Planted cuttings were 2.5 to 3 m long and had base diameters of 2.5 to 7.5 cm. Streams were unstable, deeply incised sand bed channels with eroding banks 1 to 6 m high. Soil texture, redox potential (Eh), depth to water table, and willow survival were monitored for two to three years after planting. While many factors influence willow cuttings at restoration sites, soil texture and moisture are key to plant success. In these studies, plant survival and growth were best for cuttings planted in soils with less than 40 percent silt‐clay content and a water table 0.5 m to 1.0 m below the soil surface during the growing season. These conditions produced soil Eh greater than approximately 200 mV and were most often observed 1 to 2 m higher than the bank toe. These findings suggest criteria useful for preplanting site evaluations. Additional evidence suggests that preplanting soaking enhances performance of black willow cuttings. Additional factors (channel erosion, herbivory by beaver, and competition from exotics) may control performance over periods longer than two to three years.  相似文献   

4.
Abstract: In this article, we describe a method for predicting floodplain locations and potential lateral channel migration across 82,900 km (491 km2 by bankfull area) of streams in the Columbia River basin. Predictions are based on channel confinement, channel slope, bankfull width, and bankfull depth derived from digital elevation and precipitation data. Half of the 367 km2 (47,900 km by length) of low‐gradient channels (≤ 4% channel slope) were classified as floodplain channels with a high likelihood of lateral channel migration (182 km2, 50%). Classification agreement between modeled and field‐measured floodplain confinement was 85% (κ = 0.46, p < 0.001) with the largest source of error being the misclassification of unconfined channels as confined (55% omission error). Classification agreement between predicted channel migration and lateral migration determined from aerial photographs was 76% (κ = 0.53, p < 0.001) with the largest source of error being the misclassification of laterally migrating channels as non‐migrating (35% omission error). On average, more salmon populations were associated with laterally migrating channels and floodplains than with confined or nonmigrating channels. These data are useful for many river basin planning applications, including identification of land use impacts to floodplain habitats and locations with restoration potential for listed salmonids or other species of concern.  相似文献   

5.
ABSTRACT: A series of flume tests were conducted to determine the flow resistance of angular shaped riprap in steep channels. Flow resistance was expressed in terms of the Darcy-Weisbach friction factor and the Manning's roughness coefficient. Prototype channels of 4 ft. (1.2 m) and 12 ft. (3.7 m) in width were constructed at slopes ranging from 0.01 to 0.20. The channel beds were comprised of angular riprap of median diameters of 1, 2, 4, 5, and 6 inches (2.59, 5.59, 10.41, 12.95, and 15.75 cms). The Darcy-Weisbach and Manning's coefficients were determined for each test condition prior to bed failure. The resulting Darcy-Weisbach coefficients were related to the channel energy gradient and the bed relative submergence for highly turbulent flow. Also, Manning's roughness coefficients were related to the product of the median stone diameter and energy gradient. Because of the angular shape of the riprap and the wedging and/or packing of the bed materials, the resistance to flow was found to exceed the flow resistance values predicted by previous studies. Expressions were presented for estimating the resistance to flow for angular riprap in steep channels.  相似文献   

6.
Channel dimensions (width and depth) at varying flows influence a host of instream ecological processes, as well as habitat and biotic features; they are a major consideration in stream habitat restoration and instream flow assessments. Models of widths and depths are often used to assess climate change vulnerability, develop endangered species recovery plans, and model water quality. However, development and application of such models require specific skillsets and resources. To facilitate acquisition of such estimates, we created a dataset of modeled channel dimensions for perennial stream segments across the conterminous United States. We used random forest models to predict wetted width, thalweg depth, bankfull width, and bankfull depth from several thousand field measurements of the National Rivers and Streams Assessment. Observed channel widths varied from <5 to >2000 m and depths varied from <2 to >125 m. Metrics of watershed area, runoff, slope, land use, and more were used as model predictors. The models had high pseudo R2 values (0.70–0.91) and median absolute errors within ±6% to ±21% of the interquartile range of measured values across 10 stream orders. Predicted channel dimensions can be joined to 1.1 million stream segments of the 1:100 K resolution National Hydrography Dataset Plus (version 2.1). These predictions, combined with a rapidly growing body of nationally available data, will further enhance our ability to study and protect aquatic resources.  相似文献   

7.
ABSTRACT: The delineation of high flood hazard zones within a flood plain is usually independent of the hydraulic parameters that constitute a life threatening situation. In order to define human instability in high hazard areas, a study was conducted to identify when an adult human could not stand or maneuver in a simulated flood flow. An analysis was performed on a rigid body monolith resulting in a toppling hazard envelope curve (velocity vs. depth). A 120 lb monolith was then constructed and tested to relate the actual flow velocity and depth at toppling to theory. A series of human subjects (90–201 Ibs) were placed in a recirculating flume and tested to determine the velocity and depth of flow that caused their instability. The test results determined that the product number, which is the product of the velocity and depth at toppling of the monolith, closely compared to the theoretical envelope curve. The monolith results represent the lower limit of human stability. Also, the product number appeared to be a predictor of human instability in flood flow. A relationship was developed to estimate the product number at which a human subject becomes unstable as a function of the height and weight of the subject.  相似文献   

8.
Regular fuel reduction burning is an important management strategy for reducing the scale and intensity of wildfires in south-west Australian native forests, but the long term effects of this on tree and stand growth are not well understood. Five fire treatments, including application of frequent and infrequent low intensity burns, and 25 years of fire exclusion, were applied to small (4 ha) experimental plots in a low rainfall mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest to investigate the effects of these treatments on tree stem diameter growth, stand basal area increment and tree mortality. Mean tree stem growth measured over 20 years was lowest in the long unburnt treatment compared with the burn treatments, although surface soil nutrient levels were generally higher in the unburnt treatment, suggesting these sites may be moisture limited. There was no clear pattern of the effects of the burn treatments, including the number of fires and the interval between fires, on tree stem growth, stand basal area increment, crown health or mortality. These factors were strongly influenced by dominance condition, with dominant and co-dominant trees growing most and suppressed trees growing least and experiencing the highest mortality levels. There was no evidence of deteriorating tree or stand health that could be attributed to either regular low intensity burning or to a long period (25 years) of fire exclusion.  相似文献   

9.
Brazil produces approximately 242,000 t of waste per day, 76% of it being dumped outdoors and only 0.9% recycled, including composting, which is an alternative still little known in Brazil. In search of a better destination for residues produced by domestic activities, composting stands as a feasible alternative. Organic compost from waste may be used for various purposes, among which are soil recovery, commercial production, pastures, lawns and reforestry and agriculture. However, the quality of the compost determines the growth and the development of plants. The effect of compost made from urban waste on corn plant (Zea mays L.) growth was investigated. Two types of compost were used: the selected compost (SC), produced from organic waste selectively collected; and the non-selected compost (NSC), taken from a 15-year-old cell from the Canabrava land-fill, located in Salvador, Bahia, Brazil (altitude 51 m, 12°22′–13°08′S, 38°08′–38°47′W). Corn was seeded in polyethylene pots, with soil-compost mixing substrate in the proportion of 0, 15, 30, 45 and 60 t ha−1 equivalent doses. Chemical analyses of the compost and growth properties of the plant like chlorophyll content; height and stem diameter; aerial and radicular dry biomasses, were used to evaluate compost quality. Plants cultivated with SC presented a superior gain, being of 52.5% in stem diameter, 71.1 and 81.2% in root and stem biomasses, respectively. Chlorophyl content alterations were observed in plants from treatments using 30 t compost ha−1 dose onwards. Conventional and multivariate statistical methods were used to evaluate these results. The beneficial action of organic compost in plant growth was confirmed with this research.  相似文献   

10.
ABSTRACT: This study investigates the use of a two‐dimensional hydrodynamic model (River2D) for an assessment of the effects of instream large woody debris and rock groyne habitat structures. The bathymetry of a study reach (a side channel of the Chilliwack River located in southwestern British Columbia) was surveyed after the installation of 11 instream restoration structures. A digital elevation model was developed and used with a hydrodynamic model to predict local velocity, depth, scour, and habitat characteristics. The channel was resurveyed after the fall high‐flow season during which a bankfull event occurred. Pre‐flood and post‐flood bathymetry pool distributions were compared. Measured scour was compared to predicted shear and pre‐flood and post‐flood fish habitat indices for coho salmon (Oncorhynchus kisutch) and steelhead trout (O. mykiss) were compared. Two‐dimensional flow model velocity and depth predictions compare favorably to measured field values with mean standard errors of 24 percent and 6 percent, respectively, while areas of predicted high shear coincide with the newly formed pool locations. At high flows, the fish habitat index used (weighted usable area) increased by 150 percent to 210 percent. The application of the hydrodynamic model indicated a net habitat benefit from the restoration activities and provides a means of assessing and optimizing planned works.  相似文献   

11.
Effective management of tidal wetlands requires periodic data on the boundaries, extent, and condition of the wetlands. In many states, wetlands are defined wholly, or in combination with other criteria, by the presence of particular emergent halophytic plants. Many important characteristics of the wetlands ecosystem are related directly to the production of emergent plant material or may be inferred from knowledge of the distribution of emergent plant species. Remote-sensing techniques have been applied to mapping of the distribution of wetland vegetation but not to quantitative evaluation of the condition of that vegetation.Recent research in the tidal wetlands of Delaware and elsewhere has shown that spectral canopy reflectance properties can be quantitatively related to the emergent green biomass ofSpartina alterniflora (salt marsh cord grass) throughout the peak growing season (April through September, in Delaware). Periodic measurements of this parameter could be applied to calculations of net aerial primary productivity for large areas ofS. alterniflora marsh in which conventional harvest techniques may be prohibitively time consuming. The method is species specific and, therefore, requires accurate discrimination ofS. alterniflora from other vegetation types. Observed seasonal changes in species spectral signatures are shown to have potential for improving multispectral categorization of tidal wetland vegetation types.  相似文献   

12.
ABSTRACT: The at-a-station hydraulic geometry of stream channels can serve as a predictor of alluvial stream channel behavior. This geometry is the empirical relations describing changes in water surface width, mean depth, and mean velocity with changing discharge. The exponent values are correlated with channel morphology and behavior such as scour and fill, flow resistance, bank resistance, and competence. Channel behavior and morphology are apparently related, but some causes for effects are uncertain. Several studies, using empirical and theoretical bases, are reviewed here to illustrate the relation between hydraulic geometry and channel behavior, but the relations are not always consistent. Hydraulic geometry variables are easy to measure and readily available, but they do not always reflect what may be more important ones such as turbulence, the velocity distribution profile, and distribution and cohesion of sediment particles. This paper illustrates some of these problems, provides some solutions, and addresses need for more work to better predict stream channel behavior from hydraulic geometry  相似文献   

13.
ABSTRACT: Habitat diversity and invertebrate drift were studied in a group of natural and channelized tributaries of the upper Des Moines River during 1974 and 1975. Channelized streams in this region had lower sinuosity index values than natural channel segments. There were significant (P=O.05) positive correlations between channel sinuosity and the variability of water depth and current velocity. Invertebrate drift density, expressed as biomass and total numbers, also was correlated with channel sinuosity. Channelization has decreased habitat variability and invertebrate drift density in streams of the upper Des Moines River Basin and probably has reduced the quantity of water stored in streams during periods of low flow.  相似文献   

14.
15.
Effects of channel incision on base flow stream habitats and fishes   总被引:2,自引:0,他引:2  
Channel incision is a widespread phenomenon that results in stream and riparian habitat degradation. Fishes and physical habitat variables were sampled at base flow from three incised stream channels and one reference stream in northwest Mississippi, USA, to quantify incision effects on fish habitat and provide a basis for habitat rehabilitation planning and design. Incised channels were sampled in spring and autumn; the reference channel was sampled only in the autumn. Incised channel habitat quality was inferior to the reference channel despite the presence of structures designed to restore channel stability. Incised channels had physical habitat diversity levels similar to a nonincised reference channel, but contained fewer types of habitat. At base flow, incised channels were dominated by shallow, sandy habitats, moderate to high mean local Froude numbers, and had relatively little organic debris in their beds. In contrast, the reference stream had greater mean water depth, contained more woody debris, and provided more deep pool habitat. Fish assemblages in incised channels were composed of smaller fishes representing fewer species relative to the reference site. Fish species richness was directly proportional to the mean local Froude number, an indicator of the availability of pool habitat.  相似文献   

16.
Encroachment of riparian vegetation into regulated river channels exerts control over fluvial processes, channel morphology, and aquatic ecology. Reducing encroachment of terrestrial vegetation is an oft-cited objective of environmental flow recommendations, but there has been no systematic assessment of the evidence for and against the widely-accepted cause-and-effect mechanisms involved. We systematically reviewed the literature to test whether environmental flows can reduce the encroachment of terrestrial vegetation into river channels. We quantified the level of support for five explicit cause-effect hypotheses drawn from a conceptual model of the effects of flow on vegetation. We found that greater inundation, variously expressed as changes in the area, depth, duration, frequency, seasonality, and volume of surface water, generally reduces riparian vegetation abundance in channels, but most studies did not investigate the specific mechanisms causing these changes. Those that did show that increased inundation results in increased mortality, but also increased germination. The evidence was insufficient to determine whether increased inundation decreases reproduction. Our results contribute to hydro-ecological understanding by using the published literature to test for general cause-effect relationships between flow regime and terrestrial vegetation encroachment. Reviews of this nature provide robust support for flow management, and are more defensible than expert judgement-based approaches. Overall, we predict that restoration of more natural flow regimes will reduce encroachment of terrestrial vegetation into regulated river channels, partly through increased mortality. Conversely, infrequent deliveries of environmental flows may actually increase germination and subsequent encroachment.  相似文献   

17.
ABSTRACT: We surveyed first‐to third‐order streams (channel widths from 1.4 to 10 m) in the southeastern slopes of the Cascade Range of Washington and found two distinct endpoints of riparian vegetation. Where the forest overstory is dominated by park‐like Ponderosa pine (Pinus ponderosa), channels are commonly bordered with a dense scrub‐shrub vegetation community. Where fire suppression and/or lack of active riparian zone management have resulted in dense encroachment of fir forests that create closed forest canopies over the channel, scrub‐shrub vegetation communities are virtually absent near the channel. Other factors being equal, distinct differences in channel morphology exist in streams flowing thru each riparian community. The scrub‐shrub channels have more box‐like cross‐sections, lower width‐to‐depth ratios, more pools, more undercut banks, more common sand‐dominated substrates, and similar amounts of woody debris (despite lower tree density). Temperature comparisons of forest and scrub‐shrub sections of two streams indicate that summer water temperatures are slightly lower in the scrub‐shrub streams. We surmise that these morphology and temperature effects are driven by differences in root density and canopy conditions that alter dynamic channel processes between each riparian community. We suspect that the scrub‐shrub community was more common in the landscape prior to the 20th century and may have been the dominant native riparian community for these stream types. We therefore suggest that managing these streams for dense riparian conifer does not mimic natural conditions, nor does it provide superior in‐stream habitat.  相似文献   

18.
Geomorphic change from extreme events in large managed rivers has implications for river management. A steady‐state, quasi‐three‐dimensional hydrodynamic model was applied to a 29‐km reach of the Missouri River using 2011 flood data. Model results for an extreme flow (500‐year recurrence interval [RI]) and an elevated managed flow (75‐year RI) were used to assess sediment mobility through examination of the spatial distribution of boundary or bed shear stress (τb) and longitudinal patterns of average τb, velocity, and kurtosis of τb. Kurtosis of τb was used as an indicator of planform channel complexity and can be applied to other river systems. From differences in longitudinal patterns of sediment mobility for the two flows we can infer: (1) under extreme flow, the channel behaves as a single‐thread channel controlled primarily by flow, which enhances the meander pattern; (2) under elevated managed flows, the channel behaves as multithread channel controlled by the interaction of flow with bed and channel topography, resulting in a more complex channel; and (3) for both flows, the model reach lacks a consistent pattern of deposition or erosion, which indicates migration of areas of erosion and deposition within the reach. Despite caveats and limitations, the analysis provides useful information about geomorphic change under extreme flow and potential implications for river management. Although a 500‐year RI is rare, extreme hydrologic events such as this are predicted to increase in frequency.  相似文献   

19.
ABSTRACT: While minimum variance theory appears to offer an explanation for the hydraulic behaviour and regularity among channel systems it is not entirely successful in predicting the regime of a channel system. In the case of the Namoi-Gwydir river system the hydraulic variables velocity, depth, width, slope, friction, and shear appear to govern the behaviour and, hence regime of the channels. The significance of sediment load in determining regime could not be assessed.  相似文献   

20.
This study was aimed at determining, under field conditions, early interactions between planted cypress seedlings and their associated shrubs in a mesic area of Andean Patagonia and, in a nursery, the effects of increasing light availability on cypress performance when soil water was not a limiting factor. The field experiment was performed in a former cypress–coihue mixed forest (42°02′S, 71°33′W), which was replaced in the 1970s by a plantation of radiata pine. In 2005, 800 cypress seedlings were planted under maqui shrubs in a clear-cut area of the pine stand. In 2007, two treatments were set: no-competition treatment ([NCT] i.e., the surrounding aboveground biomass was removed) and competition treatment ([CT] i.e., without disturbance). The nursery experiment (42°55′S, 71°21′W) consisted of two groups: “shade” (grown under shade cloth) and “sun” (grown at full sun) cypress seedlings. After one growing season, seedling survival and stem growth (in height and diameter) were determined at both sites. Furthermore, the growth rate of leaves, stems, and roots was determined in the nursery. In the field experiment, height growth and survival in NCT were significantly greater than in CT, and a competition process occurred between cypress and surrounding shrubs. In the nursery, sun plants grew more in diameter and increased root weight more than shade plants. Results also showed that in mesic areas of Patagonia, decreasing competition and increasing light levels produced stouter seedlings better adapted to support harsh environmental conditions. Therefore, the removal of protecting shrubs could be a good management practice to improve seedling establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号