首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Fisheries managers frequently try to protect juveniles in order to preserve stocks. Juveniles can be protected by either implementing changes designed to avoid catching immature animals (e.g. increasing mesh size or altering fishing techniques) or protecting nursery grounds. To prevent the capture of immature animals, an estimate of size at maturity is required as well as a knowledge of both fishing methods and the exact location of the nursery grounds. Strong demand for juvenile mud crabs to stock aquaculture ponds has resulted in development of fisheries targeting crabs of all sizes from instar 1 to mature individuals. Using five different fishing methods, different stages in the life cycle of Scylla paramamosain were followed for a period of 16 months in an estuarine population in the Mekong Delta, Vietnam. Mangrove habitat utilisation begins when crabs settle out from the plankton at instar 1 [modal internal carapace width (ICW), 0.5 cm] amongst the pneumatophores at the mangrove fringe. Increasingly larger crabs were found deeper into the mangrove but they were still living on the surface (modal ICW size class, 1.5 cm). As their size increases, the crabs either dig burrows (modal ICW size class, 4.5 cm) or they live in the sub-tidal zone, migrating into the mangrove with each tide to feed (modal ICW size class, 4.5 cm). Larger crabs were caught offshore (modal ICW size class, 12.5 cm) where females accounted for 60% of the catch although of these, only 63% were mature. Recruitment of early instars was continuous but peaked in December to February. Subsequent peaks in the catch rates of larger size classes indicated the development of a single cohort with an estimated growth rate of 2.0 cm ICW per month. On the basis of abdominal width, females were estimated to mature at 10.2 cm ICW although at 9.7 cm ICW, 50% of females had disengaged abdomens. Abdominal disengagement occurred in males at the slightly smaller size of 9.1 cm ICW. Allometric relationships between chela height and carapace width suggested 50% of males acquire mature chelae at 10.2 cm ICW. These results demonstrate the close linkage between early life stages of S. paramamosain and certain specific niches within mangrove habitats, with the main adult population found to be living sub-tidally at some distance from the mouth of the estuary. The study also highlights the special importance of the mangrove fringe, the border between the mangrove forest and the sea, an area which is particularly vulnerable to physical and anthropogenic impacts.  相似文献   

2.
Many ectothermal marine animals mature at larger sizes in lower temperature environments and at smaller sizes in higher temperature environments. This phenomenon is called the temperature–size rule. To examine whether this rule controls the appearance of large adults in a winter population of caprellids, individuals of Caprella mutica were reared at different temperatures. Caprellids at 5°C died at instar III before they reached maturity. In contrast, the animals reared at 10, 15 and 20°C lived to higher instars and reached maturity within their lifetime. Somatic growth pattern did not change between 10 and 20°C. Maturation instar of males was not affected by temperature. This indicates that the appearance of large adults in winter is not a result of a change in somatic growth pattern with temperature change. However, female maturation size becomes larger due to a delay in maturation at lower temperature. This, in turn, indicates that the temperature–size rule plays a role in the mechanism controlling the appearance of large female adults in winter populations.  相似文献   

3.
When endoparasitoid wasps oviposit into hosts which have already been parasitized (= superparasitism), this results in potentially lethal interlarval competition. For solitary species, the decision to lay additional eggs should therefore be based on the probability of superparasite survival in any superparasitized host. In this study, in vitro contests staged between three larval instars of Venturia canescens Grav. (Hymenoptera: Ichneumonidae) reveal that the age difference between competitors affects the outcome of interlarval competition. Three parameters were used to assess parasitoid performance: the number of fights initiated, the number of bites inflicted, and the duration of each bite. When fighting takes place between two first instars, then both competitors were found to be evenly matched. However, at greater age differences, first-instar competitors appeared to win more fights than their larger second instar rivals. The advantage shown by younger competitors is most pronounced in contests staged between first and third instar larvae. These findings are consistent with the increasingly high levels of conspecific superparasitism shown by V. canescens in the first 5 days after initial host attack, suggesting that this parasitoid can deploy her use of deliberate superparasitism in an adaptive way. Received: 13 December 1995/Accepted after revision: 5 March 1996  相似文献   

4.
Y. Yamada  T. Ikeda  A. Tsuda 《Marine Biology》2002,141(2):333-341
Abundance and life-cycle features of the mesopelagic hyperiid amphipod Primno abyssalis (formerly P. macropa) in the Oyashio region, western subarctic Pacific, were investigated using samples collected between July 1996 and July 1998. P. abyssalis was collected throughout the entire survey period, with abundance peaks occurring in spring to autumn. While all maturity stages of males and females were observed throughout the study period, the peak reproduction season was in summer. Instar analysis based on the segment number of the pleopod rami indicated that hatched juveniles molted 10 times before becoming adult males and 13 times before becoming adult females. Judging from the dry and ash-free dry weights of each instar, males and females continued to feed throughout the final instar stage. Based on cohort analysis of seasonal samples and laboratory observations on molting frequencies, growth in body length of P. abyssalis was linear with time, and estimated generation lengths were 2.3-3.8 years for females and 1.4-1.9 years for males. Brood size of females ranged from 66 to 337 and increased with increasing female body length. Lifetime fecundity, calculated as the sum of six successive broods, was 1,004. Compared with P. abyssalis in the southern Sea of Japan, those in the Oyashio region have a larger number of adult instars (six versus five for females, three 3 vs one for males), a lower growth rate (0.014 mm day-1 vs 0.021 mm day-1), and mature earlier (instar 13 vs instar 15 for females; instar 10 vs instar 11 for males). These characteristics are considered to be advantageous life-history traits to counteract higher niche competition within the mesopelagic community and higher predation pressure by mesopelagic fishes in the Oyashio region than in the Sea of Japan.  相似文献   

5.
T. Ikeda  A. Imamura 《Marine Biology》1992,113(4):595-601
The population structure and life cycle of the mesopelagic ostracod Conchoecia pseudodiscophora Rudjakov in Toyama Bay, southern Japan Sea, were investigated using a time-series of samples collected during 0 to 500 m vertical hausls with twin-type Norpac nets (0.35 and 0.10 mm mesh) over one full year (1 February 1990 to 30 January 1991). Additional samples were also collected with a single-type closing Norpac net (0.06 mm mesh) to examine the vertical distribution patterns of eggs and all instars of this species. The proportion of gravid females present indicated that reproduction of C. pseudodiscophora continues throughout the year, but peaks in April–July. Eggs and Instars I and II were distributed below 500 m, while the more advanced instars were most abundant in the 350 to 500 m stratum by both day and night. Based on the abundance peaks of each instar in the time-series samples, development times were estimated to be 2.5, 4, 3, 7 and 11 mo for Instars III, IV, V, VI, and VII, respectively. Thus, a total of 30 mo is required for newly spawned eggs to hatch and reach adulthood. Stomach-fullness indexes revealed no seasonality in the feeding activity of any instar stage, but that feeding activity was low in older instars, particularly in adult males. The present results are compared with those for a few other ostracod species, in an attempt to characterize the life cycle of C. pseudodiscophora inhabiting waters of subzero temperature in the mesopelagic zone of the Japan Sea.  相似文献   

6.
Summary Changes in response to attack and the tendency to aggregate were examined in the six larval instars of the buckmoth, Hemileuca lucina (Saturniidae). In response to simulation of attack by a parasitoid and of biting by a predator, early instars (I, II, and III) exhibited defensive behavior much more often than escape behaviors, whereas late instar larvae (IV, V, and VI) usually resorted to escape rather than defend themselves. The situations in which attacked larvae were most likely to stimulate other group members to respond were: second and third instar larvae thrashing in response to simulation of a parasitoid or headrearing in response to simulation of a biting predator; and fourth, fifth and sixth instar larvae dropping in response to either stimulus. An index of reaggregation indicated that first instar larvae had difficulty reaggregating; second, third and fourth instar larvae reaggregated quickly; and fifth and sixth larvae dispersed. As larvae developed, the change from predominantly defense to escape behaviors paralleled the decline in tendency to aggregate.  相似文献   

7.
Caprella danilevskii Czerniavski, an epifaunal amphipod crustacean, was successfully reared for two generations under laboratory conditions. Amphipods were maintained in pairs or fours in a Petri dish. Temperature and photoperiod were maintained at 20°C, and 14 h light: 10 h dark, respectively. Colonies of the diatomCylindrotheca closterium (Ehrenberg) Reumann and Lewin were provided as food source. The red algaGelidium amansii (Lamouroux) Lamouroux was used to provide an attachment substrate for the caprellids. Juveniles that emerged from the brood pouch were described as instar I. Subsequent instars were identified by molts. Juveniles molted successively at 2.5 to 6.5 d intervals. The body length of males at each instar increased exponentially, while that of females followed a sigmoid curve. A different pattern of flagellar segment addition in the antenna I of males and females was revealed. At the age of 20.8 d, females reached instar VII, and produced their first embryos. After 5.1 d, juveniles emerged from the brood pouch. On average, females produced 5.4 clutches successively at 5.0 d intervals. The number of offspring per spawning increased from 6.3 at instar VII to 22.0 at instar XII. The total number of offspring was 69.0 for a female throughout her life span.  相似文献   

8.
Diel molting cycles of megalopae and first instar Dungeness crabs Cancer magister Dana captured in the Grays Harbor estuary (46° 55N; 124° 05 W) in May 1991 were studied under laboratory conditions. Sixtyone percent of the megalopae and 76% of the first instar crabs molted during periods of ambient darkness under a normal light — dark diel regime, and molting pattern was not affected by changes in the photoperiod (24 h daylight or 24 h darkness). Time until metamorphic molt increased as conspecific density increased. Habitat type (shell or mud) did not affect time until molt of megalopae and first instar crabs, nor did it affect daily molting rhythm of first instars. We hypothesize that nightly ecdysis of megalopae and first instar Dungeness crabs and density-dependent molting may be an adaptive response to predation and cannibalism among young-of-the-year.Contribution No. 875 from the School of Fisheries, WH-10, University of Washington, Seattle, Washington  相似文献   

9.
Populations of the marine cladoceran Podon polyphemoides (Leuckart) in the Chesapeake Bay (USA) zooplankton typically occur in large patches, extending the length of the estuary. These patches are characterized by well defined maxima, which do not move seaward during a given season. During the day, the bulk of the population is situated in the upper part of the two-layered estuarine circulation, where it is subjected to transport by net non-tidal seaward current. One mechanism for maintaining the population within the estuary is provided by the diurnal behavior of the podonids, which migrate to deeper water during the night. The landward advection of the deeper currents, thus, helps to counterbalance seaward population loss during the day. The extent of the vertical movement of the population can be modified by various environmental factors, but a suggestive correlation with light was found. It is thought that the downward component of the migration is due to passive sinking.  相似文献   

10.
Y. Yamada  T. Ikeda 《Marine Biology》2000,137(5-6):933-942
 Using the number of segments of pleopod rami as a marker of instar number, the population structure (instar composition) of the mesopelagic gammarid amphipod Cyphocaris challengeri was investigated by monthly samplings from May 1997 to April 1999 at a station off southwest Hokkaido, Japan. Laboratory-rearing experiments were also conducted to establish the relationship between the number of segments of pleopod rami and instar number, and to estimate the growth pattern of this gammarid based on the intermolt period and molt-increment data. Stratified sampling in the field (0 to 200 and 200 to 400 m depth strata) showed this species occurred mainly at 200 to 400 m depth during the day. Instar analysis indicated that C. challengeri has 12 instars in females and 11 instars in males. Based on observations of secondary sexual characters, Instars 1 to 6 were designated juveniles (Instars 1 to 3 occurred in the marsupia of gravid females); in males, 7 to 9 were immature and 10 and 11 were mature, while in females 7 and 8 were immature and 9 to 12 were mature. Off southwest Hokkaido, Instar 4 (just released from a female's marsupium) was found throughout the year, with a peak abundance occurring in April to July of each year. A sequential development of Instar 4 to 9 (youngest adult instar) through the year was observed. Generation length (i.e. the time required to grow from Instar 4 to 10) was estimated from a laboratory-obtained growth curve to be 216 to 584 d at the in situ temperature range (2 to 5 °C), which is consistent with observations on field populations. Specimens older than Instar 9 were rare in the field and could not be used in laboratory-rearing experiments, so longevity could not be estimated. Eggs were oval and measured 0.6 mm (large diameter). Brood size ranged from 20 to 65. Comparing the present results with those of epipelagic hyperiid amphipods, the nearly identical growth rates together with the production of fewer but larger eggs seen in C. challengeri appear to reflect to the typical life mode of deep-living pelagic crustaceans. Received: 14 February 2000 / Accepted: 6 July 2000  相似文献   

11.
Ethyl alcohol, acetone, and petroleum ether extracts of three plant species belonging to three different botanical families [Strychnos nux-vomica (Loganiaceae), Euphorbia lathyrus (Euphorbiaceae), and Datura stramonlum (Solanaceae)], a chemical insecticide; profenofos and their combinations were tested against second and fourth instars of Spodoptera littoralis under lab conditions. Results revealed that the ethanol extract of S. nux-vomica was the most effective among all plant extracts, where the corrected mortality% were 92, 81, 58, and 27% to 2nd instar and 89, 74, 34, and 11% to 4th instar at concentrations 0.5, 0.25, 0.125, and 0.0625%, respectively. Calculated LC50's were 0.11, 0.22, and 0.34% to 2nd instar and 0.17, 0.37, and 0.52% to 4th instar for ethanol, petroleum ether, and acetone extracts, respectively. Acetone extracts of all plants were of lower effect. The chemical insecticide profenofos displayed higher efficacy than plant extracts (LC50 = 0.002 and 0.003% for S. littoralis 2nd and 4th larval instars, respectively). The co-toxicity factor reached 76 and 60 when mixing S. nux-vomica + profenofos and D. stramonlum + profenofos at ratio 1:1 against S. littoralis 2nd instar larvae, thus indicating a potentiating effect. While treatment of the 4th instar larvae by the same mixtures resulted in a co-toxicity factor below 20 at all mixing ratios indicating, only, an additive effect against this instar.  相似文献   

12.
The Tailed Jay Graphium agamemnon is one of the attractive papilionid butterflies that enliven the environment of Visakhapatnam. It occurs throughout the year. It lays eggs singly on young leaves of the mast tree Polyalthia longifolia var. pendula (Annonaceae). The eggs take 3-4 days to hatch. The larvae go through 5 instars over a period of 15-16 days. The pupal period is 13-14 days. The total period from egg to adult emergence spans over 33-36 days. Based on this short life cycle, and larval and pupal development success studied every month, this butterfly can be multivoltine with a minimum of 7-8 broods in a year. Both CI and GR decreased with the age of larva, their average figures being 3.78 and 0.43 respectively. AD values are high (average 92%) and decreased through successive instars. Both ECD and ECI followed a similar pattern with an increase from instar I up to II, then a decrease up to IV and again an increase in instar V and the highest value is with fifth instar. Adults frequently visited flowers (12-35 flowers in a min) spending 1.0 to 3.2 seconds on a flower. The nectar concentration ranged between 16 and 58%. Peak foraging activity mostly fell between 0900-1000 h. The proboscis received pollen in most of the floral species visited, thus satisfying one of the characteristics of butterfly pollination. Being a fast and strong flier it is treated as "high energy" pollinator promoting cross-pollination.  相似文献   

13.
Field and laboratory studies compared two features of larval behavior in a pair of predacious sisterspecies of green lacewings: one (Chrysopa slossonae) a specialist on a single species of colonial aphids (the woolly alder aphid) that occur on branches and trunks of alder trees, the other (C. quadripunctata) a general aphid feeder whose primary prey is dispersed on foliage of diverse types of trees. First, a few hours after hatching, larvae of the two species develop significantly different phototactic responses; the differences correspond well with the spatial distributions of their prey. Most C. slossonae exhibited negative phototaxis, a response that helps move hatchlings inward on alder trees toward the woolly alder aphid colonies, whereas most C. quadripunctata hatchlings showed positive orientation to light, a response that tends to keep them in tree canopies with their prey. Second, in greenhouse experiments, a significantly greater proportion of C. slossonae larvae (second instars) molted within woolly alder aphid colonies and remained with the aphids than did C. quadripunctata larvae. These differences indicate that the specialist larvae have evolved a high degree of behavioral fidelity to their prey. However, larvae (second instars) of the two species that were released near ant-tended woolly alder aphid colonies in the field had similar recovery (= survival) rates. Consequently, natural selection may not act on behavioral traits that influence larval fidelity to prey during the late second and early third instars.  相似文献   

14.
We tested the hypothesis that larval size in the acorn barnacle Balanus eburneus Gould (Cirripedia Thoracica) varies in relation to food availability. In March–November 1980, and March–July 1981, larvae were obtained from adult Balanus eburneus collected in the Newport River, North Carolina, USA. Carapace length and width of larvae reared at three different food concentrations were measured. Mean naupliar instar size was independent of food concentration. Mean size of the cypris instar increased with increasing food level. Greater cypris size could be attributed to increased food reserves in the preceding naupliar stage, and was coinciden with inmarked increase in metamorphic success. Variation in instar size remained constant or declined during naupliar development, but increased sharply at the molt to the cyprid. Naupliar size regulation involved: (1) conservation of a molt increment specific for each naupliar-naupliar molt, (2) an inverse relationship between premolt size and the molt increment during the first five naupliar instars, and (3) an increase in the precision of the molt increment at the molt to the sixth naupliar instar. Experimental evidence implies that size regulation in Balanus eburneus limits variation about a fixed final naupliar size (e.g. volume). Measurement of naupliar size, accumulated energy reserves, survival and development time, and cypris metamorphic success indicated that naupliar cuticular growth is the most conservative feature of larval development. The data suggest that maximum naupliar size is limited by escalating metabolic costs during development, while minimum naupliar size is limited by size-related feeding effectiveness.  相似文献   

15.
Summary Males of the colonial, wing-polymorphic thrips Hoplothrips karnyi (Hood) fight each other with their forelegs in defense of communal female oviposition areas. In this study, males were reared individually under varying conditions of food deprivation to investigate the developmental cues used in morph determination and the relationships between wing morph, developmental time in each instar, propupal weight, and five adult morphological characters associated with fighting ability and dispersal ability. Males deprived of food for five days midway through the second (final) larval instar had smaller propupal weights and were more likely to develop wings than males deprived of food in the first instar or control males. However, the mean propupal weight of all males that developed wings was not significantly less than that of wingless males. Wing morph of female parents had no measurable effect on this character in the offspring. Wingless males possess relatively larger fore-femora and prothoraces than do winged males, but winged males possess relatively larger pterothoraces (Fig. 1). Behavioral observations of wingless and winged males of similar weight as propupae showed that wingless males won fights and became dominant in oviposition areas. Thus, a trade-off exists between characters associated with male fighting and dispersal ability. The cost of wings, in terms of fore-femora size and prothorax size, increased with propupal weight. Wingless males that developed in the experimental treatment that produced a high proportion of winged males were relatively small in size, and were intermediate in body shape with respect to winged males and other wingless males (Fig. 2). This shape intermediacy indicates that there may be developmental constraints on alternative tactics of resource allocation. Total developmental time varied between wing morphs, but was not correlated with propupal weight or adult morphological characters of winged or wingless males. For wingless males that developed in the treatment that produced a high proportion of winged males, adult morphological characters were negatively correlated with the duration of the second instar. This correlation suggests that the development of small wingless males involves a compromise between the benefits of large adult size and the costs of prolonging the second instar to increase the probability of becoming larger.  相似文献   

16.
Knowing the depth zone of neutral buoyancy of divers is important because buoyancy can determine how animals manage their energy budget. In this study, we estimate the depth zone of neutral buoyancy of free-ranging cormorants for the first time, using time-depth recorders. We discovered that vertical ascent rates of 12 Crozet and 15 Kerguelen diving blue-eyed shags (respectively Phalacrocorax melanogenis and P. verrucosus) slowed down considerably at the 50–60 m depth zone. We suggest this was due to birds trying to reach the surface from that point upwards using reduced locomotor activity because the force of buoyancy becomes greater than the force of gravity at that depth. The results show a shift of this depth zone in relation to maximum targeted dive depth, suggesting cormorants may control buoyancy through respiratory air volume adjustment. Interestingly, 60 m is close to the maximum depth zone reached by these two species during dives lasting 4 min, their estimated behavioural aerobic dive limit. This suggests that the decision to swim deeper has a direct consequence on the energy budget, with time spent recovering at the surface (time thus lost to foraging) strongly increasing relative to the preceding time of submergence. Resources found in deeper waters must be of sufficient quantity or quality to justify crossing the frontier of physical neutral buoyancy.  相似文献   

17.
Frond growth of Macrocystis pyrifera in the Falkland Islands was monitored in shallow coastal water from December 1985 to March 1987, and at a different site in deeper water from December 1985 to June 1986. Growth rates in the deeper bed were generally higher than those recorded in the coastal zone. At both sites, node initiation and elongation rate fluctuated according to the seasonal pattern of light or water temperature. In the shallow coastal area, nitrate was abundant in the winter and below detection levels during late spring and summer. Correlation analysis suggests that the production of the fronds of the giant kelp in this area was probably inhibited during the summer months by extremely low concentrations of nutrients. Internal nitrogen was exhausted approximately one month after a sharp decline in ambient nitrate concentration, and carbon reserves were formed. In the deeper bed of M. pyrifera, nitrogen was abundant all year round and the production of the fronds reflected the seasonal pattern of light or water temperature. The nitrogen content of the tissue probably did not drop below a level that limited production, and no internal carbon reserves were accumulated.  相似文献   

18.
Summary When Thomson's gazelles (Gazella thomsoni) detect stalking predators, such as cheetahs (Acinonyx jubatus) and lions (Panthera leo), they often approach and follow the predator for up to 72 min (average 14 min). Coursing predators are rarely approached. Gazelle groups were more likely to approach cheetahs if the groups were larger, if the vegetation was low, or if the cheetahs came closer to the group. Immature gazelles were more likely to approach than adults, and a higher proportion of group members participated in inspection behaviour in small groups than in large ones. Gazelles approached closer in less risky situations: if they were in larger groups or if the vegetation was low. Inspection behaviour caused cheetahs to move further between rests and between hunting attempts. Approaching cheetahs was risky, particularly for younger gazelles (probability of being killed while inspecting a cheetah was 1 in 5000 approaches for adults and 1 in 417 approaches for half-grown/adolescent gazelles), and the risks were higher than monitoring cheetahs from a distance. The time costs of predator inspection were also considerable (less than 4.2% of daylight time budget), suggesting that the benefits must be substantial to offset these costs. The results suggested that inspection behaviour was multifunctional, causing stalking predators to move out of the vicinity, enabling gazelles to monitor the predators' movements, and providing an opportunity, particularly for younger animals, to learn about predators. By approaching, gazelles also inform predators that they have been detected and alert other gazelles to the predators' presence.  相似文献   

19.
A natural population of Pycnogonum litorale Ström was examined every 4 weeks over a period of 15 months and thereafter at yearly intervals for 15 years. Adult pycnogonids – mating couples and males carrying egg batches – and freshly hatched protonymphon larvae within these egg batches were found throughout the year. The second, third, and fourth instar larvae were only found from April to July, during the vegetation period of their hydroid host Clava multicornis. After metamorphosis to the fifth instar (first juvenile instar) the pycnogonids have a significantly larger proboscis than during the larval period, and they feed on the sea anemone Metridium senile. First juvenile instars were found on M. senile from May to August. Older and larger juvenile stages were found over longer time spans throughout the year, and the maximum number of successive instars shifted slowly from June to December. Freshly moulted adults occurred throughout the year. Males, which on the average are smaller, usually reach the adult stage during late autumn of the first year and females, at the end of the following spring. We conclude that in nature the development from egg to adult stage is completed within one year. Continuous reproduction and asynchronous embryonic development provide offspring throughout most of the year. The annual cycle is synchronized by the vegetation period of C. multicornis, the only host of these pycnogonid larvae in the investigated habitat, and by the arrest of growth during low winter temperatures. The low level of locomotory activity of P. litorale probably requires an environment in which both host species coexist. The abundance of C. multicornis, M. senile, and juvenile pycnogonids decreased from 1990 to 1996, maybe due to hydrographic conditions.  相似文献   

20.
对吉林省西部农牧交错区典型生境土壤线虫群落进行调查,共捕获线虫23属、1 264只,优势属为真滑刃属和短体属。研究结果显示,土地利用方式对土壤线虫群落特征有一定影响,不同生境间土壤线虫群落共有属不多,农业生产活动促使土壤线虫向土壤下层移动;不同农业生产活动对土壤线虫群落多样性影响不同, 4种生境中,居民点园地土壤线虫群落多样性最高,而玉米田最低;不同土地利用方式下土壤线虫功能类群差异显著,玉米田不利于捕食类群/杂食类群的存在。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号