首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: Frequent and persistent droughts exacerbate the problems caused by the inherent scarcity of water in the semiarid to arid parts of the southwestern United States. The occurrence of drought is driven by climatic variability, which for years before about the beginning of the 20th century in the Southwest must be inferred from proxy records. As part of a multidisciplinary study of the potential hydrologic impact of severe sustained drought on the Colorado River, the physical basis and limitations of tree rings as indicators of severe sustained drought are reviewed, and tree-ring data are analyzed to delineate a “worst-case” drought scenario for the Upper Colorado River Basin (UCRB). Runs analysis of a 121-site tree-ring network, 1600–1962, identifies a four-year drought in the 1660s as the longest-duration large-scale drought in the Southwest in the recent tree-ring record. Longer tree-ring records suggest a much longer and more severe drought in 1579–1598. The regression estimate of the mean annual Colorado River flow for this period is 10.95 million acre-feet, or 81 percent of the long-term mean. The estimated flows for the 1500s should be used with caution in impact studies because sample size is small and some reconstructed values are extrapolations.  相似文献   

2.
ABSTRACT: The impacts of a severe sustained drought on Colorado River system water resources were investigated by simulating the physical and institutional constraints within the Colorado River Basin and testing the response of the system to different hydrologic scenarios. Simulations using Hydrosphere's Colorado River Model compared a 38-year severe sustained drought derived from 500 years of reconstructed streamflows for the Colorado River basin with a 38-year streamflow trace extracted from the recent historic record. The impacts of the severe drought on streamflows, water allocation, storage, hydropower generation, and salinity were assessed. Estimated deliveries to consumptive uses in the Upper Basin states of Colorado, Utah, Wyoming, New Mexico, and northern Arizona were heavily affected by the severe drought, while the Lower Basin states of California, Nevada, and Arizona suffered only slight shortages. Upper Basin reservoirs and streamflows were also more heavily affected than those in the Lower Basin by the severe drought. System-wide, total hydropower generation was 84 percent less in the drought scenario than in the historical stream-flow scenario. Annual, flow-weighted salinity below Lake Mead exceeded 1200 ppm for six years during the deepest portion of the severe drought. The salinity levels in the historical hydrology scenario never exceeded 1100 ppm.  相似文献   

3.
Crockett, Kris, Jonathan B. Martin, Henri D. Grissino-Mayer, Evan R. Larson, and Thomas Mirti, 2010. Assessment of Tree Rings as a Hydrologic Record in a Humid Subtropical Environment. Journal of the American Water Resources Association (JAWRA) 1-13. DOI: 10.1111/j.1752-1688.2010.00464.x Abstract: Information about long-term variability of streamflow is important to allocate water resources, but few historical records extend more than 75 years into the past, requiring proxy records to evaluate flow prior to that time. Flow proxies have been found in tree-ring widths in temperate regions, but have rarely been used in humid subtropical environments because the relationship between tree growth and climate was believed to be weakened by limited seasonality and stress on tree growth from drought conditions. Tree-ring residual chronologies from two forests sampled from northern Florida correlate well with historical annual discharge (r² values as high as 0.47) from 3 of 15 river-gauging stations that were used to compare with the tree-ring chronologies. The best correlations occur where streamflow has little contribution from spring discharge or continuous flow from lakes and wetlands. Streams lack correlations with the tree-ring residual chronologies (r² values as low as 0.0002) where springs and continuous discharge from lakes mute variations in their flow. Tree-ring chronologies appear to be useful for reconstruction of prehistorical variations of some streamflow in humid subtropical regions, but interpretations of the reconstructions must consider the local hydrologic conditions.  相似文献   

4.
ABSTRACT: Major water rights adjudications involving the Little Colorado River Basin and Gila River Basin are presently underway within Arizona. Water resource managers are faced with the prospect of evaluating and regulating tens of thousands of water diversions and uses. Stockponds comprise a large percentage of the total number of water diversions within these basins. Water balance studies conducted on the Little Colorado River watershed above Lyman Lake and on the Gila River watershed above Solomon, Arizona, indicate that the impact of stockponds on the water available to downstream users is insignificant when compared to total watershed production. Considering that there are an estimated 25,000 stockponds in the Gila River basin alone, rigorous case-by-case investigations and stringent regulation of individual stockponds may be impractical and unwarranted. Therefore, stock-pond claims within the context of the general adjudication process may be effectively handled by partial summary judgment, thereby allowing the court to concentrate on major water users and water rights issues.  相似文献   

5.
Wildman, Richard A., Jr. and Noelani A. Forde, 2012. Management of Water Shortage in the Colorado River Basin: Evaluating Current Policy and the Viability of Interstate Water Trading. Journal of the American Water Resources Association (JAWRA) 48(3): 411-422. DOI: 10.1111/j.1752-1688.2012.00665.x Abstract: The water of the Colorado River of the southwestern United States (U.S.) is presently used beyond its reliable supply, and the flow of this river is forecast to decrease significantly due to climate change. A recent interim report of the Colorado River Basin Water Supply and Demand Study is the first acknowledgment of these facts by U.S. federal water managers. In light of this new stance, we evaluate the current policy of adaptation to water shortages in the Colorado River Basin. We find that initial shortages will be borne only by the cities of Arizona and Nevada and farms in Arizona whereas the other Basin states have no incentive to reduce consumptive use. Furthermore, the development of a long-term plan is deferred until greater water scarcity exists. As a potential response to long-term water scarcity, we evaluate the viability of an interstate water market in the Colorado River Basin. We inform our analysis with newly available data from the Murray-Darling Basin of Australia, which has used interstate water trading to create vital flexibility during extreme aridity during recent years. We find that, despite substantial obstacles, an interstate water market is a compelling reform that could be used not only to adapt to increased water scarcity but also to preserve core elements of Colorado River Basin law.  相似文献   

6.
Mehta, Vikram M., Norman J. Rosenberg, and Katherin Mendoza, 2011. Simulated Impacts of Three Decadal Climate Variability Phenomena on Water Yields in the Missouri River Basin. Journal of the American Water Resources Association (JAWRA) 47(1):126‐135. DOI: 10.1111/j.1752‐1688.2010.00496.x Abstract: The Missouri River Basin (MRB) is the largest river basin in the United States (U.S.), and is one of the most important crop and livestock‐producing regions in the world. In a previous study of associations between decadal climate variability (DCV) phenomena and hydro‐meteorological (HM) variability in the MRB, it was found that positive and negative phases of the Pacific Decadal Oscillation (PDO), the tropical Atlantic sea‐surface temperature gradient variability (TAG), and the west Pacific warm pool (WPWP) temperature variability were significantly associated with decadal variability in precipitation and 2‐meter air temperature in the MRB, with combinations of various phases of these DCV phenomena associated with drought, flood, or neutral HM conditions. Here, we report on a methodology developed and applied to assess whether the aforementioned DCVs directly affect the hydrology of the MRB. The Hydrologic Unit Model of the U.S. (HUMUS) was used to simulate water yields in response to realistic values of the PDO, TAG, and WPWP at 75 widely distributed, eight‐digit hydrologic unit areas within the MRB. HUMUS driven by HM anomalies in both the positive and negative phases of the PDO and TAG resulted in major impacts on water yields, as much as ±20% of average water yield in some locations. Impacts of the WPWP were smaller. The combined and cumulative effects of these DCV phenomena on the MRB HM and water availability can be dramatic with important consequences for the MRB.  相似文献   

7.
ABSTRACT: Decision parameters affecting combined use of effluent discharges and surface flows and ground water available at Gillespie Dam on the Gila River in Arizona are identified and analyzed. Hydrologic, economic, legal, and institutional parameters are considered separately and in combination. The interrelationships of irrigation subsystems, water use functions, institutional involvement, economic and legal constraints are illustrated. Recent hydrologic studies indicate that the natural flow of the Gila River will increase with the discharge of Phoenix sewage effluent and then there will be a drastic decline when the Palo Verde Nuclear Generating Station commences in 1985. Competition for any increases in effluent discharges and surface flows could be ameliorated through the combined efforts of existing or reorganized entities resulting in sharing of costs and benefits. The analysis leads to recommendations concerning joint use of facilities, proration of fixed and variable costs, and creation of a mutual water company.  相似文献   

8.
This study describes the application of the NASA version of the Carnegie‐Ames‐Stanford Approach (CASA) ecosystem model coupled with a surface hydrologic routing scheme previously called the Hydrological Routing Algorithm (HYDRA) to model monthly discharge rates from 2000 to 2007 on the Merced River drainage in Yosemite National Park, California. To assess CASA‐HYDRA's capability to estimate actual water flows in extreme precipitation years, the focus of this study is the 2007 water year, which was very dry, and the 2005 water year, which was a moderately wet year in the historical record. Prior to comparisons to gauge records, CASA‐HYDRA snowmelt algorithms were modified with equations from the U.S. Department of Agriculture Snowmelt‐Runoff Model (SRM), which has been designed to predict daily streamflow in mountain basins where snowmelt is a major runoff factor. Results show that model predictions closely matched monthly flow rates at the Pohono Bridge gauge station (USGS#11266500), with R2 = 0.67 and Nash‐Sutcliffe (E) = 0.65. By subdividing the upper Merced River basin into subbasins with high spatial resolution in the gridded modeling approach, we were able to determine which biophysical characteristics in the Sierra differed to the largest degree in extreme low‐flow and high‐flow years. Average elevation and snowpack accumulation were found to be the most important explanatory variables to understand subbasin contributions to monthly discharge rates.  相似文献   

9.
Tingstad, Abbie H. and Glen M. MacDonald, 2010. Long-Term Relationships Between Ocean Variability and Water Resources in Northeastern Utah. Journal of the American Water Resources Association (JAWRA) 46(5):987-1002. DOI: 10.1111/j.1752-1688.2010.00471.x Abstract: The Uinta Mountains in the northwestern Colorado River Basin are an important source of water for Utah and the western United States. This article examines 20th Century hydrology in the Uinta Mountains region in the context of the previous four to eight centuries as well as possible relationships with Pacific and Atlantic Ocean variability using new tree-ring based reconstructions for streamflow and snowpack. The 20th Century appears to have been unusually wet compared with previous centuries. Relationships between hydrology in the region and the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) are largely insignificant in instrumental datasets but may have been stronger, although inconsistent, over the longer time spans represented by the paleoclimate records. Impacts of individual modes of sea surface temperature variability may sometimes be enhanced by periods when climate forcing by ENSO, PDO, and/or AMO coincide. Such episodes are associated with deviations from mean hydrology as high as +14% and as low as −18%. The 20th Century could be a misleading benchmark to base water resource estimates upon and flexible water management strategies are necessary to take into account the large range of natural variability observed in the longer-term hydroclimatology as well as the challenges to predictability due to the apparently complex and inconsistent influence of ocean-driven variability.  相似文献   

10.
Model estimated monthly water balance (WB) components (i.e., potential evapotranspiration, actual evapotranspiration, and runoff [R]) for 848 United States (U.S.) Geological Survey 8‐digit hydrologic units located in the Mississippi River Basin (MRB) are used to examine the temporal and spatial variability of the MRB WB for water years 1901 through 2014. Results indicate the MRB can be divided into nine subregions with similar temporal variability in R. The WB analyses indicated ~79% of total water‐year MRB runoff is generated by four of the nine subregions and most of the R in the basin is derived from surplus (S) water during the months of December through May. Furthermore, the analyses showed temporal variability in S is largely controlled by the occurrence of negative atmospheric pressure anomalies over the western U.S. and positive atmospheric pressure anomalies over the eastern U.S. coast. This combination of atmospheric pressure anomalies results in an anomalous flow of moist air from the Gulf of Mexico into the MRB. In the context of paleo‐climate reconstructions of the Palmer Drought Severity Index, since about 1900 the MRB has experienced wetter conditions than were experienced during the previous 500 years.  相似文献   

11.
Model‐estimated monthly water balance components (i.e., potential evapotranspiration, actual evapotranspiration, and runoff (R)) for 146 United States (U.S.) Geological Survey 8‐digit hydrologic units located in the Colorado River Basin (CRB) are used to examine the temporal and spatial variability of the CRB water balance for water years 1901 through 2014 (a water year is the period from October 1 of one year through September 30 of the following year). Results indicate that the CRB can be divided into six subregions with similar temporal variability in monthly R. The water balance analyses indicated that approximately 75% of total water‐year R is generated by just one CRB subregion and that most of the R in the basin is derived from surplus (S) water generated during the months of October through April. Furthermore, the analyses show that temporal variability in S is largely controlled by the occurrence of negative atmospheric pressure anomalies over the northwestern conterminous U.S. (CONUS) and positive atmospheric pressure anomalies over the southeastern CONUS. This combination of atmospheric pressure anomalies results in an anomalous flow of moist air from the North Pacific Ocean into the CRB, particularly the Upper CRB. Additionally, the occurrence of extreme dry and wet periods in the CRB appears to be related to variability of the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation.  相似文献   

12.
Abstract: In the karstic lower Flint River Basin, limestone fracturing, jointing, and subsequent dissolution have resulted in the development of extensive secondary permeability and created a system of major conduits that facilitate the exchange of water between the Upper Floridan aquifer and Flint River. Historical streamflow data from U.S. Geological Survey gaging stations located in Albany and Newton, Georgia, were used to quantify ground‐water and surface‐water exchanges within a 55.3 km section of the Flint River. Using data from 2001, we compared estimates of ground‐water flux using a time adjustment method to a water balance equation and found that these independent approaches yielded similar results. The associated error was relatively large during high streamflow when unsteady conditions prevail, but much lower during droughts. Flow reversals were identified by negative streamflow differences and verified with in situ data from temperature sensors placed inside large spring conduits. Long‐term (13 years) analysis showed negative streamflow differentials (i.e., a losing stream condition) coincided with high river stages and indicated that streamflow intrusion into the aquifer could potentially exceed 150 m3/s. Although frequent negative flow differentials were evident, the Flint River was typically a gaining stream and showed a large net increase in flow between the two gages when examined over the period 1989‐2003. Ground‐water contributions to this stream section averaged 2‐42 m3/s with a mean of 13 m3/s. The highest rate of ground‐water discharge to the Flint River occurred during the spring when regional ground‐water levels peaked following heavy winter and spring rains and corresponding rates of evapotranspiration were low. During periods of extreme drought, ground‐water contributions to the Flint River declined.  相似文献   

13.
Allums, Stephanie E., Stephen P. Opsahl, Stephen W. Golladay, David W. Hicks, and L. Mike Conner, 2012. Nitrate Concentrations in Springs Flowing Into the Lower Flint River Basin, Georgia U.S.A. Journal of the American Water Resources Association (JAWRA) 48(3): 423-438. DOI: 10.1111/j.1752-1688.2011.00624.x Abstract: Analysis of long-term data from (2001-2009) in four springs that discharge from the Upper Floridan aquifer into the Flint River (southwestern Georgia, United States) indicate aquifer and surface-water susceptibility to nutrient loading. Nitrate-N concentrations ranged from 1.74 to 3.30 mg/l, and exceeded historical levels reported for the Upper Floridan aquifer (0.26-1.52 mg/l). Statistical analyses suggest increasing nitrate-N concentration in groundwater discharging at the springs (n = 146 over eight years) and that nitrate-N concentration is influenced by a dynamic interaction between depth to groundwater (an indicator of regional hydrologic conditions) and land use. A one-time synoptic survey of 10 springs (6 springs in addition to the 4 previously mentioned) using stable isotopes generated δ15N-NO3 values (4.8-8.4‰ for rural springs and 7.7-13.4‰ for developed/urban springs) suggesting mixed sources (i.e., fertilizer, animal waste, and soil organic nitrogen) of nitrate-N to rural springs and predominantly animal/human waste to urban springs. These analyses indicate a direct relation between nitrate-N loading since the 1940s and intensification of agricultural and urban land use. This study demonstrates the importance of evaluating long-term impacts of land use on water quality in groundwater springs and in determining how rapidly these changes occur.  相似文献   

14.
ABSTRACT: Law and hydrology are inextricably woven together in the pattern of water resource development in the west. The former attempts to allocate a limited and valuable resource as the latter tries to define the limits of the resource. In the past an inadequate data base has made hydrologic estimates difficult and political factors have pushed the law into possibly conflicting commitments in the Colorado River Basin. Through the use of tree-ring research, hydrologists have produced a more definitive data base and placed water allocations such as the Colorado River Compact of 1922 in a clearer long-term perspective. This data base leads to the conclusion that the surface-water supply is about 13.5 million acre-feet per year. This hydrologic limit must be apportioned within an existing legal framework - the “Law of the River.” As development approaches the resource limit in the Upper Colorado River Basin, lawyers and hydrologists must act in concert toward the equitable solution of allocation and reallocation problems.  相似文献   

15.
Anderson, SallyRose, Glenn Tootle, and Henri Grissino‐Mayer, 2012. Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree‐Ring Chronologies. Journal of the American Water Resources Association (JAWRA) 48(4): 849‐858. DOI: 10.1111/j.1752‐1688.2012.00651.x Abstract: Soil moisture is an important factor in the global hydrologic cycle, but existing reconstructions of historic soil moisture are limited. We used tree‐ring chronologies to reconstruct annual soil moisture in the Upper Colorado River Basin (UCRB). Gridded soil moisture data were spatially regionalized using principal components analysis and k‐nearest neighbor techniques. We correlated moisture sensitive tree‐ring chronologies in and adjacent to the UCRB with regional soil moisture and tested the relationships for temporal stability. Chronologies that were positively correlated and stable for the calibration period were retained. We used stepwise linear regression to identify the best predictor combinations for each soil moisture region. The regressions explained 42‐78% of the variability in soil moisture data. We performed reconstructions for individual soil moisture grid cells to enhance understanding of the disparity in reconstructive skill across the regions. Reconstructions that used chronologies based on ponderosa pines (Pinus ponderosa) and pinyon pines (Pinus edulis) explained more variance in the datasets. Reconstructed soil moisture data was standardized and compared with standardized reconstructed streamflow and snow water equivalent data from the same region. Soil moisture and other hydrologic variables were highly correlated, indicating reconstructions of soil moisture in the UCRB using tree‐ring chronologies successfully represent hydrologic trends.  相似文献   

16.
Sharif, Hatim O., Almoutaz A. Hassan, Sazzad Bin-Shafique, Hongjie Xie, and Jon Zeitler, 2010. Hydrologic Modeling of an Extreme Flood in the Guadalupe River in Texas. Journal of the American Water Resources Association (JAWRA) 1-11. DOI: 10.1111/j.1752-1688.2010.00459.x Abstract: Many of the storms creating the greatest rainfall depths in Texas, measured over durations ranging from one minute to 48 hours, have occurred in the Texas Hill Country area. The upstream portion of the Guadalupe River Basin, located in the Texas Hill Country, is susceptible to flooding and rapid runoff due to thin soils, exposed bedrock, and sparse vegetation, in addition to the Balcones Escarpment uplift contributing to precipitation enhancement. In November 2004, a moist air mass from the Gulf of Mexico combined with moist air from the Pacific Ocean resulted in the wettest November in Texas since 1895. Although the peak discharges were not the highest on record, the U.S. Geological Survey (USGS) stream gauge on the Guadalupe River at Gonzales, Texas reported a daily mean discharge of 2,304 m3/s on November 23, 2004 (average discharge is 53 m3/s). In this paper, we examine the meteorological conditions that led to this event and apply a two-dimensional, physically based, distributed-parameter hydrologic model to simulate the response of a portion of the basin during this event. The study results clearly demonstrate the ability of physically based, distributed-parameter simulations, driven by operational radar rainfall products, to adequately model the cumulative effect of two rainfall events and route inflows from three upstream watersheds without the need for significant calibration.  相似文献   

17.
ABSTRACT: The Powder River Basin in Wyoming has become one of the most active areas of coalbed methane (CBM) development in the western United States. Extraction of methane from coalbeds requires pumping of aquifer water, which is called product water. Two to ten extraction wells are manifolded into one discharge point and product water is released into nearby unlined holding ponds. The objective of this study was to evaluate the chemistry, salinity, and sodicity of CBM product water at discharge points and associated holding ponds as a function of watershed. The product water samples from the discharge points and associated holding ponds were collected from the Cheyenne River (CHR), Belle Fourche River (BFR), and Little Powder River (LPR) watersheds during the summers of 1999 and 2000. These samples were analyzed for pH, electrical conductivity (EC), total dissolved solids (TDS), alkalinity, sodium (Na), calcium (Ca), magnesium (Mg), potassium (K), sulfate (SO42‐), and chloride (C1‐). From the chemical data, practical sodium adsorption ratio (SARp) and true sodium adsorption ratio (SARt) were calculated for the CBM discharge water and pond water. The pH, EC, TDS, alkalinity, Na, Ca, Mg, K, SARp, and SARt of CBM discharge water increased significantly moving north from the CHR watershed to the LPR watershed. CBM discharge water in associated holding ponds showed significant increases in EC, TDS, alkalinity, Na, K, SARp, and SARt moving north from the CHR to the LPR watershed. Within watersheds, the only significant change was an increase in pH from 7.21 to 8.26 between discharge points and holding ponds in the LPR watershed. However, the LPR and BFR exhibited larger changes in mean chemistry values in pH, salinity (EC, TDS), and sodicity (SAR) between CBM product water discharges and associated holding ponds than the CHR watershed. For instance, the mean EC and TDS of CBM product water in LPR increased from 1.93 to 2.09 dS/m, and froml,232 to 1,336 mg/L, respectively, between discharge and pond waters. The CHR exhibited no change in EC, TDS, Na, or SAR between discharge water and pond water. Also, while not statistically significant, mean alkalinity of CBM product water in BFR and LPR watersheds decreased from 9.81 to 8.01 meq/L and from 19.87 to 18.14 meq/L, respectively, between discharge and pond waters. The results of this study suggest that release of CBM product water onto the rangelands of BFR and LPR watersheds may precipitate calcium carbonate (CaCO3) in soils, which in turn may decrease infiltration and increase runoff and erosion. Thus, use of CBM product water for irrigation in LPR and BFR watersheds may require careful planning based on water pH, EC, alkalinity, Na, and SAR, as well as local soil physical and chemical properties.  相似文献   

18.
The National Water Model (NWM) will provide the next generation of operational streamflow forecasts across the United States (U.S.) using the WRF-Hydro hydrologic model. In this study, we propose a strategy to calibrate 10 parameters of WRF-Hydro that control runoff generation during floods and snowmelt seasons, and due to baseflow. We focus on the Oak Creek Basin (820 km2), an unregulated mountainous sub-watershed of the Salt and Verde River Basins in Arizona, which are the largest source of water supply for the Phoenix Metropolitan area. We calibrate the model against discharge observations at the outlet in 2008–2011, and validate it at two stream gauging stations in 2012–2016. After bias correcting the precipitation forcings, we sequentially modify the model parameters controlling distinct runoff generation processes in the basin. We find that capturing the deep drainage to the aquifer is crucial to improve the simulation of all processes and that this flux is mainly controlled by the SLOPE parameter. Performance metrics indicate that snowmelt, baseflow, and floods due to winter storms are simulated fairly well, while flood peaks caused by summer thunderstorms are severely underestimated. We suggest the use of spatially variable soil depth to enhance the simulation of these processes. This work supports the ongoing calibration effort of the NWM by testing WRF-Hydro in a watershed with a large variety of runoff mechanisms that are representative of several basins in the southwestern U.S.  相似文献   

19.
Abstract: Since the 1940s, snow water equivalent (SWE) has decreased throughout the Pacific Northwest, while water use has increased. Climate has been proposed as the primary cause of base‐flow decline in the Scott River, an important coho salmon rearing tributary in the Klamath Basin. We took a comparative‐basin approach to estimating the relative contributions of climatic and non‐climatic factors to this decline. We used permutation tests to compare discharge in 5 streams and 16 snow courses between “historic” (1942‐1976) and “modern” (1977‐2005) time periods, defined by cool and warm phases, respectively, of the Pacific Decadal Oscillation. April 1 SWE decreased significantly at most snow courses lower than 1,800 m in elevation and increased slightly at higher elevations. Correspondingly, base flow decreased significantly in the two streams with the lowest latitude‐adjusted elevation and increased slightly in two higher‐elevation streams. Base‐flow decline in the Scott River, the only study stream heavily utilized for irrigation, was larger than that in all other streams and larger than predicted by elevation. Based on comparison with a neighboring stream draining wilderness, we estimate that 39% of the observed 10 Mm3 decline in July 1‐October 22 discharge in the Scott River is explained by regional‐scale climatic factors. The remainder of the decline is attributable to local factors, which include an increase in irrigation withdrawal from 48 to 103 Mm3/year since the 1950s.  相似文献   

20.
Anning, David W., 2011. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States. Journal of the American Water Resources Association (JAWRA) 47(5):1087‐1109. DOI: 10.1111/j.1752‐1688.2011.00579.x Abstract: Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area‐normalized reach‐catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km2 for catchments with little or no natural or human‐related solute sources in them to 563,000 (kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved‐solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved‐solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil‐pore or sediment‐pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km2 for the Middle Gila, Lower Gila‐Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km2 for the Salton Sea accounting unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号