首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
大气降水中离子化学特征及来源分析   总被引:2,自引:0,他引:2  
王璟 《环境科学与管理》2012,37(3):73-79,92
通过研究2006-2010年上海市闸北区大气降水中离子的组成特征和变化,分析了离子可能的来源和酸雨的成因。结果表明,近年来酸雨污染有所改善,酸雨成因也有所改变。阴阳离子当量浓度之比小于1,可能缺少对某些低分子弱有机酸离子的监测。降水化学组份中浓度最高的四种离子分别是SO42-、NH4+、Ca2+和NO3-,SO42-浓度是NO3-的3.14倍,NH4+是Ca2+的2.76倍,降水的主要致酸物质是硫酸盐,主要中和物质是铵盐。大多数离子间有较好的相关性,NO3-和SO42-绝大部分来自人为源的贡献。降水中SO42-的致酸作用和Ca2+的中和作用逐渐下降,Cl-的致酸作用在逐渐增大。  相似文献   

2.
长江源区大气降水化学特征及离子来源   总被引:2,自引:2,他引:2  
基于长江源区冬克玛底流域2013年6~9月采集的64个降水样品,分析了降水的pH值、电导率及离子浓度特征,并应用因子分析、相关分析、富集因子及后向轨迹法,讨论了降水离子主要来源及其与大气环流的联系.结果表明,长江源区冬克玛底流域降水pH值变化范围为5. 26~9. 25,加权平均值为6. 70;电导率变化范围为0. 23~28. 70μS·cm-1,加权平均值为3. 45μS·cm-1,低于瓦里关全球大气本底站降水电导率;总离子浓度变化范围为7. 0~376. 9μeq·L-1,平均总浓度仅为40. 8μeq·L-1;各离子加权平均浓度大小顺序为:HCO_3~- NH_4~+ Ca~(2+) NO_3~- SO_4~(2-) Na~+ Cl~- K~+ Mg~(2+); HCO_3~-、NH_4~+、Ca~(2+)和NO_3~-是降水中的主要离子,占总离子浓度的74. 75%;相对酸度(FA)分析表明,有97. 8%的降水酸度被碱性物质中和,同时中和因子(NF)分析表明NH_4~+和Ca~(2+)对降水酸性的中和起主导作用;研究区降水离子主要来自陆源的贡献,而来自海源的输入则相对较少;结合气团的后向轨迹分析发现,不同来源的总离子浓度差异明显,其加权平均浓度大小顺序为:局地源西风源季风源,表明不同的大气环流背景和气团来源对降水化学组成具有重要影响.长江源区大气降水受人类活动影响较小,其降水化学特征一定程度上可以代表偏远地区的大气质量状况和本底值.研究结果能够为长江源区水质的保护以及为评估人类活动对该区域大气环境的影响提供科学依据.  相似文献   

3.
华东地区大气本底中降水酸度变化   总被引:3,自引:1,他引:3  
根据1985~1991年7年中采集的降水样品913个,进行归纳和分析。结果表明,降水酸度有逐年增加的趋势,强酸性降水出现增多,酸沉降量增加趋势十分明显。一年四季中的降水酸度各不相同,冬季最高,夏季最低,主要取决于降水量的变化,在各稳定度中降水量出现最多的是大气不稳定状态时。  相似文献   

4.
大气降水中重金属离子特征研究   总被引:1,自引:0,他引:1  
大气降水中重金属离子的研究可以反映大气污染、地表水污染的信息.通过对国内外大气降水中重金属研究现状的阐述和大气降水中重金属的来源进行理论分析,并利用实地大气降水采样分析,归纳出其中重金属的特征,监测当前大气的污染状况,从而为区域性的大气中重金属的污染评价及污染治理提供理论依据.降水中的重金属元素主要包括Pb、Mn、Zn、Cu、Cd、Cr等,通过分析测定可以为利用大气降水作为重要饮用水补给源的区域提供饮水安全保障.  相似文献   

5.
桂林大气降水化学特征及其经树木枝叶淋滤后的变化   总被引:1,自引:0,他引:1  
大气降水经过茂密的树木枝叶后,其化学成分含量会发生改变,本文通过于2011年4、5月份在桂林理工大学校园内接收未经植被淋滤的普通雨水和经过铁树、桂花树、竹子3种树木枝叶淋滤的雨水,测定其K+、Na+、Mg+、Ca2+、SO24-、Cl-、PO34-和TN的含量,分析其基本特征和变化规律。大气降水在经过以上3种树木枝叶淋滤后,其总氮含量及各种离子含量和未经树木淋滤的普通雨水相比都是增加的。由于各种综合因素影响,其变化规律呈多样性。  相似文献   

6.
深圳大气降水的化学组成特征   总被引:19,自引:5,他引:19  
牛文  何凌燕  胡敏 《环境科学》2008,29(4):1014-1019
为了了解近年来深圳降水的化学特征与大气污染状况,连续2 a采集了深圳降水样品,分析其化学组分.结果表明,与北京等中国北方内陆城市相比,深圳降水中离子浓度比较低,但降水的酸化程度和酸化频率非常高,雨量加权pH值在2004年和2005年分别为4.48和4.68,酸化频率分别为88%和91%,降水酸化严重;相对中国内陆酸雨城市,深圳降水中SO24-对雨水酸性贡献相对较低,而NO-3和Cl-对雨水阴离子总量及降水酸性的贡献相对较大;Cl-和Na 对雨水阴阳离子的贡献较高,深圳降水受海洋的影响显著;SO24-、NO-3、NH 4等二次组分在雨水中占有很高比例,三者之和超过离子总量的40%,表明深圳大气环境中二次污染突出;降水中不同组分的来源差别较大,Cl-、K 、Na 主要来自海洋源,而SO24-、NO-3、Ca2 、Mg2 主要来自非海洋源;甲酸、乙酸和乙二酸是深圳降水中主要的有机酸,三者之和在2004年和2005年分别占检测到的有机酸总量的94%和99%.  相似文献   

7.
中国南海大气降水化学特征   总被引:4,自引:3,他引:4  
利用中国科学院南海海洋研究所"实验3"号船南海海洋断面科学考察2012年夏季航次进行大气降水采样,测定样品pH值和主要阴阳离子浓度,结合TrajStat软件模拟后向气团轨迹,分析南海夏季大气降水离子化学特征及来源.结果表明,夏季降水pH平均值为6.3,最小值为5.6.阴阳离子浓度顺序均分别表现为Cl->SO2-4>NO-3和Na+>Mg2+>Ca2+>K+,Cl-和Na+是主要的阴离子和阳离子,浓度平均值分别为2 637.5μeq·L-1和2 095.5μeq·L-1,表现出了海洋性大气降水的特征.7种离子间均表现出良好的线性相关关系,相关系数在0.9以上,说明它们可能具有统一来源;NO-3与其他离子的相关系数相对较低,可能NO-3具有相对复杂的来源;Ca2+和K+还可能跟南海珊瑚环境有关.本研究的6个站位后向轨迹显示,水汽气团来源于正南或西南方向,未经过大陆上空,因此本研究中南海夏季大气降水的离子来源受人为影响可以忽略.  相似文献   

8.
庐山地区大气降水中稳定同位素变化特征   总被引:3,自引:0,他引:3  
氢氧稳定同位素技术被广泛用来研究水循环过程中的水汽来源、水量平衡及不同水体间的补给关系。以2016年4月至2017年4月在庐山地区三个不同研究点(庐山西北面莲花镇,山顶牯岭镇和东南面海会镇)采集的102个次降水样品同位素资料为基础,应用线性回归分析和对比分析等方法,对庐山地区大气降水中氢氧稳定同位素和氘盈余的时空分布特征及大气水汽来源进行了研究。结果发现:庐山地区夏半年降水中的稳定同位素值δ18O平均值(-6.1‰)小于冬半年(-4.8‰);氢氧同位素特征和氘盈余呈现明显的季节差异;平均氘盈余值(10.6‰)大于全球大部分地区的评估值(10.0‰);当地大气降水线(LMWL)δD=7.45δ18O+8.36与全球大气降水线(GMWL)δD=8δ18O+10相比,其斜率和截距均偏小。结合HYSPLIT后向轨迹模型分析同位素特征发现,庐山地区大气水汽夏半年主要来源于低纬度南海和印度洋,冬半年来自于干燥的华北和西北内陆;局地水汽影响和地理位置差异导致了降雨同位素特征的空间差异性。本研究可为今后展开庐山地区水循环过程的研究提供科学依据。  相似文献   

9.
降水中甲醛的乙酰丙酮比色法测定研究   总被引:1,自引:0,他引:1  
沈青  黄建 《大气环境》1990,5(3):26-28
  相似文献   

10.
大气及公共场所中甲醛的测定   总被引:3,自引:0,他引:3  
本文采用4-氨基-3-联氨-5-巯基-1,2,4-三氮杂茂(简称AHMT)。并以偏重亚硫酸钠作吸收液,使其生成羟基甲磷酸以固定甲醛.其吸收效率达95%以上。回收率范围为93.1~103.5%。三种不同浓度甲醛重复测定的平均相对标准差为2.9%。其测定范围为10~160μg/m3。大气中的SO_2和NO_2等不干扰测定。  相似文献   

11.
于2013年6月至2014年5月在贵阳市城区设置采样点,利用国产武汉天虹智能采样器连续一年采集大气颗粒物(PM2.5)样品共357个,采用HOBO U30气象仪同步记录气象数据。气象数据分析表明贵阳市春、秋和冬季均为东北风,夏季多南风且风速较大,全年以东北风为主。结合气象数据分析了贵阳市市区PM2.5污染特征并初步讨论其来源。结果表明:PM2.5日浓度范围为4~193μg/m3,平均值为70±33μg/m3,日超标率为46%。以季节来看,夏季PM2.5浓度最低,冬季最高,秋、春季次之。PM2.5主要来源于工业排放与燃煤污染。与国内其它城市研究相比,处于轻度污染水平。  相似文献   

12.
天津市西南部苯系物浓度季节及空间变化特征   总被引:1,自引:1,他引:1  
采用预冷冻浓缩系统和气相色谱/质谱联用仪,对天津市西南部BTEX(苯系物)浓度(以ρ计)进行了网格布点观测. 结果表明:ρ(苯)、ρ(甲苯)、ρ(乙苯)、ρ(间/对二甲苯)和ρ(邻二甲苯)的年均值分别为8.54、20.49、6.41、13.44和3.68 μg/m3,其中ρ(苯)和ρ(甲苯)均低于欧洲标准限值. 各BTEX浓度季节变化明显,与当地大气稳定度、光化学反应以及即时气象条件等因素密切相关. 利用各BTEX浓度的相关性,分析了不同类型采样点BTEX的来源,并证明工业企业和居民住宅附近存在非同源性苯和甲苯排放源. B/T〔ρ(苯)与ρ(甲苯)之比〕年均值为0.49,接近我国机动车尾气排放特点,但B/T值呈现出的季节变化特点可能与天津市供暖期燃煤排放有一定的关联.   相似文献   

13.
西南喀斯特流域风化作用季节性变化研究   总被引:3,自引:1,他引:2  
肖琼  沈立成  杨雷  伍坤宇  陈展图 《环境科学》2012,33(4):1122-1128
以西南地区典型喀斯特流域,长江上游一级支流嘉陵江温塘峡段为例,连续2 a按月取样,并通过水化学分析、同位素分析等方法,研究得出嘉陵江温塘峡段水化学类型受地层控制,为HCO3--Ca型.在稀释作用的影响下,除HNO3-的浓度因受人类活动的影响雨季偏大外,其余大部分离子浓度雨季较旱季偏小.所有样品的(Ca2++Mg2+)/HCO3-(浓度比)在0.5~1之间,(Ca2++Mg2+)/(HCO3-+SO24-)(浓度比)大部分处于0.5~1之间,由此表明嘉陵江风化作用主要以碳酸的风化和硫酸风化碳酸岩盐为主,硫酸岩盐的风化为辅.根据同位素分析结果表明嘉陵江水中δ13CHCO-3值为-8.74‰~-7.36‰,δ34SSO2-4值旱季为14.43‰,雨季为12.21‰,表明硫酸对碳酸盐岩的风化作用和硫酸盐岩自身的风化作用在雨季均表现更强,其中,硫酸岩盐自身的风化作用在雨季强度更大,而旱季碳酸对碳酸盐岩的风化作用比较强.  相似文献   

14.
基于2014年塘西河下游水体中颗粒有机碳(POC)、叶绿素a为期1年的野外调查,结合颗粒有机物C/N比值、POC浓度与叶绿素a浓度比值(POC/Chl a)及降雨量等数据,分析了塘西河下游水体中POC浓度的季节变化规律、影响因素及其主要来源。结果表明,塘西河下游水体中POC浓度夏季最高,冬季最低,呈现出夏季春季秋季冬季的变化趋势;POC浓度与叶绿素a浓度呈现基本一致的变化趋势,说明两者具有共同的来源,但陆源输入对POC浓度变化产生一定的影响;水体中颗粒有机物C/N比值在5.11~8.15之间,年平均值6.12,POC/Chl a比值在16.24~32.18之间,年平均值为21.47,说明塘西河下游水体中POC主要来源于内源。通过计算,内源对水体中POC的贡献率在40.4%~80.07%之间,年平均值为62.55%,春、夏、秋、冬季内源贡献率分别是59.95%、70.24%、59.84%和58.48%。  相似文献   

15.
北京市城区大气羰基化合物的季节变化   总被引:4,自引:2,他引:2  
许嘉钰  高阳 《环境科学》2009,30(3):625-630
2006年8月19~22日(夏季)、 10月24~30日(秋季)和2007年1月20~23日(冬季),利用被动式扩散采样器(DSD-DNPH)对北京市城区5个地点C1~C10羰基化合物进行了采样.通过高效液相色谱(high performance liquid chromatography, HPLC)分析, 20种羰基化合物被检测出,在夏季、秋季和冬季其总浓度分别为(89.1±23.6)、(85.2±17.5)和(40.0±9.8) μg/m3.其中,甲醛、乙醛和丙酮是浓度最高的3种羰基化合物,它们的浓度从冬季的(7.1±2.1)、(10.3±3.1)、(9.5±1.8) μg/m3增长到夏季的(15.3±9.2)、(12.9±4.9)、(13.3±3.5) μg/m3和秋季的(13.2±4.0)、(13±4.4)、(15.3±4.0) μg/m3.定性分析表明,羰基化合物的污染来源,冬季主要是机动车污染,而夏季和秋季则是来自光化学反应、机动车和餐馆油烟的综合污染.此外,在风速较大、扩散条件较好的条件下,甲醛、乙醛和丙酮等主要污染物浓度明显降低,表明扩散条件对羰基化合物浓度的影响较明显.  相似文献   

16.
以胶州湾湿地外来种互花米草作为研究对象,文章对其各器官的生物量,C、N、P生态化学计量特征及其季节变化规律进行了分析,揭示了植物生长过程中主要营养元素的生态化学计量学特征,对于有效控制和管理湿地植物的入侵以及理解植被生态系统的生长具有一定的意义。研究结果表明:(1)各器官在不同生长季节的养分分配顺序:C含量为茎(383.83 g/kg)叶(381.03 g/kg)根(354.02 g/kg);N含量为叶(5.8 g/kg)根(3.62 g/kg)茎(3.45 g/kg);P含量为叶(1.62 g/kg)根(0.93 g/kg)茎(0.70 g/kg)。根的N、P含量季节变化动态表现为先升高后降低再升高,茎和叶中的C、N含量随季节的变化均表现出先降低后上升的趋势。在整个生长阶段中,N、P主要分配到同化器官叶,其次是繁殖器官根,说明叶对N、P养分的吸收作用最强。(2)互花米草各器官的C/N、C/P与N/P均表现为茎根叶,各器官的N/P均14,结合N、P元素的含量与N/P值推测互花米草的生长主要受营养元素N的限制。(3)在不同器官间的N、P含量呈现出正相关性,说明互花米草各器官对C、N、P变化的应对具有相对的一致性。各器官中N与C/N,P与C/P均表现为负相关,而茎中P与N/P呈极显著负相关,说明了各器官对营养元素吸收的过程,与其他元素的获取关系密切。  相似文献   

17.
温艳茹  王建力 《环境科学》2016,37(7):2462-2469
根据2015年4~10月重庆地区61场降水稳定同位素资料与相关气象资料,分析了不同时间尺度下重庆大气降水中氢氧同位素(δD、δ~(18)O)、过量氘(d)的变化特征以及它们与降水量、温度及厄尔尼诺/拉尼娜和南方涛动(ENSO)的关系.结果表明:1研究区大气降水线方程为:δD=8.28δ~(18)O+12.34(r=0.99,n=61),其斜率和截距与中国东部季风区的多处南方地区大气降水线方程的斜率和截距相似.2研究区大气降水中氢氧同位素和d均出现夏半年低、冬半年高的季节变化,影响重庆降水中氢氧同位素变化的主要原因为不同季节降水的水汽来源及气团性质的差异.3监测时段内研究区大气降水中δ~(18)O与温度、降水量相关性不显著(r=0.03;r=0.12),但却敏感响应了大气环流过程,表现出与ENSO正相关.大气降水中δ~(18)O和过量氘(d)清晰记录了2014~2015年LaNia和ElNio的转换过程.ElNio期间研究区域大气降水中δ~(18)O和d明显偏重;而在LaNia期间,δ~(18)O和d偏轻.  相似文献   

18.
P是湖泊生态系统中很重要的生命元素,水生植物对于湖泊中P的生物化学循环至关重要. 通过分析不同季节下洱海7种常见的沉水植物地上部分w(P),研究了洱海常见沉水植物地上部分w(P)的种间差异及季节性变化特征. 结果表明:洱海沉水植物地上部分w(P)总体呈正态分布,平均值为2.64 mg/g,范围为0.90~6.79 mg/g. 沉水植物地上部分w(P)的种间差异和季节差异显著,其中7种沉水植物地上部分w(P)平均值为苦草(3.32 mg/g)>轮叶黑藻(2.88 mg/g)>金鱼藻(2.72 mg/g)>微齿眼子菜(2.53 mg/g)>穗花狐尾藻(2.39 mg/g)>篦齿眼子菜(2.34 mg/g)>马来眼子菜(2.27 mg/g);季节间表现为春季(3.46 mg/g)>夏季(3.05 mg/g)>冬季(2.20 mg/g)>秋季(1.98 mg/g). 环境中w(P)、叶与茎生物量比值和生活史特征可能是决定植物地上部分w(P)的重要因素. 此外,由于环境中有效P含量较低,洱海沉水植物地上部分w(P)低于长江中下游湖泊.   相似文献   

19.
黑河流域大气降水稳定同位素变化及模拟   总被引:9,自引:11,他引:9  
利用2002~2004年黑河流域6个采样点上的301个降水数据,对黑河流域大气降水中δD和δ18O的变化进行了分析.结果表明,流域降水δ18O和δD的变化范围分别为6.5‰~-33.4‰和59‰~-254‰,这主要是由于降水水汽来源不同和气象条件特别是气温和降水量的较大变化使得降水形成的凝结机制发生变化引起;降水中同位...  相似文献   

20.
洱海沉积物中溶解性有机氮季节性变化   总被引:5,自引:0,他引:5  
选取洱海10个表层沉积物样品,研究不同季节DON(溶解性有机氮)和易分解组分DFAA(游离氨基酸)的含量变化. 结果表明:①洱海沉积物中w(DON)在10.41~59.58 mg/kg之间,平均值为27.43 mg/kg,约占w(TDN)(溶解性总氮质量分数)的40%,w(TN)的6%,其季节性变化呈春季>冬季>夏季>秋季的趋势,各季节洱海不同湖区均呈南部>北部>中部的特点;②洱海沉积物中w(DFAA)在4.11~9.89 mg/kg之间,平均值为5.96 mg/kg,约占w(DON)的22%,占w(TDN)的9%,季节性变化呈秋季相对较高、冬春次之、夏季相对较少的趋势,区域性变化呈南北高、中间低的特点,污染较严重的区域沉积物中w(DFAA)较高;③作为沉积物活性氮重要成分,w(DON)和w(DFAA)的季节性变化明显,对湖泊氮代谢有重要影响,在水生植物旺盛区域尤为明显. 在洱海富营养化治理中,除了TN,更应关注DON在湖泊氮循环及其富营养化中的作用.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号