首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: Several federal and state water resources agencies and NASA have recently completed an Applications Systems Verification and Transfer (ASVT) project on the operational applications of satellite snow cover observations. When satellite snow cover data were tested in both empirical seasonal runoff estimation and short term modeling approaches, a definite potential for reducing forecast error was evident. Three years of testing in California resulted in reduction of seasonal stream flow forecast error was evident. Three years of testing in California resulted in reduction of seasonal stream flow forecast error from 15 percent to 10 percent on three study basins; and modeling studies on the Boise River basin in Idaho indicated that satellite snow cover could be used to reduce short term forecast error by up to 9.6 percent (5 day forecast). Potential benefits from improved satellite snow cover based predictions across the 11 western states total 10 million dollars for hydropower and 28 million dollars for irrigation annually. The truly operational application of the new technology in the West, however, will only be possible when the turnaround time for all data is reduced to 72 hours, and the water management agencies can be assured of a continuing supply of operational snow cover data from space.  相似文献   

2.
The occurrence of rain and snow for New York City is examined in relation to atmospheric parameters at three levels for four first order weather bureau stations. An objective forecasting guide is developed using order statistic properties. Incorporating surface and upper level data, the guide is a highly accurate forecast tool.  相似文献   

3.
ABSTRACT: Monitoring snow melt rates in high elevation, high snowfall forest stands is difficult mechanically and often impossible due to winter inaccessibility. A method for continuous unattended measurements of melt rate is described. With individual lysimeter pans connected to a common collector, any reasonable number of pans can be installed at each site.  相似文献   

4.
ABSTRACT The runoff from a series of watersheds in the United States is examined to determine if there are distinct trends present. The data are examined for the period 1931-1960 and the results compared with those obtained for the period from the beginning of record to 1960. A larger sample of streams with records of various lengths is also utilized. The data used are annual, seasonal, and monthly values. The streams are grouped geographically to determine if regional patterns exist. The runoff increased on the majority of streams for the period 1931-1960, but for the period from the beginning of record to 1960 most streams exhibited a negative trend. When geographical distribution is considered, the streams located in the interior of the continent show greater similarity of trend than do those on the continental margins.  相似文献   

5.
ABSTRACT: The value of using climate indices such as ENSO or PDO in water resources predictions is dependent on understanding the local relationship between these indices and streamflow over time. This study identifies long term seasonal and spatial variations in the strength of El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) correlations with timing and magnitude of discharge in snowmelt streams in Oregon. ENSO is best correlated with variability in annual discharge, and PDO is best correlated with spring snowmelt timing and magnitude and timing of annual floods. Streams in the Cascades and Wallowa mountains show the strongest correlations, while the southernmost stream is not correlated with ENSO or PDO. ENSO correlations are weaker from 1920 to 1950 and vary significantly depending on whether Southern Oscillation Index (SOI) or Niño 3.4 is used. PDO correlations are strong from 1920 to 1950 and weak or insignificant other years. Although there are not consistent increasing or decreasing trends in annual discharge or spring snowmelt timing, there are significant increases in fractional winter runoff that are independent of precipitation, PDO, or ENSO and may indicate monotonic winter warming.  相似文献   

6.
ABSTRACT: The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2°C; a 15 percent increase for a warming of 4°C. A warming of 2° to 4°C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from ?39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. In this humid temperate climate, where precipitation is evenly distributed over the year, decreases in snow accumulation in the northern part of the basin and increases in evapotranspiration throughout the basin could change the timing of runoff and significantly reduce total annual water availability unless precipitation were to increase concurrently.  相似文献   

7.
Spatially disaggregated estimates of over 131 stream‐flow, ground water, and reservoir evaporation monthly time series in California have been created for 12 different climate warming scenarios for a 72‐year period. Such disaggregated hydrologic estimates of multiple hydrologic cycle components are important for impact and adaptation studies of California's water system. A statewide trend of increased winter and spring runoff and decreased summer runoff is identified. Without operations modeling, approximate changes in water availability are estimated for each scenario. Even most scenarios with increased precipitation result in less available water because of the current storage systems' inability to catch increased winter streamflow in compensation for reduced summer runoff. The water availability changes are then compared with estimated changes in urban and agricultural water uses in California between now and 2100. The methods used in this study are relatively simple, but the results are qualitatively consistent with other studies focusing on the hydrologies of single basins or surface water alone.  相似文献   

8.
ABSTRACT: Grazing can have a profound impact on infiltration and thus runoff and erosion. The objectives of this study were to quantify the effects of select grazing systems on rainfall and snowmelt induced runoff and sediment yield from sloped areas of the foothills fescue grasslands of Alberta, Canada. The effects of two grazing intensities (heavy and very heavy) for two durations (short duration and continuous throughout the growing season) were compared to an ungrazed control between June 1988 and April 1991. Runoff was measured using 1-rn2 runoff frames and collection bucket systems. Sediment yields were then determined on samples from the collected runoff. Snowmelt was the dominant source of runoff. Snowmelt runoff was higher from the heavily grazed areas than from the very heavily grazed areas, due to the higher standing vegetation which accumulated snow in the former areas. Sediment yields as a result of snowmelt were generally low in all areas. Only a few summer storms caused runoff. Runoff volumes and sediment yields from summer rainstorms were low, due to low rainfall and to generally dry antecedent soil moisture conditions. The greatest risk of summer runoff, and thus sediment yield, appears to occur in August.  相似文献   

9.
ABSTRACT: The projected increase in the concentration of CO2 and other greenhouse gases in the atmosphere is likely to result in a global temperature increase. This paper reports on the probable effects of a temperature increase and changes in transpiration on basin discharge in two different mountain snowmelt regions of the western United States. The hydrological effects of the climate changes are modeled with a relatively simple conceptual, semi-distributed snowmelt runoff model. Based on the model results, it may be concluded that increased air temperatures will result in a shift of snowmelt runoff to earlier in the snowmelt season. Furthermore, it is shown that it is very important to include the expected change in climate-related basin conditions resulting from the modeled temperature increase in the runoff simulation. The effect of adapting the model parameters to reflect the changed basin conditions resulted in a further shift of streamflow to April and an even more significant decrease of snowmelt runoff in June and July. If the air temperatures increase by approximately 5°C and precipitation and accumulated snow amounts remain about the same, runoff in April and May, averaged for the two basins, is expected to increase by 185 percent and 26 percent, respectively. The runoff in June and July will decrease by about 60 percent each month. Overall, the total seasonal runoff decreases by about 6 percent. If increased CO2 concentrations further change basin conditions by reducing transpiration by the maximum amounts reported in the literature, then, combined with the 5°C temperature increase, the April, May, June, and July changes would average +230 percent, +40 percent, ?55 percent, and ?45 percent, respectively. The total seasonal runoff change would be +11 percent.  相似文献   

10.
ABSTRACT: Runoff and sediment production was measured under simulated and natural rain from 1×5 m plots established on a cutover and burned mixed pine-hardwood site in the Georgia Piedmont. Trees on the study site were cut and removed without mechanical disturbance. Slash was removed, kiln dried and replaced on the slope, and burned prior to plot installation. Three slopes, two rainfall intensities, three rainfall simulations representing three soil moisture conditions, and two replicate plots were used. The experiment was repeated four times during the period July 1989-July 1990 to investigate the effects of temporal changes in surface conditions and particularly root mat and residual forest floor decemposition. Runoff and sediment production from natural rainfall events was also measured from these plots during the period February-October 1990. Results of all measurements indicate that runoff and sediment production were generally low because of the protection afforded by the residual forest floor following burning. However, temporary hydrophobic conditions caused by a dry organic layer produced relatively high runoff rates and high sediment for the first few minutes of runoff for some of the simulated rainfall applications.  相似文献   

11.
ABSTRACT: Few studies have addressed the natural pollution potential of pristine subalpine forested watersheds on a site-specific basis. Consequently, specific source and amounts of nutrient discharge to tributaries of the Tahoe Basin are difficult to identify. The sediment content and nitrate and ammonium levels in surface runoff from two soil types (Meeks and Umpa), four plot conditions (wooded natural and disturbed, open natural and disturbed), and three slopes (gentle, moderate, and steep) were studied using rainfall simulation that applied a 9 cm h1, 1-h event. A significant (P ≤ 0.005) two-way interaction between soil type and plot condition affected runoff nitrate concentration. Runoff from natural or disturbed open plots contained significantly (P = 0.05) greater nitrate than wooded plots. Peak concentrations of nitrate commonly occurred during early runoff, suggesting that peak nitrate discharge to Lake Tahoe tributaries can be expected during early runoff from snowmelt and summer precipitation events. The highest nitrate runoff concentration and 1-h cumulative loading from the 0.46 m2 plots were 6.7 mg L-1 (Umpa, open natural, 15–30 percent slope), and 0.7 mg (Umpa, open natural, ≥ 30 percent slope), respectively. Ammonium in surface runoff was generally below detection limits (≤ 0.05 μg L?1). No statistical relationship between runoff nitrate and sediment discharge was detected.  相似文献   

12.
ABSTRACT: The effects of potential climate change on mean annual runoff in the conterminous United States (U.S.) are examined using a simple water-balance model and output from two atmospheric general circulation models (GCMs). The two GCMs are from the Canadian Centre for Climate Prediction and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HAD). In general, the CCC GCM climate results in decreases in runoff for the conterminous U.S., and the HAD GCM climate produces increases in runoff. These estimated changes in runoff primarily are the result of estimated changes in precipitation. The changes in mean annual runoff, however, mostly are smaller than the decade-to-decade variability in GCM-based mean annual runoff and errors in GCM-based runoff. The differences in simulated runoff between the two GCMs, together with decade-to-decade variability and errors in GCM-based runoff, cause the estimates of changes in runoff to be uncertain and unreliable.  相似文献   

13.
ABSTRACT: Precipitation and resultant runoff were sampled for a series of storm events over the period of one year. The test site was the parking lot of a large suburban shopping mall in the Syracuse, New York, area. Both precipitation and runoff were tested for lead, zinc, copper, cadmium, and petroleum hydrocarbons: substantial amounts were detected in each. No correlation was found between precipitation contaminant concentration and the length of the antecedent dry period. A weak, but apparently inverse relationship was noticed between concentration and amount of precipitation. Poor correlations were obtained between runoff contaminant concentration and the antecedent dry period. The variability attributable to different precipitation volumes was removed by converting to a unit-area basis. The variability attributable to precipitation contaminant load was removed by subtraction. The resultant value, dryfall accumulation, then correlated well with the length of the antecedent dry period. Metal ions were found in both precipitation and runoff and were hypothesized to come from atmospheric fallout as a result of distant emissions and from very localized sources, primarily vehicle traffic on the parking facility. Petroleum residues were believed to be the sole result of automobile losses, since none could be detected in precipitation samples.  相似文献   

14.
ABSTRACT: The objective is to develop techniques to evaluate how changes in basic data networks can improve accuracy of water supply forecasts for mountainous areas. The approach used was to first quantify how additional data would improve our knowledge of winter precipitation, and second to estimate how this knowledge translates, quantitatively, into improvement in forecast accuracy. A software system called DATANET was developed to analyze each specific gage network alternative. This system sets up a fine mesh of grid points over the basin. The long-term winter mean precipitation at each grid point is estimated using a simple atmospheric model of the orographic precipitation process. The mean runoff at each grid point is computed from the long-term mean precipitation estimate. The basic runoff model is calibrated to produce the observed long-term runoff. The error analysis is accomplished by comparing the error in forecasts based on the best possible estimate of precipitation using all available data with the error in the forecasts based on the best possible estimate of winter precipitation using only the gaged data. Different data network configurations of gage sites can be compared in terms of forecast errors.  相似文献   

15.
ABSTRACT: As part of the National Assessment of Climate Change, the implications of future climate predictions derived from four global climate models (GCMs) were used to evaluate possible future changes to Pacific Northwest climate, the surface water response of the Columbia River basin, and the ability of the Columbia River reservoir system to meet regional water resources objectives. Two representative GCM simulations from the Hadley Centre (HC) and Max Planck Institute (MPI) were selected from a group of GCM simulations made available via the National Assessment for climate change. From these simulations, quasi-stationary, decadal mean temperature and precipitation changes were used to perturb historical records of precipitation and temperature data to create inferred conditions for 2025, 2045, and 2095. These perturbed records, which represent future climate in the experiments, were used to drive a macro-scale hydrology model of the Columbia River at 1/8 degree resolution. The altered streamflows simulated for each scenario were, in turn, used to drive a reservoir model, from which the ability of the system to meet water resources objectives was determined relative to a simulated hydrologic base case (current climate). Although the two GCM simulations showed somewhat different seasonal patterns for temperature change, in general the simulations show reasonably consistent basin average increases in temperature of about 1.8–2.1°C for 2025, and about 2.3–2.9°C for 2045. The HC simulations predict an annual average temperature increase of about 4.5°C for 2095. Changes in basin averaged winter precipitation range from -1 percent to + 20 percent for the HC and MPI scenarios, and summer precipitation is also variously affected. These changes in climate result in significant increases in winter runoff volumes due to increased winter precipitation and warmer winter temperatures, with resulting reductions in snowpack. Average March 1 basin average snow water equivalents are 75 to 85 percent of the base case for 2025, and 55 to 65 percent of the base case by 2045. By 2045 the reduced snowpack and earlier snow melt, coupled with higher evapotranspiration in early summer, would lead to earlier spring peak flows and reduced runoff volumes from April-September ranging from about 75 percent to 90 percent of the base case. Annual runoff volumes range from 85 percent to 110 percent of the base case in the simulations for 2045. These changes in streamflow create increased competition for water during the spring, summer, and early fall between non-firm energy production, irrigation, instream flow, and recreation. Flood control effectiveness is moderately reduced for most of the scenarios examined, and desirable navigation conditions on the Snake are generally enhanced or unchanged. Current levels of winter-dominated firm energy production are only significantly impacted for the MPI 2045 simulations.  相似文献   

16.
ABSTRACT: As part of the U.S. Environmental Protection Agency's effort to determine the long-term effects of acidic deposition on surface water chemistry, annual runoff was estimated for about 1000 ungaged sites in the eastern U.S. using runoff contour maps. One concern in using contour maps was that a bias may be introduced in the runoff estimates due to the size of the 1000 ungaged sites relative to the size of the watersheds used in developing the maps. To determine if a bias was present the relationship between the annual runoff (expressed as depth) and the watershed area for the Northeast (NE) and Southern Blue Ridge Province (SBRP) was tested using five regional data bases. One short-term data base (1984 Water Year, n = 531) and two long-term data bases (1940–57, n = 134 and 1951–80, n = 342) were used in the NE. In the SBRP one short-term database (1984 Water Year, n = 531) and one long-term data base (1951–80, n = 60) were used. For the NE and the SBRP, runoff was not directly correlated with watershed area using the five regional databases. Also, runoff normalized by precipitation was not related to watershed area.  相似文献   

17.
ABSTRACT: The Snowmelt Runoff Model (SRM) is designed to compute daily stream discharge using satellite snow cover data for a basin divided into elevation zones. For the Towanda Creek basin, a Pennsylvania watershed with relatively little relief, analysis of snow cover images revealed that both elevation and land use affected snow accumulation and melt on the landscape. The distribution of slope and aspect on the watershed was also considered; however, these landscape features were not well correlated with the available snow cover data. SRM streamflow predictions for 1990, 1993 and 1994 snowmelt seasons for the Towanda Creek basin using a combination of elevation and land use zones yielded more precise streamflow estimates than the use of standard elevation zones alone. The use of multiple-parameter zones worked best in non-rain-on-snow conditions such as in 1990 and 1994 seasons where melt was primarily driven by differences in solar radiation. For seasons with major rain-on-snow events such as 1993, only modest improvements were shown since melt was dominated by rainfall energy inputs, condensation and sensible heat convection. Availability of GIS coverages containing satellite snow cover data and other landscape attributes should permit similar reformulation of multiple-parameter watershed zones and improved SRM streamflow predictions on other basins.  相似文献   

18.
ABSTRACT: Storm runoff as calculated by the runoff curve number method is shown to be of varying sensitivity to both input rainfall and curve number. Using an assumed input error of 10%, a runoff error chart is given. Up to about 9 inches of rainfall, runoff is more sensitive to curve number than to rainfall. The importance of accurate curve number selection in this range is stressed.  相似文献   

19.
ABSTRACT: Daily‐to‐weekly discharge during the snowmelt season is highly correlated among river basins in the upper elevations of the central and southern Sierra Nevada (Carson, Walker, Tuolumne, Merced, San Joaquin, Kings, and Kern Rivers). In many cases, the upper Sierra Nevada watershed operates in a single mode (with varying catchment amplitudes). In some years, with appropriate lags, this mode extends to distant mountains. A reason for this coherence is the broad scale nature of synoptic features in atmospheric circulation, which provide anomalous insolation and temperature forcing that span a large region, sometimes the entire western U.S. These correlations may fall off dramatically, however, in dry years when the snowpack is spatially patchy.  相似文献   

20.
An equivalence is proposed between two rainfall‐runoff methods with a long history of use in the United States and Europe. In watersheds where variable source areas dominate runoff, the two methods can have comparable probability distribution functions of moisture deficit, and therefore predict similar saturated runoff source areas. A novel approach is introduced to determine the S parameter in the Natural Resources Conservation Service (NRCS) method. This approach constrains S by the physical soil and topography characteristics of the catchment and depth to water table. The NRCS curve number method is at the core of many rainfall‐runoff models in hydrology. As a simple lumped parameter method, it is often scrutinized because it is not obvious how to derive S from catchment hydromorphological characteristics. The novel approach provides a clear physical meaning for S, allowing better estimation of this parameter in humid shallow water table environments where the variable source area can be the dominant runoff mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号